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FIG. 1. Variationl hybrid quantum-classical optimization. A quan-
tum computer is used to prepare the variational state (2) by sequen-
tially applying some gates that depend on parameters ✓ j, and then
to measure the observable Ĥ to estimate the cost (1). A classical
algorithm iteratively processes these outcomes and updates the pa-
rameters ✓ j to iteratively minimize the cost (1).

be minimized, C(✓), is dubbed “cost” function and only needs
being bound from below, with a range of attainable values
that depends on the actual physical status of the observable
represented by the operator Ĥ. There also exist optimization
instances where C(✓) can have a slightly di↵erent meaning.
In quantum control [21] and simulation [22], for example, the
goal is often that of obtaining a quantum state, or quantum
operation, that is as similar as possible to a given target one;
in this case, one can choose Ĥ = Û |'ih'| Û†, with Û a target
unitary and |'i a reference state: the function (1) is then the
square of the fidelity of state-preparation, ranging from 0 to
1 by definition, and 1 � C(✓) the function to be minimized.
In this work we will not explicitely refer to this case, as done
elsewhere [23], but rather focus on problems where C(✓) is
the expectation value of some physical observable that needs
being minimized.

At the heart of many variational hybrid optimization pro-
cesses, is the variational ansatz for the state | (✓)i in (1). One
of the most popular choices is to take such state as the output
of a parametric quantum circuit

| (✓)i = e�i✓PX̂P · · · e�i✓1 X̂1 | 0i , (2)

i.e. of a series of evolutions generated by di↵erent, and yet
fixed, hamiltonian operators X̂ j, for times ✓ j representing the
variational parameters. The reason for this choice is that para-
metric quantum circuits are implementable in NISQ devices
[2] as long as X̂ j contains 1- and 2-local interactions only, i.e.
when the gates e�i✓ j X̂ j act non-trivially on at most two qubits.
The state | 0i is chosen among states that are easy to prepare,
and it is typically separable, | 0i ⌘

NN
j=1 | 

( j)
0 i.

Variational hybrid quantum-classical algorithms, schemat-
ically shown in Fig. (1), operate iteratively a quantum de-
vice and a classical processor. At the i-th iteration, the
quantum device generates the variational state

��� (✓(i))
E
=

e�i✓(i)
P X̂P · · · e�i✓(i)

1 X̂1
��� (✓(i�1))

E
, and estimate the cost (1), and

possibly its derivatives @✓ jC, via quantum measurements [5,
14, 24] of the observable Ĥ. This is the computationally hard-
est part, as it requires the manipulation of states that belong to

Hilbert spaces whose dimension exponentially increases with
the number of qubits N. Afterwards, a classical algorithm
processes the estimated values of C(✓(i)), or derivatives @✓ jC,
and proposes new parameters ✓(i+1) that are expected to flow
towards the minimum of the cost function. Classical optimiza-
tion, quantum evolution, and quantum measurements are thus
performed iteratively till convergence. The advantage of this
hybrid approach is that the quantum computer is always reset
after each iteration so that the coherence times required are
just those necessary to operate a circuit with depth O(P) and
then perform a measurement.

The main di↵erence with other common variational ap-
proaches used in quantum mechanics is that C(✓), or deriva-
tives @✓ jC, are estimated from measurement outcomes and, as
such, are a↵ected by uncertainty due to the probabilistic na-
ture of quantum measurements, even in the noiseless case.

Having access to stochastic values of the cost function dra-
matically changes the convergence time [25]. Algorithms
for stochastic optimization are classified as zeroth-order, or
derivative-free, when only C(✓) is measured, first-order when
it is possible to directly measure the derivatives w.r.t. ✓ j of
the cost function or, in general, kth-order when also kth-order
derivatives are available. It has been recently shown [14]
that first-order methods can lead to substantially faster conver-
gence than zeroth-order methods. On the other hand, the con-
vergence time is not more strictly bounded when using higher-
order derivatives, although some advantage may be observed
in practical implementations. Motivated by that analysis, here
we focus on the convergence of first-order methods using the
framework of stochastic optimization.

