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THE MUCCA PROJECT
• CHIST-ERA IV xAI H2020 EU grant 2.2021-7.2024


• Ultimate goal: quantifying strengths and solving weaknesses of new and state of the art 
xAI methods 


• Strategy: study explainability techniques in different use-cases intentionally chosen to be 
heterogeneous with respect to the types of data, learning tasks, scientific questions 


• Multidisciplinary Collaboration that brings together researchers from different fields:


• high energy physics


• applied physics in medicine


• neuroscience


• computer science
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Three phases:


I - apply xAI techniques

II - identify possibile shortcomings of the techniques and metric to 

evaluate explainability & interpretability

III - combine methods and knowledge to develop general procedures 

and engineering pipelines for explainable AI



Sapienza University of Rome (IT) 

Departments of Physics, Physiology, and Information 

Engineering


HEP: data-analysis, detectors, simulation; AI: ML/DL methods in 
basic/applied research and industry, intelligent signal processing; 

Neurosciences: brain encoding of complex behaviours, ML in 
electrophysiology,  multi-scale modelling approaches

Istituto Nazionale Fisica Nucleare (IT) 

Rome group


Fundamental research with cutting edge technologies and 
instruments, applications in several fields (HEP, medicine 

imaging/diagnosis/prognosis/therapy)

University of Sofia St.Kl.Ohridski (BG)  
Faculty of Physics 


extended expertise in detector development, firmware, 
experiment software in HEP

Polytechnic University of Bucharest (RO) 
Department of Hydraulics, Hydraulic Equipment and 

Environmental Engineering


Complex Fluids and Microfluidics expertise: mucus/saliva 
rheology, reconstruction and simulation of respiratory airways, 
AI applications for airflow predictions in respiratory conducts


University of Liverpool (UK) 

Department of Physics


physics data analysis at hadron colliders experiments, 
simulation, ML and DL methods in HEP

Medlea S.r.l.s (IT) 


high tech startup, with an established track record in medical 
image analysis and high-performance simulation and 

capabilities of developing and deploying industry-standard 
software solutions 

MUCCA CONSORTIUM
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project overarches multiple disciplines, from fundamental 
science to medical clinic and neuroscience, putting together 

world-experts from the respective fields

Istituto Superiore di Sanità (IT)


expertise in neural networks modeling, cortical network 

dynamics, theory inspired data analysis



MUCCA’s PEOPLE

• Sapienza Univ.: S. Ferraina, S.G., L. Rambelli, S. Scardapane, A. Uncini + students


• INFN: G. Bardella, A. Ciardiello, T. Torda, C. Voena 

• ISS: P. Del Giudice†, G. Gigante, M. Mattia


• MedLea srls: S. Melchionna, M. Pratim Borthakur


• Liverpool Univ.: J. Carmignani, M. D’Onofrio, C. Sebastiani + students


• Sophia Univ.: V. Kozhuharov, G. Georgiev + students


• Bucharest Poli.: C. Balan, D. Broboana, E. Chiriac, E. Magos, C. Patrascu, N. 
Tanase + students
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MUCCA WORK PLAN
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AI EXPLAINABILITY
• xAI is a broad field of research in AI concerning development of tools to increase trust and 

understanding of a model’s predictions


• Main issues with xAI:  

• strong trade-off between interpretability and representation power of ML models


• intrinsically interpretable models (linear regression, decision trees, …) orthogonal to 
models with strong representational power (Deep NN)


• most xAI methods are oriented towards practitioners of ML (e.g. help experts in making 
better models), much less toward end-users (e.g. radiologists in the case of AI applied on 
medical imaging) 


• different xAI methods may disagree on the “explanation”, they may not be always 
accurate, and they lack principled evaluation metrics
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EXPLAINABILITY METHODS
• can be categorised wether they provide global or local explanations and what type of information 

they provide in output:


• Visualisation methods: help to understand the correlations between output and input by 
highlighting the characteristics of the DNN input (or intermediate stages) that most strongly 
influence the associated output


• Methods based on data influence: explore the influence of single data points on the prediction, 
e.g., how much training on a certain point has influenced the prediction on a separate point


