Artificial Intelligence for Gravitational Wave science Al@INFN - Artificial Intelligence at INFN 2-3 May 2022

Elena Cuoco, EGO & SNS & INFN Pisa

EOSC Future

Gravitational Wave (GW) detector data

• **Time series sequences**... noisy time series with low amplitude GW signal buried in

Why Artificial Intelligence for GW data?

• Our data: a lot of noise and few GW signals (soon will be many)

- Low SNR signals (overlapping signals)
- Many transient noise disturbances (glitches)
- Not stationary/not linear noise (strange noise coupling)
- Many monitoring auxiliary channels ("big" data)
- Computational and timing efficiency (Fast alert system)

GW astrophysical sources

Short long

Coalescing Binary Systems CBC Black hole – black hole (BBH) Neutron star – neutron star (BNS) BH-NS Analytical waveform

Continuous Sources Spinning neutron stars Monotone waveform

Transient'Burst'Sources Core Collapse Supernovae (CCSN) cosmic strings unmodeled waveform

Cosmic GW Background residue of the Big Bang, stochastic, incoherent background

Do we know their Waveforms?

How we detect transient signals: modeled search

time

Matched-filter

- pyCBC (Usman et al, 2015)
- MBTA (Adams et al. 2015)
- gstlal-SVD (Cannon et al. 2012)

500 4 6 8 10 2 40 30 20 10 0 -10 -20 -30 -40 4 з 0(t) 2 1 06 2 4 6 8 10 time

CBC search

- Strategy: look for excess power in single detector or coherent/coincident in network data
- Example cWB (<u>https://gwburst.gitlab.io/</u>)
 - Time-domain data preprocessed
 - Wavelet decompositon
 - Event reconstruction

How we detect transient signals: un-modeled search

Coherent WaveBurst was used in the first direct detection of gravitational waves (GW150914) by LIGO and is used in the ongoing analyses on LIGO and Virgo data.

Time-Frequency maps of GW150914: Livingston data (left), Hanford data (right) First screenshot of GW150914 event

Phys. Rev. D 93, 042004 (2016) Class.Quant.Grav.25:114029,2008

Burst search

Non linear, not stationary noise

Spectrogram of V1:spectro_LSC_DARM_300_100_0_0 : start=1189644747.000000 (Sun Sep 17 00:52:09 2017 UTC)

Spectrogram of V1:spectro Hrec hoft 20000Hz 300 100 0 0 : start=1210701379.000000 (Fri May 18 17:56:01 2018 UTC)

Transient noise signals: glitches

https://www.zooniverse.org/projects/zooniverse/gravity-spy

Gravity Spy, Zevin et al (2017)

How Artificial Intelligence could help

Data conditioning

Data preprocessing and cleaning

- Identify Non linear noise coupling
- Use Deep Learning to remove noise
- Extract useful features to clean data

Signal detection / classification / parameter estimation

Detect signals, identify, estimate parameters for waveform

- A lot of fake signals due to noise
- Fast alert system
- Manage parameter estimation

How to deal with data: Time series or Images?

Pre-processing analysis (whitening, band pass filtering)

Change of domain space: Time-Frequency projections

Few examples developed in my team, but many more in LVK collaboration...

Review paper: Enhancing gravitational-wave science with machine learning Elena Cuoco *et al* 2021 *Mach. Learn.: Sci. Technol.* 2 011002

AI GW application

- Noise Transient signal classification
- GW signal classification (CBC or CCSN)
- Stochastic background detection (in extra slides)

Transient Noise classification and Images as input data

Why Image-based classification

Simulated and real data

https://doi.org/10.1016/j.ins.2018.02.068

https://www.zooniverse.org/projects/reinforce/gwitchhunters

H2020-SWAFS (2019-2022)

How we started: Data simulation (transient signal families + Detector colored Noise)

Waveform
Gaussian
Sine-Gaussian
Ring-Down
Chirp-like
Scattered-like
Whistle-like
NOISE (random)

To show the glitch time-series here we don't show the noise contribution

Razzano M., Cuoco E. CQG-104381.R3

Building the images

Spectrogram for each image

2-seconds time window to highlight features in long glitches

Data is whitened

Optional contrast stretch

Simulations now available on FigShare

Razzano, Massimiliano; Cuoco, Elena (2018): Simulated image data for testing machine learning classification of noise transients in gravitational wave detectors (Razzano & Cuoco 2018). figshare. Collection. https://doi.org/10.6084/m9.figshare.c.4254017.v1

