MUCCA Multi-disciplinary
Use Cases for Convergent
new Approaches to Al
explainability

Stefano Giagu
AI@INFN Bologna, 2-3 Maggio 2022

|

Y os

A\
AV




THE MUCCA PROJECT

CHIST-ERA IV xAl H2020 EU grant 2.2021-7.2024

Ultimate goal: quantifying strengths and solving weaknesses of new and state of the art
XAl methods

Strategy: study explainability technigues in different use-cases intentionally chosen to be
heterogeneous with respect to the types of data, learning tasks, scientific questions

Multidisciplinary Collaboration that brings together researchers from different fields:

* high energy physics

Three phases:

* applied physics in medicine | - apply xAl techniques
_ Il - identify possibile shortcomings of the techniques and metric to
* Neuroscience evaluate explainability & interpretability

, lll - combine methods and knowledge to develop general procedures
* computer science and engineering pipelines for explainable Al




project overarches multiple disciplines, from fundamental

M U CCA CO NSO RTI U M science to medical clinic and neuroscience, putting together

world-experts from the respective fields

Istituto Nazionale Fisica Nucleare (IT) , University of Sofia St.KI.Ohridski (BG)
Rome group A - Faculty of Physics

Fundamental research with cutting edge technologies and e extended expertise in detector development, firmware,
instruments, applications in several fields (HEP, medicine experiment software in HEP
imaging/diagnosis/prognosis/therapy)
Polytechnic University of Bucharest (RO)
Department of Hydraulics, Hydraulic Equipment and

Sapienza University of Rome (IT) Environmental Engineering

Departments of Physics, Physiology, and Information

Engineering & Complex Fluids and Microfluidics expertise: mucus/saliva
rheology, reconstruction and simulation of respiratory airways,
HEP: data-analysis, detectors, simulation; Al: ML/DL methods in Al applications for airflow predictions in respiratory conducts
basic/applied research and industry, intelligent signal processing;
Neurosciences: brain encoding of complex behaviours, ML In gg %;\g

electrophysiology, multi-scale modelling approaches ' | University of Liverpool (UK)
‘—!!, Department of Physics

Medlea S.r.ls (IT) L

< : hysics data analysis at hadron colliders experiments,
phy y P

high tech startup, with an established track record in medical SImEHIE, Wils Gl 1215 mEineeks I (1157

Image analysis and high-performance simulation and
capabilities of developing and deploying industry-standard | Istituto Superiore di Sanita (IT)
software solutions |
expertise in neural networks modeling, cortical network
dynamics, theory inspired data analysis




MUCCA’s PEOPLE

Sapienza Univ.: S. Ferraina, S.G., L. Rambelli, S. Scardapane, A. Uncini + students

INFN: G. Bardella, A. Ciardiello, T. Torda, C. Voena

1ISS: P. Del Giudicet, G. Gigante, M. Mattia

MedLea sris: S. Melchionna, M. Pratim Borthakur

Liverpool Univ.: J. Carmignani, M. D’Onofrio, C. Sebastiani + students

Sophia Univ.: V. Kozhuharov, G. Georgiev + students

Bucharest Poli.: C. Balan, D. Broboana, E. Chiriac, E. Magos, C. Patrascu, N.
Tanase + students




MUCCA WORK PLAN

@Y Samples and xAl-tools exchange
{——) Management and communication exchange

Scientific outputs
Social impact

Publication, Real-time application tools
Open doors days

PADME

WP1: HEP physics A
Application of Al-methods to searches for
new physics at ATLAS. Provide samples
and tools to allow testing of xAl. Improve
transparency, impact of systematics
explainability. Deliverables: HEP
publications, benchmarks use-cases,

generalized tools.
\ T

School/Hackaton
publications

%

VvV WP0: Management

Project and reports coordination,
planning of meetings, networking and
participation in public conferences.
Dissemination, communication and
exploitation of results (publications,

xAl tools,

Tools for detectors J{

Kaggle challenge\

5> 7

WP2: HEP detectors

Application of Al-methods to calorimeter
detectors (PADME). Provide simulation of
electromagnetic showers, benchmarking
and tools for xAl. Deliverables: samples

and tools for xAl methods, reports.