• Synthetic methods: a separate model of ML is developed, a sort of “white box” trained to mimic 
the input-output behavior of the DNN. The white box model is more easily explained and / or has 
the purpose of identifying the decision rules or input characteristics that influence the network 
outputs


• Intrinsic methods: DNNs created specifically to provide an explanation of the reason for the 
output together with the output. Intrinsically explainable DNNs simultaneously optimize both 
model performance and a certain quality of the explanations produced
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A BACK-PROP BASED METHOD: GRAD-CAM HEAT-MAPS
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• display the relevance of features based on the magnitude of the gradients flowing through the network layers during training


• starts with the output feature map of one of the convolutional layers produced by a given input image 


• each channel of the input feature map is weighted with the gradient of the class with respect to the channel, the weights 
are then propagated to the pixels of the input image 


• useful to measure how much each pixel/region of the input image activate the category predicted by the network

predicted class: 
indian elephant

predicted class: 
cat

Selvaraju et al, 2017



A PERTURBATION-BASED METHOD: OCCLUSION SENSITIVITY
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• display the relevance of the features by comparing the network output for a certain input and for a suitably 
modified copy of the input


• underlining hypothesis: performances of a model significantly change when influent elements of the input 
are masked off (techniques often used in physics to understand transfer function of black box systems)


• a gray patch is placed in different regions of the input image in order to occlude the overlapping pixels, for 
each region is checked how much the output prediction of the model changes


• saliency maps built by weighting each pixel (or group of pixels) by the output prediction variation

original 
image

occlusion 
mask 
32x32

alexnet 
stride 2

class 
dog

class 
elephant

Zhou et al, 2014



A DATA INFLUENCE METHOD: GRADIENT TRACING
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• explore the influence of single data points on the prediction, e.g., how much training on 
a certain point has influenced the prediction on a separate point


• approximate the ideal influence of a point  
z on the point z’ by storing k checkpoints  
during the training of the model and computing: 

Influence(z,z') ≃
k

∑
i=1

η∇l(wi, z) ⋅ ∇l(wi, z′￼)

proponents 

(reduce loss)

opponents

(increase loss)

test

image

Pruthi et al, 2020



A SYNTHETIC METHOD: KNOWLEDGE TRANSFER BY DISTILLATION
transfer knowledge learned by a larger neural network pre-trained for the same task to a smaller, simpler and more 
explainable model

- the teacher is used to generate soft labels that replace the values of the ground truth labels with the probabilities 

estimated by the teacher that the input belongs to each class

- during the training the student model can learn both from the hard (ground truth) and from the soft labels produced by 

the teacher
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distillation facilitate student’s training by allowing to capture 
relationships between classes that are not represented in the hard 

labels of the training dataset

L = αLxent + βLdist

Ldist = x-entropy( ̂y, ysoft; w)

ysoft
i =

exp
Zteacher

i

T

∑j exp
Zteacher

j

T

T: temperature parameter

which acts as a smooting for

the distribution of soft labels

Hinton et al, 2014



A MUCCA USE-CASE: xAI ON DNN FOR REAL-TIME TRIGGERS 
IN HEP

Goal: accurately reconstruct the momentum and angle of the muon 
track from the RPC detector hit information in less than 400ns (3 

orders of magnitude faster than fastest AI models on CPUs and GPUs)


Latency and FPGA resource occupancy are in a trade-off relationship, 
while AI model performance strongly depends on the neural network 

scale 





Strategy: multi-stage AI model compression and simplification based 
on aggressive quantisation and knowledge transfer techniques to 

avoid degradation of physics performances


xAI: lightweight models obtained using distillation easier to explain, but 
extreme sparsity on data and model quantization may challenge xAI 

methods
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pattern 
of a 

muon 
particle

noisenoise

μ



KNOWLEDGE TRANSFER FOR CNN MODEL COMPRESSION
transfer knowledge learned by a larger neural network pre-trained for the same task to a 
smaller and quantised (4-bits per activations and weights) model
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teacher guidance not provided to the student once 
the quality of the student match or surpass that of the 
teacher with a certain margin 