Deep learning. Convolutional Neural Network

Application Test on <u>Real data: OI run</u>

Glitch name	# in H1	# in L1				
Air compressor	55	3	Dataset from <u>G</u>	<u>ravitySp</u>	<u>y</u> images	
Blip	1495	374	Paired doves	27	-	
Chirp	34	32	Power_line	274	179	
Extremely Loud	266	188	Repeating blips	249	36	
Helix	3	276	Scattered_light	393	66	
Koi fish	580	250	Scratchy	95	259	•
Light Modulation	568	5	Tomte	70	46	•
Low_frequency_burst	184	473	Violin_mode	179	-	•
Low_frequency_lines	82	371	Wandering_line	44	-	•
No_Glitch	117	64	Whistle	2	303	
None of the above	57	31				

Full CNN stack

Consistent with Zevin+2017

Compact Binary Coalescences

Credit LIGO/Caltech/MIT/Sonoma State (Aurore Simonnet)

Matched filter modeled searches

Core Collapse Supernovae

This is Cassiopeia A, a core collapse supernova remnant with a neutron star in its center. Located in the Milky Way only some 11,000 light-years away from Earth, it originally exploded about 330 years ago.

NASA/CXC/UNAM/IOFFE/D. PAGE, P. SHTERNIN ET AL

Unmodeled searches

GWs from Core Collapse Supernovae

- Waveform depends on progenitor star
- Different emission mechanisms (Proto-neutron star oscillation, Standing Accretion Shock Instability (SASI),..)
- Largely Stochastic
- Best waveform models from computationally expensive 3D simulations
- Different simulation models
- Rare (~100 yrs in Milky Way)

Need an alternative to matched filter approach

Hydrogen fus	ion.	/		
nyarogon ioo	1	La	The	
Helium fusio	on J	A	1.5	24
0	X		(//)	in the
Carbon fusion.	5			122
Oxygen fusion	T	4/~		15
Neon fusion	11	HIC		12
Neon Iusion	4 1	HELLS		1.5
Magnesium	the			25
tusion	15×	\checkmark	V	dis .
Silicon fusion	ALC:			5532
	X	· v	5.00	いない
Iron as	h ~ ~	Million .	~ Trange	225
	18	- Colo	1250 - July	-
		~	~~~~	

	Potential explosion mechanism				
GW emission Process	MHD mechanism (rapid rotation)	Neutrino mechanism (slow/no rotation)	Acoustic mechanism (slow/no rotation)		
Rotating collapse and Bounce	Strong	None/weak	None/weak		
3D rotational instabilities	Strong	None	None		
Convection & SASI	None/weak	Weak	Weak		
PNS g-modes	None/weak	None/weak	Strong		

Ott et al. (2017)

Core-Collapse Supernovae models

- Andresen sll: Low amplitude, non-exploding, peak emission at lower frequencies
- Radice s13: Non-exploding, lower amplitudes
- Radice s25: Late explosion time, standing accretion shock instability SASI), high peak frequency
- Powell s18: High peak frequency, exploding model
- Powell He3.5: ultra-stripped helium star, high peak frequency, exploding model

less, Cuoco, Morawski, Powell, https://doi.org/10.1088/2632-2153/ab7d31

MDC and CCSN GW simulations

Plane of the

Detector plane

y-arm

utz (2011)

 $h(t) = F_+ h_+(t) + F_\times h_\times(t)$

- Distances:
 VO3 0.01 kpc to 10 kpc
 ET 0.1 kpc to 1000 kpc
- Random sky localization
- Large SNR range

SINE GAUSSIAN & SCATTERED LIGHT GLITCHES

$$h_{SG}(t) = h_0 \sin(2\pi f_0(t-t_0)) e^{-\frac{(t-t_0)^2}{2\tau^2}}$$
$$h_{SL}(t) = h_0 \sin(\phi_{SL}) e^{-\frac{(t-t_0)^2}{2\tau}} \phi_{SL} = 2\pi f_0(t-t_0) [1 - K(t-t_0)^2]$$

BACKGROUND STRAIN : simulated data sampled at 4096 Hz built from VO3 and ET projected sensitivities

Pipeline Workflow

Neural Network architecture

- Train, Validation, Test sets: 60%, 10%, 30%
- 3 or 4 Convolutional layers
- Activation function f: ReLU
- Adam optimizer, learning rate α = 0.001, decay rate of 0.066667
- Early stopping
- Batch Size: 64 or 128
- Loss function: Categorical-cross entropy

Dataset: chunks of 3 hr data with 1000 injections/h

GPU: Tesla k40

 Train on <u>all</u> CCSNe waveforms and glitches.

Test on <u>all</u>.

Training time: ~ 30 min

1D CNN.

