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● Time series sequences… noisy 
time series with low amplitude 
GW signal buried in
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Gravitational Wave (GW) detector data



● Our data: a lot of noise and few GW signals (soon will be many)

● Low SNR signals (overlapping signals)

● Many transient noise disturbances (glitches)

● Not stationary/not linear noise (strange noise coupling)
● Many monitoring auxiliary channels (“big” data)
● Computational and timing efficiency (Fast alert system)

Why Artificial Intelligence for GW data?



Coalescing Binary 
Systems CBC
Black hole – black hole 
(BBH)
Neutron star – neutron star 
(BNS)
BH-NS

• Analytical waveform 

Transient‘Burst’Sources
• Core Collapse Supernovae 
(CCSN)

• cosmic strings
• unmodeled waveform

Cosmic GW 
Background

• residue of the Big Bang,
•stochastic, incoherent 
background

Continuous Sources
• Spinning neutron stars
• Monotone waveform
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GW astrophysical sources

Do we know their Waveforms?



How we detect transient 
signals: modeled search 
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Matched-filter

CBC search



How we detect transient 
signals: un-modeled search 
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● Strategy: look for excess 
power in single detector or 
coherent/coincident in network 
data

● Example cWB 
(https://gwburst.gitlab.io/)

○ Time-domain data 
preprocessed

○ Wavelet decompostion
○ Event reconstruction

Phys. Rev. D 93, 042004 (2016)
Class.Quant.Grav.25:114029,2008

Burst search

https://gwburst.gitlab.io/


I. Fiori courtesy

Non linear, not stationary noise



https://www.zooniverse.org/projects/zooniverse/gravity-spy Gravity Spy, Zevin et al (2017)

Transient noise signals: glitches



How Artificial Intelligence could help

Data preprocessing and 
cleaning

Data conditioning

● Identify Non linear noise 
coupling

● Use Deep Learning to remove 
noise

● Extract useful features to 
clean data

 Detect signals, identify, estimate 
parameters for waveform

Signal detection / classification 
/ parameter estimation

● A lot of fake signals due to 
noise

● Fast alert system
● Manage parameter 

estimation 



How to deal with data: Time series or Images?
● Pre-processing analysis (whitening, band pass filtering)

● Change of domain space: Time-Frequency projections



AI GW application

Few examples developed in 
my team, but many more in 
LVK collaboration…

Review paper: Enhancing 
gravitational-wave science with machine 
learning  Elena Cuoco et al 2021 Mach. 
Learn.: Sci. Technol. 2 011002

● Noise Transient signal 
classification

● GW signal classification 
(CBC or CCSN)

● Stochastic background 
detection (in extra slides)

A.Iess, F. Morawski, B. Patricelli and g2net 
members



Why Image-based 
classification

❖ Transient Noise classification and 
Images as input data

Simulated and real data



GWitchHuntersCitizen science for GW-AI

Gravity Spy

• Team: M. Razzano, F. Di Renzo, F. Fidecaro 
(@Unipi), G. Hemming, S. Katsanevas (@EGO) 

• Launched @ Nov 2019 - REINFORCE Project 
     H2020-SWAFS (2019-2022)

https://www.zooniverse.org/projects/reinforce/gwitchhunters

http://www.gravityspy.org/
Citizen scientists contribute to 

classify glitches
 
More details in  Zevin+17  

10.1088/1361-6382/aa5cea

https://doi.org/10.1016/j.ins.2018.02.068

https://arxiv.org/ct?url=https://dx.doi.org/10.1088/1361-6382/aa5cea&v=e08367bb


To show the glitch time-series 
here we don’t show the noise 
contribution
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How we started: Data simulation (transient signal families + Detector colored Noise)

Razzano M., Cuoco E.  CQG-104381.R3

Waveform

Gaussian

Sine-Gaussian

Ring-Down

Chirp-like

Scattered-like

Whistle-like

NOISE (random)



Spectrogram for each image 

2-seconds time window to highlight 
features in long glitches

Data is whitened

Optional contrast stretch

Building the images

Simulations now available  on FigShare

Razzano, Massimiliano; Cuoco, Elena (2018): Simulated image data for testing 
machine learning classification of noise transients in gravitational wave detectors 
(Razzano & Cuoco 2018). figshare. Collection. 
https://doi.org/10.6084/m9.figshare.c.4254017.v1

https://doi.org/10.6084/m9.figshare.c.4254017.v1


Spectrogram images

Deep learning. Convolutional Neural Network

Razzano M., Cuoco E.  
CQG-104381.R3
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Glitch name # in H1 # in L1