N /

WP7: xAl-Tools

Survey of all available xAl methods
relevant for use-cases; develop xAl usage
pipelines; analysis of results.
Deliverables: document xAl procedures
and engineering pipelines for general use.
Kaggle challenge for exploitation.

reports, social media)
N N\ 4
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Brain-
Computer M
Interfaces

Meetings
stakeholders

Open doors days \
__Diagnostic tools

Test xAl techniques to uncover
computational brain strategies on NHP
and selection of dynamical neural models
Deliverables: reports on saliency maps
from DNNSs trials, quantification of quality
and model selection.

\

WP6: Neuro-science

WPS5: Functional Imaging\
Test xAl methodology in respiratory
system. Analyse complex systems
(passage of air and mucus, expected non-
linear responses) to derive model and test
xAl. Deliverables: prototype of xAl

‘ algorithm implementation, assessment of
produced predictions. /

WP3: HEP real-time systems
Develop Al-based real-time selection algorithms
for FPGAs at ATLAS. Use xAl methods for to

understand complex systems. Deliverables:
tools to transfer knowledge for xAl methods in

real-time applications, publication.

Develop xAl pipeline to segmentation of
brains in magnetic resonance imaging.

Use publicly available databases for xAl
developments, focusing on explainability

of training strategy. Deliverables: xAl
algorithms and stability evaluation. /

WP4: Medical imaging V




Al EXPLAINABILITY

» XAl is a broad field of research in Al concerning development of tools to increase trust and
understanding of a model’s predictions

e Main issues with xAl:

» strong trade-off between interpretability and representation power of ML models

* intrinsically interpretable models (linear regression, decision trees, ...) orthogonal to
models with strong representational power (Deep NN)

 most XAl methods are oriented towards practitioners of ML (e.g. help experts in making
better models), much less toward end-users (e.g. radiologists in the case of Al applied on

medical imaging)

» different XAl methods may disagree on the “explanation”, they may not be always
accurate, and they lack principled evaluation metrics



EXPLAINABILITY METHODS

e can be categorised wether they provide global or local explanations and what type of information
they provide in output:

e Visualisation methods: help to understand the correlations between output and input by
highlighting the characteristics of the DNN input (or intermediate stages) that most strongly
influence the associated output

 Methods based on data influence: explore the influence of single data points on the prediction,
e.d., how much training on a certain point has influenced the prediction on a separate point

o Synthetic methods: a separate model of ML is developed, a sort of “white box” trained to mimic
the input-output behavior of the DNN. The white box model is more easily explained and / or has
the purpose of identifying the decision rules or input characteristics that influence the network
outputs

* |ntrinsic methods: DNNs created specifically to provide an explanation of the reason for the
output together with the output. Intrinsically explainable DNNs simultaneously optimize both
model performance and a certain quality of the explanations produced



A BACK-PROP BASED METHOD: GRAD-CAM HEAT-MAPS

e display the relevance of features based on the magnitude of the gradients flowing through the network layers during training

starts with the output feature map of one of the convolutional layers produced by a given input image

each channel of the input feature map is weighted with the gradient of the class with respect to the channel, the weights
are then propagated to the pixels of the input image

useful to measure how much each pixel/region of the input image activate the category predicted by the network

predicted class: predicted class:
iIndian elephant cat

Selvaraju et al, 2017



A PERTURBATION-BASED METHOD: OCCLUSION SENSITIVITY

e display the relevance of the features by comparing the network output for a certain input and for a suitably
modified copy of the input

underlining hypothesis: performances of a model significantly change when influent elements of the input
are masked off (technigques often used in physics to understand transfer function of black box systems)

a gray patch is placed in different regions of the input image in order to occlude the overlapping pixels, for
each region is checked how much the output prediction of the model changes

saliency maps built by weighting each pixel (or group of pixels) by the output prediction variation

class
dog

class

occlusion elephant
alexnet

original
o mask .
image stride 2
32X32 Zhou et al, 2014




A DATA INFLUENCE METHOD: GRADIENT TRACING

» explore the influence of single data points on the prediction, e.g., how much training on
a certain point has influenced the prediction on a separate point