When dealing with stochastic optimization problems,
where only the stochastic outcomes f (✓, y) are directly mea-
surable by sampling di↵erent values of y that are distributed
according to a distribution p(y|✓), the cost function is usu-
ally written [14, 25, 26] as C(✓) = Ey⇠p(y|✓)[ f (✓, y)], where
Ey⇠p(y|✓)[ f (✓, y)] is the expectation value

P
y p(y|✓) f (✓, y). The

cost function (1) can be written in the above form by using the
(possibly unknown) eigendecomposition of Ĥ ⌘

P
y Ey |yihy|:

the measurement outcomes y are distributed with probability
p(y|✓) = hy| ⇢̂(✓) |yi, where ⇢̂(✓) = | (✓)ih (✓)|, and f (✓, y) =
Ey is the associated cost, which is independent of ✓.

When the eigendecomposition of Ĥ is not known, one can
still get C(✓) from Pauli measurements, namely by decompos-
ing Ĥ as Ĥ =

PL
µ=1 hµ�̂µ where each �̂µ is a tensor product of

Pauli matrices and hµ the corresponding coe�cient, and then
by independently estimating each h (✓)|�̂µ| (✓)i. Note that
many �̂µ typically commute with each other, so the required
number of independent measurements can be smaller than L.

Suppose now that rC(✓) = Ez⇠q(z|✓)[g(✓, z)], with r j := @
@✓ j

,
i.e. that the gradient of C can be written as an expectation of a
vector-valued function g(✓, z) over some stochastic outcomes
z, distributed with a probability distribution q, possibly dif-
ferent from p. The simplest first-order method for stochastic
optimization is stochastic gradient descent (SGD) that, intu-
itively, acts as a gradient descent algorithm where rC is sub-
stituted with an unbiased estimate g. If the parameters are
updated at each iteration i as ✓(i+1) = ✓(i)

� ↵i g(✓(i)) then, after
I iterations, the algorithm converges [14, 25, 27, 28] to a local
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Quantum-Enhanced Classifiers (CQ) 
• M Schuld, N Killoran, Phys. rev. lett. 122 (4), 040504, (2019),                      V Havlicek, et al, Nature 567 (7747), 209, (2019) 

• L Banchi, et al., Phys. Rev. Applied 14, 064026 (2020),                                   S Lloyd, et al, arXiv:2001.03622

Main question: after training a quantum model using a few known examples, can the 
model accurately classify even unseen data?  

Study generalisation using tools from quantum information theory 
Study how the Hilbert space dimension, noise, pooling etc. affect generalisation 
Bias-Variance tradeoff and Information Bottleneck principle

L Banchi, J Pereira, S Pirandola 
PRX Quantum 2, 040321 (2021)



QUANTUM EMBEDDINGS

Classify classical data (e.g. images) 

Embed images  onto a quantum state 
 

Decide the class from a quantum 
measurement  

• M Schuld, N Killoran, Phys. rev. lett. 122 (4), 040504, 
(2019) 

• V Havlicek, et al, Nature 567 (7747), 209, (2019) 

• S Lloyd, et al, arXiv:2001.03622
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MANY-BODY PHYSICS (QQ/QC)

Quantum Phase Recognition 

• I Cong, S Choi, MD Lukin,                                         
Nature Physics 15, 1273 (2019) 

• L Banchi, J Pereira, S Pirandola,                                  
PRX Quantum 2, 040321 (2021) 

Many-Body Entanglement Measurement 

from PPT-moments  

• J Gray, L Banchi, A Bayat, S Bose,                             
Phys. Rev. Lett. 121, 150503 (2018)
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FIG. 1: Schematics: (a) Example measurement set-up for the moments, µm = Tr
h
(⇢TB

AB)
m
i
, here for m = 3, from which one

can extract the logarithmic negativity E between A and B. The generic mixedness of ⇢AB could arise from entanglement with
environment C. Here the subsystems contain NA, NB and NC particles respectively. The scheme involves three copies of the
original system, and two counter propagating sets of measurements on A and B, ordered by the shown numbers, with direction
depicted by the filled arrows. (b) Diagrammatic proof (for m = 3) of the equivalence between the moments µm and expectation
of two opposite permutations (decomposed as swaps) on A and B – from which a measurement scheme can be derived.

glement between subsystems A and B. It is defined as:

E = log2

���⇢TA
AB

��� = log2

���⇢TB
AB

��� = log2
X

k

|�k| (1)

with | · | the trace norm, ⇢TX
AB

the partial transpose with
respect to subsystemX, and {�k} the eigenvalues of ⇢

TX
AB

.
Because of the non-trivial dependence of E on ⇢AB , there
is no state-independent observable that can measure it —
generally demanding full state tomography. The {�k} are
the roots of the characteristic polynomial, P (�)=det(��
⇢TB
AB

)=
P

n
cn�n, where each cn is a polynomial function

of the partially transposed moments:

µm = Tr
h
(⇢TB

AB
)m
i
=
X

k

�m

k
. (2)

In this way, full information about the spectrum {�k}

is contained in {µm}. It is known that these measuring
these moments is technically possible using m copies of
the state and controlled swap operations [49]. However,
even if these experimentally challenging operations were
available, the problem of extracting {�k} from the mo-
ments is notoriously ill-conditioned [57], with a closely
related problem being described as numerically catas-
trophic. Alongside this, an exponential number of mo-
ments respective to the size of AB are needed to exactly
solve the equations. On the other hand, to estimate the
logarithmic negativity, a precise knowledge of all �k is
not required. Since �

1
2  �k  1 for all k [58] andP

k
�k = 1, generically, the magnitude of the moments

quickly decreases with m, with the first few carrying the
most information. Backing up this intuition, we will show
that the moments required, {µm : m  M}, to accu-
rately estimate the entanglement can number as few as
M = 3. We do this by employing machine learning to
directly map moments to logarithmic negativity, avoiding
reconstruction of the spectrum or state. Note that µ0 is

simply the dimension of the systems Hilbert space, while
µ1 = 1 in all cases. Additionally, it can be easily shown
that µ2 is equal to the purity of the state = Tr

⇥
⇢2
AB

⇤
,

and as such, M � 3 is needed to extract any information
about E . In this sense our method is optimal in terms of
number of copies.
Measuring the Moments of ⇢TB

AB
. – The method for

measuring the moments proposed in [49] based on 3-body
controlled swaps is practically challenging in a many-
body set-up where natural interactions are two-body.
A simpler protocol, for 4 moments only, was provided
in [51]. Here, we show that any moment in Eq. (2)
can be measured using only SWAP-operators between
the individual constituents of the m copies of the state
⇢AB , namely ⇢⌦m

AB
=
N

m

c=1 ⇢AcBc . This general set-up is
shown in Fig. 1(a), where the mixedness of ⇢AB arises
from possible entanglement with a third system C, such
that ⇢AB = TrC | ABCi h ABC | with | ABCi being a
pure tripartite state. The first step is to write the ma-
trix power as an expectation of a permutation operator,
similar to Ref. [9, 59], but here on the partially trans-
posed copies:

µm = Tr

" 
mO

c=1

⇢
TBc
AcBc

!
Pm

#

= Tr

" 
mO

c=1

⇢AcBc

!
(Pm)TB

#
, (3)

where Pm is any linear combination of cyclic permutation
operators of order m and the second line makes use of the
identity Tr(⇢TB

AB
O)=Tr(⇢ABOTB ), valid for any operator

O. A schematic of the equality in Eq. (3) for m = 3 is
shown in Fig. 1(b). In the appendix [84] we provide a
choice of Pm with a neat operational meaning, both for
spin and bosonic systems. For spin lattices, our choice
of Pm to measure the moments µm results to the follow-
ing steps in practice: (i) prepare m copies of the state

ARTICLESNATURE PHYSICS

Sample complexity. The performance of a QPR solver can be quan-
tified by sample complexity11: what is the expected number of copies 
of the input state required to identify its quantum phase? We dem-
onstrate that the sample complexity of our exact QCNN circuit is 
substantially better than that of conventional methods. In principle, 
P
I
 can be detected by measuring a non-zero expectation value of 

string order parameters (SOPs)32,33 S
I

 such as

Sab ¼ ZaXaþ1Xaþ3 :::Xb#3Xb#1Zb ð3Þ

In practice, however, the expectation values of SOP vanish near the 
phase boundary due to diverging correlation length33; since quan-
tum projection noise is maximal in this vicinity, many experimental 
repetitions are required to affirm a non-zero expectation value. In 
contrast, the QCNN output is much sharper near the phase transi-
tion, so fewer repetitions are required.