Air compressor 55 3

Blip 1495 374

Chirp 34 32

Extremely Loud 266 188

Helix 3 276

Koi fish 580 250

Light Modulation 568 5

Low_frequency_burst 184 473

Low_frequency_lines 82 371

No_Glitch 117 64

None_of_the_above 57 31

Paired doves 27 -

Power_line 274 179

Repeating blips 249 36

Scattered_light 393 66

Scratchy 95 259

Tomte 70 46

Violin_mode 179 -

Wandering_line 44 -

Whistle 2 303

Dataset from GravitySpy images

Application Test on Real data: O1 run



Full CNN stack

Consistent with 
Zevin+2017

Results



GW Astrophysical signal classification
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Compact Binary Coalescences

Credit
LIGO/Caltech/MIT/Sonoma State (Aurore Simonnet)
 
Matched filter modeled 
searches  Unmodeled searches



• Waveform depends on progenitor star
• Different emission mechanisms (Proto-neutron 

star oscillation, Standing Accretion Shock 
Instability (SASI),..)

• Largely Stochastic
• Best waveform models from computationally 

expensive 3D simulations
• Different simulation models
• Rare (~100 yrs in Milky Way)

Need an alternative to matched filter approach
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Ott et al. (2017) 

GWs from Core Collapse Supernovae



• Andresen s11: Low amplitude, non-exploding, peak emission at 
lower frequencies

• Radice s13: Non-exploding, lower amplitudes
 

• Radice s25: Late explosion time, standing accretion shock 
instability (SASI), high peak frequency

• Powell s18: High peak frequency, exploding model

• Powell He3.5: ultra-stripped helium star, high peak frequency, 
exploding model

Core-Collapse Supernovae models
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Iess, Cuoco, Morawski, Powell, 
https://doi.org/10.1088/2632-2153/ab7d31

https://doi.org/10.1088/2632-2153/ab7d31


SINE GAUSSIAN & SCATTERED LIGHT 
GLITCHES

• Distances: 
VO3 0.01 kpc to 10 kpc
ET 0.1 kpc to 1000 kpc 

• Random sky localization
• Large SNR range Schutz (2011)

BACKGROUND STRAIN :  simulated data sampled at 
4096 Hz built from VO3 and ET projected sensitivities 

5/13

MDC and CCSN GW simulations



STRAIN WAVEFORMS

+ RESAMPLING, 
FILTERING

MACHINE-LEARNING 
CLASSIFIER

GW SIGNAL TYPE

GLITCH NOISE TYPE
TRAINING

WHITENING & TRIGGER 
GENERATION  

(WDF)

Pipeline Workflow



• Train, Validation, Test sets: 60%, 10%, 30%
• 3 or 4 Convolutional layers
• Activation function f: ReLU
• Adam optimizer, learning rate α = 0.001, decay rate of 

0.066667 
• Early stopping
• Batch Size: 64 or 128
• Loss function: Categorical-cross entropy

Dataset: chunks of 3 hr 
data with 1000 injections/h

GPU: Tesla k40

Neural Network architecture



1D CNN 2D CNN

ET

VO3

• Train on all CCSNe 
waveforms and glitches.

• Test on all.

TRAINED 
CNN MODEL

Test 
samples

SIGNAL GLITCH

• Training time: ~ 30 min

Binary Classification

Alberto Iess et al 2020 Mach. Learn.: Sci. Technol. 1 025014



ET, MERGED 1D & 2D CNN

• Train on all  (4 CCSNe 
waveform models + glitches).

• Test on all.

TRAINED 
CNN MODEL

Test 
samples

he3.5 Sine 
gauss.

s18 s11 s13 s25 Scatt. 
light

COMPLEX 
TASK

LONGER TRAINING (> 1 
hr)

MultiLabel classification
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• 44 segments (4096s per segment) from O2 
science run.

• Added m39, y20, s18np models (Powell, 
Mueller 2020).

• Fixed distance of 1 kpc. 
• Added LSTM Networks, suited for timeseries 

data.
• Added Three ITF classification.