ET

Alberto less et al 2020 Mach. Learn.: Sci. Technol. 1 025014

MultiLabel classification

Test on O2 real Data

- 44 segments (4096s per segment) from O2 science run.
- Added m39, y20, s18np models (Powell, Mueller 2020).
- Fixed distance of 1 kpc.
- Added LSTM Networks, suited for timeseries data.
- Added Three ITF classification.
- Powell s18np: differs from s18 since simulation does not include perturbations from the convective oxygen shell. As a result, this model develops strong SASI after collapse.
- *Powell y20*: non-rotating, 20 solar mass Wolf-Rayet star with solar metallicity.
- *Powell m39*: rapidly rotating Wolf-Rayet star with an initial helium star mass of 39 solar masses

Powell and Müller (2020)

REAL NOISE FROM 02 SCIENCE RUN

- Noise PSD is non stationary.
- Multiple Glitch Families.
- SNR distribution is affected by ITF antenna pattern.
- Dataset: ~15000 samples.
- Imbalanced Dataset due to different model amplitudes.

	Triggers			
Detector	Signal	Noise	Total	
Virgo V1	9273	47901	57174	
Ligo L1	10480	3810	14290	
Ligo H1	10984	4103	15087	
L1, H1, V1	5647	675	6322	

CCSN Classification on Simulated and Real O2 Data with CNNs and LSTMs A. less, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav, accepted for A&A

MULTILABEL CLASSIFICATION ON REAL 02 NOISE (SINGLE ITF, LIGO H1, DIFFERENT **MODELS**)

- **<u>Bi-LSTM</u>**, 2 recurrent layers •
- ~10 ms/sample
- Best weights over 100 epochs •
- 1D-CNN, 4 convolutional layers
- ~2 ms/sample
- Best weights over 20 epochs

- **2D-CNN**, 4 convolutional layers
- ~3 ms/sample
- Best weights over 20 epochs

A. less, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav, 2022

s13 s25

Radice Radice 80

-60

40

20

Analysis on 3 detectors and merged models on O2 data

- Dataset breakdown:
 675 noise, 329 s18p, 491 s18np, 115 he3.5, 1940 m39, 1139 y20, 76 s13, 1557 s25.
- Input to NNs have additional dimension (ITF)

A. less, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav, 2022 accepted in A&A

Anomaly Detection in Gravitational Waves data using Convolutional AutoEncoders for CBC signals

Filip Morawski, Michał Bejger, Elena Cuoco, Luigia Petre, https://doi.org/10.1088/2632-2153/abf3d0

Example for detection/classification for CBC signal

Create a deep learning pipeline allowing detection of anomalies defined in terms of **transient signals**: gravitational waves as well as glitches.

Additionally: Consider **reconstruction of the signal** for the found anomalies.

Filip Morawski, Michał Bejger, Elena Cuoco, Luigia Petre, https://iopscience.iop.org/article/10.1088/2632-2153/abf3dQ

Filip Morawski, Michał Bejger, Elena Cuoco, Luigia Petre, https://iopscience.iop.org/article/10.1088/2632-2153/abf3d0

Auto-Encoder workflow

02 data - MSE Distributions

GWI50914

Filip Morawski, Michał Bejger, Elena Cuoco, Luigia Petre, https://iopscience.iop.org/article/10.1088/2632-2153/abf3d0

What's next?

Multimodal Machine Learning in Astrophysics

Why?

MMML for Astrophysics

We are working on a multimodal real time analysis

Case study: Application to GW-GRB signals

Lightcurve from Fermi/GBM (50 - 300 keV) 1750Event rate (counts/s) 1500 1250 1000 750 Gravitational-wave time-frequency map 400 300 Frequency (Hz) 200 100 50-10-8-6-22 -4Time from merger (s)

[Credit: NSF/LIGO/Sonoma State University/A. Simonnet]

credits: LIGO/VIRGO collaboration; Abbott et al. 2017, ApJ, 848, 13

Goal of the project: estimate the redshift (z) of GRBs associated with BNS mergers

GRB+GW simulation

Training

- Generation of a population of BNS merging systems
- Simulation of the associated GW signals and GW data for a detector such as the Einstein Telescope
- Simulation of the associated short GRB light curve as observed by a Fermi-like detector (we knew the redshift only for few of them)

Prediction

Cuoco, E.; Patricelli, B.; Iess, A.; Morawski, F. Multimodal Analysis of Gravitational Wave Signals and Gamma-Ray Bursts from Binary Neutron Star Mergers. Universe 2021, 7, 394. https://doi.org/10.3390/universe7110394

Machine learning applications in LVK: a long list

Review paper: Enhancing gravitational-wave science with machine learning Elena Cuoco et al 2021 Mach. Learn.: Sci. Technol. 2 011002

Thank you