Quantitatively, given some |ψin〉 and SOP S
I

, a projective measure-
ment of S can be modelled as a (generalized) Bernoulli random vari-
able, where the outcome is 1 with probability p = (〈ψin|S|ψin〉 + 1) / 2 
and −1 with probability 1 − p (since S2

I
 equals the identity operator); 

after M binary measurements, we estimate p. p > p0 = 0.5 signifies 
ψ inj i 2 P
I

. We define the sample complexity Mmin as the minimum 

M to test whether p > p0 with 95% confidence using an arcsine vari-
ance-stabilizing transformation34:

Mmin ¼
1:962

ðarcsin ffiffiffi
p

p #
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
arcsinp0

p
Þ2

ð4Þ

Similarly, the sample complexity for a QCNN can be determined by 
replacing 〈ψin|S|ψin〉 by the QCNN output expectation value in the 
expression for p.

Figure 2d shows the sample complexity for the QCNN at various 
depths and SOPs of different lengths. The QCNN clearly requires 
substantially fewer input copies throughout the parameter regime, 
especially near criticality. More importantly, although the SOP sam-
ple complexity scales independently of string length, the QCNN 
sample complexity consistently improves with increasing depth and 
is limited only by finite size effects in our simulations. In particu-
lar, compared with SOPs, the QCNN reduces sample complexity by 
a factor that scales exponentially with the depth of the QCNN in 
numerically accessible regimes (inset). Such scaling arises from the 
iterative QEC performed at each depth and is not expected from 
any measurements of simple (potentially nonlocal) observables. We 
show in the Methods that our QCNN circuit measures a multiscale 
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Fig. 2 | Application to quantum phase recognition. a, The phase diagram of the Hamiltonian in the main text. The phase boundary points (blue and red 
diamonds) are extracted from infinite-size DMRG numerical simulations, while the background shading (colour scale) represents the output from the 
exact QCNN circuit for input size N!=!45 spins (see Methods). b, Exact QCNN circuit to recognize a Z2 ´Z2

I
 SPT phase. Blue line segments represent 

controlled-phase gates, blue three-qubit gates are Toffoli gates with the control qubits in the X basis, and orange two-qubit gates flip the target qubit’s 
phase when the X measurement yields −1. The fully connected layer applies controlled-phase gates followed by an Xi projection, effectively measuring 
Zi−1XiZi+1. c, Exact QCNN output along h1!=!0.5J for N!=!135 spins, depths d!=!1, …, 4 (from light to dark blue). d, Sample complexity of QCNN at depths d!=!1, 
…, 4 (from light to dark blue) versus SOPs of length N/2, N/3, N/5 and N/6 (from light to dark red) to detect the SPT/paramagnet phase transition along 
h1!=!0.5J for N!=!135 spins. The critical point is identified as h2/J!=!0.423 using infinite-size DMRG. In the shaded area, the correlation length exceeds the 
system size, and finite-size effects can considerably affect our results. Inset: the ratio of SOP sample complexity to QCNN sample complexity is plotted as 
a function of d on a logarithmic scale for h2/J!=!0.3918. In the numerically accessible regime, this reduction of sample complexity scales exponentially as 
1.73e0.28d (trendline).
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QUANTUM CHANNEL 
DISCRIMINATION

⇢(x)
x

detect objects x
from the scattered
state of light ⇢(x)

obstacle
c = yes/no

Images live in the physical world 

Optimise over the (entangled) input probe state of light and over the detection 
POVM 



QUANTUM BARCODES AND 
PATTERN RECOGNITION

Barcode classification must identify each 
pixel correctly 

Handwriting classification is easier as 
errors are tolerated!  

                     

• L. Banchi, Q. Zhuang, S. Pirandola,                                  
Phys. Rev. Applied 14, 064026 (2020) 

• C Harney, L Banchi, S Pirandola,                                    
Phys. Rev. A 103, 052406 (2021) 

• JL Pereira, L Banchi, Q Zhuang, S Pirandola,                 
Phys. Rev. A 103, 042614 (2021)
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QUANTUM GANS FOR NOISE 
SENSING                              ….