: : : : k
o approximate the ideal influence of a point | ,
z on the point z’ by storing k checkpoints Influence(z,z’) ~ Z nVIw;,z) - Vi(w;, 7)
during the training of the model and computing: i=1
test proponents opponents
image (reduce loss) (increase loss)

church church church castle

Pruthi et al, 2020
10
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A SYNTHETIC METHOD: KNOWLEDGE TRANSFER BY DISTILLATION

transfer knowledge learned by a larger neural network pre-trained for the same task to a smaller, simpler and more
explainable model

- the teacher is used to generate soft labels that replace the values of the ground truth labels with the probabilities
estimated by the teacher that the input belongs to each class

- during the training the student model can learn both from the hard (ground truth) and from the soft labels produced by

the teacher

N
N~

Training
Data

/ L= Lxent T :BLdist

/
N
Y
Q

4 ¢
%10 > -
7

0‘

NS

= < 1\SeZ/ 1

ORAMRIISAL

(S »> )

NS RIS R

DG

// B ININAN
- - .

= 2\ |/ 2\ 7

.

L., = x-entropy(9, y*?"; w)

N~

e, Teacher Network gﬂtf 8.3
%’oﬂ ' Z;eacher
Labels €X p l
Cat: 1.0 -
oﬁf,; ;,a Cross-Entropy Distillation SOff _ T T temperature parameter
Hard Labels Loss Loss yl. — teacher which acts as a smooting for
: : J the distribution of soft labels
Gradient E Output E Gradient Z . eXp
o o V. j T

distillation facilitate student’s training by allowing to capture

relationships between classes that are not represented in the hard
labels of the training dataset

Hinton et al, 2014 11



A MUCCA USE-CASE: xAl ON DNN FOR REAL-TIME TRIGGERS

IN HEP oY /f //‘ ,W//4
= / 0 ) RPC3
Goal: accurately reconstruct the momentum and angle of the muon "
track from the RPC detector hit information in less than 400ns (3 BM, |
orders of magnitude faster than fastest Al models on CPUs and GPUs)
N
Latency and FPGA resource occupancy are in a trade-off relationship, Bl |
while Al model performance strongly depends on the neural network !
scale
2 | l—L-
ok o e | | >
; 0 2 4 6 8 10 12m 2z
noise
Strategy: multi-stage Al model compression and simplification based
on aggressive quantisation and knowledge transfer techniques to / |
avoid degradation of physics performances
. . . . T . . pattern
xAl: lightweight models obtained using distillation easier to explain, but N of g
extreme sparsity on data and model quantization may challenge xAl muon
methods particle

0 50 100 150 200 250 300 350 19

n index



KNOWLEDGE TRANSFER FOR CNN MODEL COMPRESSION

transfer knowledge learned by a larger neural network pre-trained for the same task to a
smaller and quantised (4-bits per activations and weights) model

Pre-trained teacher  -ConvaD
& -Relu
® - MaxPoolingzD
Prediction @ -Flatten
| ) J @ -Dense
4
e A { Truth tabet |

L . ' !
OO S S (g - Totalioss )---(‘standara toss |
I | :

teacher guidance not provided to the student once

: 4 [prediiction } the quality of the student match or surpass that of the
teacher with a certain margin

Student

obtained a reduction on size of the model of a factor 100 with only a limited reduction Iin

performance | N |
S. Francescato, S.Giagu, F. Riti, G.Russo, L.Sabetta, F.Tortonesi, Eur. Phys. J. C (2021) 81:969 13