S. Francescato, S.Giagu, F. Riti, G.Russo, L.Sabetta, F.Tortonesi, Eur. Phys. J. C (2021) 81:969 

obtained a reduction on size of the model of a factor 100 with only a limited reduction in 
performance



PRELIMINARY PERFORMANCES
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Inference time per event on FPGA 

Xilinx Ultrascale+ XCV13P

Single muon trigger efficiency curve

for a nominal threshold of 10 GeV

- Teacher fp32: 5 ms (Tesla V100 GPU)

- Student 4 bit: 438 ns (hls4ml)

- Student 4 bit: 84 ns (our VHDL implementation)


FPGA resource occupation
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Teacher

Student w/o teacher

Student w/ teacher



xAI VIA HEAT MAPS
• visualize pixels that have contributed the most to the track reconstruction 


• heat maps obtained with the RAM technique (regression activation maps (generalise grad-CAM for regression tasks))
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true positive case false positive case noise-only FP case



xAI VIA DISTILLATION TO CONVOLUTIONAL SOFT DECISION TREES
• teacher distilled to a intrinsically explainable student, as an example a decision tree 

(Convolutional Soft Decision Tree)

• Soft Decision Trees (SDTs) are capable to consider each output leaf node with a specific 

probability that will contribute to the final outcome of the model

• Convolution SDTs are an improvement of this idea with Convolutional layers on top to provide 

a latent representation of the input data to be passed to the hierarchical mixture of the trees
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in this case there is no dominant 
probability path, but there are many 
paths with conflicting outputs and 

probability of the same order of 
magnitude …



A MUCCA USE-CASE: xAI IN MEDICAL IMAGING
• use open MRI images databases to train DNN for segmentation tasks of both anatomical 

brain structures and healthy/pathological tissue


• apply state of the art xAI algorithms and test their ability to produce consensus on final 
users quantifying it by appropriate metric  


• study stability of the metric vs different datasets, training strategies, architecture constraints, 
data augmentation, …

17BraTs17 UNet , DeepLabV3+, ResNet3D

saliency

maps

proponents opponent

gradient

tracing



A MUCCA USE-CASE: xAI IN FUNCTIONAL IMAGING

• Develop an integrated approach for 3D reconstruction from 
medical images to perform fluid dynamics simulation & 
experiments on respiratory tracts (airways) 


• Assess airflow and air+mucus dynamics in respiratory tracts: 
Newtonian and non-Newtonian rheology


• Reach a high level of automation to handle several geometries 
(patients)
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- Graph Neural Network based fluid dynamic simulation

- explainability via meta-learning 

S. Melchionna, Moebius fluid dynamics simulation in complex geometries, 2020 
I. Spinelli, S. Scardapane, A. Uncini, A meta-learning approach to train graph neural networks 2021



A MUCCA USE-CASE: xAI IN NEURO SCIENCE
• goal: uncover computational brain strategies while non human primates perform 

tasks requiring the inhibition of planned movements
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DNN mapping the complex 
multidimensional sequence to a 
simpler one (a linear ramp) preserving 
causality: wavenet with dilated causal 
convolutions

functional explainability: 
where is, in time, the 
information used to 

build the ramp?
x(t) + δx(t) → f(t) + δf(t)

df(t) → DNN−1 → δx(t)

horse race 
model



SUMMARY AND EXPECTED IMPACT
• Status of the project: some delay wrt the original plans due to Covid19 restrictions and delay in 

obtaining funding from one of the funding agency, nevertheless:


• successfully implemented appropriate AI algorithms for all the use cases


• performed an extensive survey and analysis of state-of-the art xAI methods and developed new 
ones, identified the most suitable ones to be used for the next phase of the project


• Expected Results: knowledge base and xAI tools (documentation and procedures/engineering 
pipelines)
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Multiple level impact:


1. enable users to better understand AI models and diagnosis limitation using xAI

2. systematic understanding of which xAI methods better adapts to specific applications


3. skill development and training for young researcher