SuperQGANs: Quantum Generative 
Adversarial Networks for learning 
Superoperators

Quantum Noise Sensing by generating Fake Noise

Paolo Braccia,1, 2, 3 Leonardo Banchi,1, 2 and Filippo Caruso1, 3, 4

1
Dipartimento di Fisica e Astronomia, Università di Firenze, I-50019, Sesto Fiorentino (FI), Italy

2
INFN, Sezione di Firenze, I-50019, Sesto Fiorentino (FI), Italy

3
LENS and QSTAR, Via N. Carrara 1, I-50019 Sesto Fiorentino, Italy.

4
Istituto Nazionale di Ottica CNR-INO, Firenze, Italy.

Noisy-Intermediate-Scale-Quantum (NISQ) devices are nowadays starting to become available to
the final user, hence potentially allowing to show the quantum speedups predicted by the quantum
information theory. However, before implementing any quantum algorithm, it is crucial to have at
least a partial or possibly full knowledge on the type and amount of noise a↵ecting the quantum
machine. Here, by generalizing quantum generative adversarial learning from quantum states (Q-
GANs) to quantum operations/superoperators/channels (here named as SuperQGANs), we propose
a very promising framework to characterize noise in a realistic quantum device, even in the case of
spatially and temporally correlated noise (memory channels) a↵ecting quantum circuits. The key
idea is to learn about the noise by mimicking it in a way that one cannot distinguish between the
real (to be sensed) and the fake (generated) one. We find that, when applied to the benchmarking
case of Pauli channels, the SuperQGAN protocol is able to learn the associated error rates even
in the case of spatially and temporally correlated noise. Moreover, we also show how to employ it
for quantum metrology applications. We believe our SuperQGANs pave the way for new hybrid
quantum-classical machine learning protocols for a better characterization and control of the current
and future unavoidably noisy quantum devices.

I. INTRODUCTION

The quest for a fully-operational, fault-tolerant quan-
tum computer is still in its infancy. Running powerful,
and possibly world-changing, quantum algorithms such
as Shor’s one [1] will still take some time, as a huge
number of operative qubits is needed to implement error-
correcting codes [2], which are very much needed because
of the sensitivity to noise for almost all quantum proto-
cols.
However, these years are nonetheless exciting for quan-
tum computing, as they belong to the NISQ (Noisy Inter-
mediate Scale Quantum) era [3]. Indeed, quantum pro-
cessors of up to fifty qubits are actually available, and
even though they are noisy and small, we can use them
to look for proofs of principle of the coveted quantum

supremacy [4], driven by the observation that classical
devices already are not able to simulate these processors.
Besides the impossibility of running error-correcting pro-
tocols on such devices, due to their limited size, their
e↵ectiveness in delivering reliable quantum algorithms is
doomed by the unavoidable interaction of the quantum
system, realizing the computational register of qubits,
with the external environment. This will probably be the
biggest experimental challenge we will have to overcome
in order to move on to the quantum era of computation.
These unwanted couplings, on top of limiting the depth
of the quantum circuits that can be reliably devised, may
also induce back-flows of information from the environ-
ment to the computing system, leading to the observation
of memory e↵ects when repeatedly using a given quan-
tum gate. Characterizing the noise occurring on NISQ
processors is then of great importance, as it can lead to
devise tailored circuital schemes that can minimize er-
ror rates, or even exploit noisy processes to achieve the
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FIG. 1. Pictorial representation of a SuperQGAN, where
the Discriminator needs to distinguish a real noisy quantum
circuit from a fake one created by the Generator. These two
agents play against each other, in particular the Generator
needs to generate better and better data such that the task
of the Discriminator becomes more and more complicated.
The game ends (convergence) when the generator learns to
create the real noisy quantum circuit (i.e., fake=real), hence
identifying the errors occurring in the real circuit (crosses)
running on a NISQ device.

desired goal – see for instance Refs. [5–7].
In recent years, machine learning (ML) has overtaken

the computational world, providing many powerful tools
to tackle very complex tasks as domotic systems, au-
tonomous cars, face/voice recognition, and medical di-
agnostics. It did not take long to realize that ML can
be beneficial also to quantum computation, and many
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quantum adaptation of famous ML algorithms have been
studied and discussed [8–11]. As a matter of fact, a whole
new branch of quantum computation, dubbed quantum
machine learning (QML) [12, 13], has risen, exploiting
the good behaviour of hybrid quantum-classical compu-
tational schemes to look for possible quantum advan-
tages in ML tasks [14] and also to solve genuinely quan-
tum problems [13]. Moreover, machine learning methods
have also been employed to learn quantum noise [15, 16].
Among the plethora of QML algorithms, quantum gen-
erative adversarial networks (QGANs) have shown great
promise in generative tasks [17–19], thanks to their abil-
ity to learn the properties of the quantum states they are
faced with.