Efficiency of detection

PRELIMINARY PERFORMANCES

Single muon trigger efficiency curve

for a nominal threshold of 10 GeV FPGA resource occupation

Table 3 Percentage occupancy relative to the total FPGA available

1 0F-=---===== L ——— Y u——— y . Sy P ——— -
| TIII L resources (model xcvul3p-fhga2104-2L-¢ [14
B U ‘ e
0.9 : .;,:!‘ * Model (9 x 16) BRAM | DSPs FF | LUT
0.8 L - Teacher (%) 209 | 2580 694 | 153
57l ' $ _ Student 32 bit (%) 3.2 310 84 | 27
e E: QStudent 4 bit (%) 0.2 L 005 04 ) L7
|
0.5} M Teacher :
0al , i Student w/o teacher Inf _ FPGA
- 4 | Student w/ teacher N ergqce time per event on
03l A Xilinx Ultrascale+ XCV13P
.
0.2} e
‘e, ! - Teacher fp32: 5 ms (Tesla V100 GPU)
A |
O sasdeale | - Student 4 bit: 438 ns (hls4ml)
LA L | i T T ——— T
95 0 35 o 135 0.0 - Student 4 bit: 84 ns (our VHDL implementation)
pr [GeV]

S. Francescato, S.Giagu, F. Riti, G.Russo, L.Sabetta, F.Tortonesi, Eur. Phys. J. C (2021) 81:969
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XAl VIA HEAT MAPS

* visualize pixels that have contributed the most to the track reconstruction

* heat maps obtained with the RAM technique (regression activation maps (generalise grad-CAM for regression tasks))

true positive case false positive case noise-only FP case
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XAl VIA DISTILLATION TO CONVOLUTIONAL SOFT DECISION TREES

* teacher distilled to a intrinsically explainable student, as an example a decision tree
(Convolutional Soft Decision Tree)

» Soft Decision Trees (SDTs) are capable to consider each output leaf node with a specific
probability that will contribute to the final outcome of the model

* Convolution SDTs are an improvement of this idea with Convolutional layers on top to provide
a latent representation of the input data to be passed to the hierarchical mixture of the trees

Real = [pt: 0.0, eta: 0.0000] Predicted = [pt: 15.4892, eta: 0.2855]

Input image

Convolution
Hl Denoising

i rababiity path in this case there is no dominant
oo probability path, but there are many
paths with conflicting outputs and

00 400 300

Input image fvithout noise

probability of the same order of

magnitude ...

nnnnnn

nnnnnn

16



A MUCCA USE-CASE: xAl IN MEDICAL IMAGING

* use open MRI images databases to train DNN for segmentation tasks of both anatomical
brain structures and healthy/pathological tissue

» apply state of the art XAl algorithms and test their ability to produce consensus on final
users quantifying it by appropriate metric

» study stability of the metric vs different datasets, training strategies, architecture constraints,
data augmentation, ...

saliency gradient
maps tracing
proponents opponent

Brals17 UNet , DeeplLabV3+, ResNet3D . -




A MUCCA USE-CASE: xAl IN FUNCTIONAL IMAGING

Al for airways
simulator

* Develop an integrated approach for 3D reconstruction from
medical images to perform fluid dynamics simulation &

experiments on respiratory tracts (airways)

I * Assess airflow and air+mucus dynamics in respiratory tracts:
I Newtonian and non-Newtonian rheology
II  Reach a high level of automation to handle several geometries
‘ (patients)
Moebius/l\
=n - Multiphase
| % viscoelastic fluids
- Graph Neural Network based fluid dynamic simulation

- explainability via meta-learning

S. Melchionna, Moebius fluid dynamics simulation in complex geometries, 2020
I. Spinelli, S. Scardapane, A. Uncini, A meta-learning approach to train graph neural networks 2021 18



A MUCCA USE-CASE: xAl IN NEURO SCIENCE

e goal: uncover computational brain strategies while non human primates perform

tasks requiring the inhibition of planned movements
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build the ramp?

1) + ox(t) — f(t) + of(r)

df(t) — DNN~! = 0x(1)
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SUMMARY AND EXPECTED IMPACT

* Status of the project: some delay wrt the original plans due to Covid19 restrictions and delay in
obtaining funding from one of the funding agency, nevertheless:

e successfully implemented appropriate Al algorithms for all the use cases

 performed an extensive survey and analysis of state-of-the art XAl methods and developed new
ones, identified the most suitable ones to be used for the next phase of the project

 Expected Results: knowledge base and xAl tools (documentation and procedures/engineering
pipelines)

Multiple level impact:

1. enable users to better understand Al models and diagnosis limitation using xAl

2. systematic understanding of which xAl methods better adapts to specific applications

3. skill development and training for young researcher

20