• Powell s18np: differs from s18 since simulation does 
not include perturbations from the convective 
oxygen shell. As a result, this model develops strong 
SASI after collapse.
 

• Powell y20: non-rotating, 20 solar mass Wolf-Rayet 
star with solar metallicity.

• Powell m39: rapidly rotating Wolf-Rayet star with an 
initial helium star mass of 39 solar masses

s18np

y20

m39

Powell and  Müller (2020)

Test on O2 real Data
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• Noise PSD is non stationary.
• Multiple Glitch Families.
• SNR distribution is affected by ITF antenna pattern.
• Dataset: ~15000 samples.
• Imbalanced Dataset due to different model amplitudes.

CCSN Classification on Simulated and Real O2 Data with CNNs and LSTMs
A. Iess, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav, accepted for A&A 

REAL NOISE FROM O2 SCIENCE RUN
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MULTILABEL CLASSIFICATION ON REAL O2 NOISE (SINGLE ITF, LIGO H1, DIFFERENT 
MODELS)

• Bi-LSTM, 2 recurrent layers
• ~10 ms/sample 
• Best weights over 100 epochs

• 1D-CNN, 4 convolutional layers
• ~2 ms/sample 
• Best weights over 20 epochs

• 2D-CNN, 4 convolutional layers
• ~3 ms/sample 
• Best weights over 20 epochs

A. Iess, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav, 2022



• Dataset breakdown:
675 noise, 329 s18p, 491 s18np, 115 he3.5, 
1940 m39, 1139 y20, 76 s13, 1557 s25.

• Input to NNs have additional dimension (ITF) 

L
1

H
1

V
1

A. Iess, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav,  2022 accepted in A&A
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Analysis on 3 detectors and merged models on O2 data



Anomaly Detection in 
Gravitational Waves data 

using Convolutional 
AutoEncoders for CBC signals

Filip Morawski, Michał Bejger, Elena Cuoco, Luigia Petre, 
https://doi.org/10.1088/2632-2153/abf3d0
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https://doi.org/10.1088/2632-2153/abf3d0


Example for detection/classification for CBC signals

Create a deep learning pipeline allowing detection of anomalies 
defined in terms of transient signals: gravitational waves as well as 
glitches.

Additionally: Consider reconstruction of the signal for the found 
anomalies.

Filip Morawski, Michał Bejger, Elena Cuoco, Luigia Petre, https://iopscience.iop.org/article/10.1088/2632-2153/abf3d0
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Filip Morawski, Michał Bejger, Elena Cuoco, Luigia Petre, https://iopscience.iop.org/article/10.1088/2632-2153/abf3d0

Auto-Encoder workflow



Model 
input

Model 
prediction

Auto-Encoder workflow



O2 data - MSE Distributions
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Filip Morawski, Michał Bejger, Elena Cuoco, Luigia Petre, 
https://iopscience.iop.org/article/10.1088/2632-2153/abf3d0

GW150914



Multimodal Machine Learning in 
Astrophysics

Why?
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  What’s next?



MMML for Astrophysics

We are working on a multimodal real time analysis



Case study: Application to GW-GRB 
signals

39
credits: LIGO/VIRGO collaboration; 
Abbott et al. 2017, ApJ, 848, 13

[Credit: NSF/LIGO/Sonoma State University/A. Simonnet] 
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Goal of the project: estimate the redshift (z) of GRBs 
associated with BNS mergers
 

PredictionGRB+GW simulation

● Generation of a population of BNS 
merging systems

● Simulation of the associated GW 
signals and GW data for a detector 
such as the Einstein Telescope

● Simulation of the associated short 
GRB light curve as observed by a 
Fermi-like detector (we knew the 
redshift only for few of them)

Training

Cuoco, E.; Patricelli, B.; Iess, A.; Morawski, F. Multimodal Analysis of Gravitational Wave Signals and Gamma-Ray Bursts 
from Binary Neutron Star Mergers. Universe 2021, 7, 394. https://doi.org/10.3390/universe7110394 

Multimodal chain We predict z using joint GRB and GW analysis
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Review paper: Enhancing gravitational-wave science with machine learning  Elena Cuoco et al 
2021 Mach. Learn.: Sci. Technol. 2 011002

Glitches 
classification

GW signal 
detection

Parameter 
estimation

Sky 
localization

Easy access 
information Data quality Waveform 

modelling …

Machine learning applications in LVK: a long list



Thank you