In this work we show how to generalize the QGAN
architecture from the context of quantum states to the
context of quantum maps (or superoperators). In other
words, the real data is represented by a real noisy quan-
tum map while the generator creates quantum maps
mimicking the real (unknown) one. We call them as Su-
perQGANs.

The paper is outlined as follows. In Sec. II we intro-
duce the mathematical definition of SuperQGANs and
discuss their general setup. Then, in Sec. III we first
review the theory of Random Unitary Maps (IIIA) and
later test our method against Pauli channels with spa-
tial (III B) and temporal (III C) noise correlations. The
Section ends with an application of the SuperQGAN to
a quantum metrology problem (IIID). Conclusions and
outlooks are drawn in Sec. IV.

II. DEFINITION OF SUPERQGANS FOR
QUANTUM MAPS

When dealing with experimental quantum processors,
the circuital paradigm of perfect quantum computation
remains an ideal abstraction. Indeed, the simple opera-
tions one would like to compose in order to build the de-
sired algorithm are not perfect unitary evolutions of the
targeted systems. Rather, they also induce unwanted,
but also unavoidable, couplings with the environment
leading, for example, to decoherence and loss of quan-
tumness. It is thus more appropriate to address the phys-
ical processes occurring in a NISQ processor with the
most general formalism of quantum operations or quan-

tum maps [2, 20]. This means that rather than associat-
ing a quantum circuit, or any of the gates constituting it,
with a unitary U mapping the input state as | i ! U | i,
we have to represent it as a general CPTP map �. The
latter is a completely positive (CP) and trace-preserving
(TP) linear super-operator acting on the space of density
operators of the input system � : ⇢! �(⇢). Notice that,
when the input and output spaces are the same, they are
also called as quantum channels. When a single qubit
map is independently applied (in parallel) to n qubits,
then the global quantum map reads as �⌦n. When this
map is applied n times (in series) to the same qubit, we
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FIG. 2. General detection scheme for spatially correlated
(a) and temporally correlated (b) noise. Noise couples the
system qubits S with the environmental qubits E. We use
the same diagram to display both the real noise �(n)

R and

the generated fake noise �(n)
F , though these may physically

correspond to di↵erent evolutions – e.g. real interaction with
an environment vs. a quantum circuit. The discriminator has
access to auxiliary qubits A and a measurement qubit M.
Based on the measurement outcome on M, the map �(n) is
judged either real or fake. For spatially correlated noise (a),
the generator applies an initialization map DI on S+A and
a measurement map DM on S+A+M, finally measuring M.
For temporally correlated noise (b), the discriminator applies
the general map D that probes the system S at intermediate
times, finally measuring M. In both cases, the discriminator
has no access to the environmental qubits E.

will write it as �n = � � · · · � �. In both cases, it is as-
sumed that the noisy operations are uncorrelated: there
are no spatial or temporal noise correlations.
However, in a NISQ device neighboring qubits typically

experience spatially correlated noise, and the later-time
evolution may display (non-Markovian) memory e↵ects,
hence leading to temporal noise correlations. As depicted
in Fig. 2, both these cases can be represented by the ac-
tion of the map �(n) that is much more general than ei-
ther �⌦n or �n. For spatially correlated noise, �(n) maps
n-qubit states to n-qubit states, while for temporally cor-
related noise �(n) maps a single qubit to a “history” of
single qubit states ⇢t, with t = 1, . . . , n, each representing
the state of the system at time t – see Fig. 2.
A recent development of QML is the formalization

of Quantum Generative Adversarial Networks (QGANs)
[17, 18], i.e. a generative model for quantum data. Mim-
icking the classical GAN scheme [21], QGANs work by
exploiting an adversarial game where a Generator (G)
agent, able to produce tunable fake instances of some
target (real) distribution of data, is opposed to a Dis-
criminator (D) that is in turn able to find good strate-

Favourable  
Scaling 

7

FIG. 6. SuperQGAN learning a two-uses temporally corre-
lated Pauli channel. Top panel shows training figures of merit
(left), and gradients (right). Bottom one compares target and
learnt distributions, as described in Fig. 3. The target distri-
bution is generated using a random single-use prior, using the
correlation law (6) with µ = 0.5.

FIG. 7. Total number of turns needed to achieve averaged
fidelity greater than threshold value of 0.999 between target
and generated channels. Each dot correspond to the mean
over 10 runs of the modified SuperQGAN whose generator
knows the correlation model of Eq. (6) and the n = 1 proba-
bilities p. Although the sample size is small, we observe that
the number of iterations to achieve convergence does not in-
crease with the number n of channel uses, hence supporting
the successful feasibility of our protocol for larger n.

D. Quantum metrology

Quantum metrology [43] can be rephrased as a
SuperQGAN with �-like probability distribution in
Eq. (2), i.e. p(s) = �(s � s̄). In other terms, we
have a mapping implementing a unitary evolution ⇢ !
U(s̄)⇢U(s̄)† and the metrology task is to estimate s̄. Ef-
ficient quantum algorithms that fully exploit quantum
e↵ects to maximize the estimation precision typically em-
ploy either adaptive strategies or parallel applications of
the unitary channel U(s̄)⌦n on an entangled state. Simi-
lar strategies are also needed when the parameter s to be
estimated is not fixed, but rather distributed according
to some probability p(s).
In particular, here we consider a paradigmatic model

of quantum metrology, i.e. the Mach-Zehnder-type in-
terferometer, whose unitary evolution can be written as

U(s) =

✓
1 0
0 e2⇡is

◆
. (8)

We assume that we can exactly express the parameter
s by using m-bits as s =

Pm
j=1 sj/2

j , where 0  s < 1
and sj 2 {0, 1}, i.e. s ⌘ sb = b/2m for an integer b <
2m. When this assumption is not satisfied, we may get a
reconstruction error. For instance, let us suppose to run
the phase estimation algorithm for general s using anm+
1 qubit register. If sb is the best m-bit approximation of
s, then the algorithm will output b0 6= b with probability
pr(b0|b) = |2�m(1� e2

mi�)/(1� ei�)|2, where � = 2⇡(s�
sb � sb0) [2]. The distribution pr(b0|b) is peaked around
b0 = b or around b0 = b ± 1 when 2ms is close to two
di↵erent integers, so the reconstruction error is small and
mostly limited to nearby values. In our analysis, we fix m
and consider the error due to the finite m as an imperfect
reconstruction of p(s).
The number n of independent applications of U(s)

needed to reconstruct s with m-bit precision increases
with m [44]. To simplify our treatment, here we assume
that m is fixed, so p(s) becomes a discrete distribution
with 2m entries, and we consider n parallel applications
of U(s). As a result, we get the following random unitary
channel

�(n)
R (⇢) =

2m�1X

b=0

p(sb)U(sb)
⌦n⇢U(sb)

⌦n†, (9)

where sb = b/2m as above and b is an integer. The
CJ state of each unitary channel U(s) is a tensor prod-
uct of a maximally entangled pure state |�si⌦n, with
|�si = (|00i+22⇡is|11i)/

p
2. To check for their linear in-

dependence, we may focus on the Gram matrix with the
Hilbert-Schmidt product, Gst = Tr[�⌦n

s �⌦n
t ] = |G̃st|2,

where �s = |�sih�s| and G̃st = h�s|�tin. The Gram
matrix has zero determinant, and hence at least a zero
eigenvalue, when the matrices �⌦n

s are linearly depen-
dent. The matrix G̃ can be diagonalized via a dis-
crete Fourier transform, obtaining the eigenvalues g̃k =

P Braccia, L Banchi, F Caruso,  
Phys. Rev. Applied 17, 024002 (2022)



HOW DO WE OPTIMISE? 
GRADIENTS!

Parameter Shift Rule / Hadamard test for  gates 
• K Mitarai, M Negoro, M Kitagawa, K Fujii - Physical Review A, 2018 
• M Schuld, V Bergholm, C Gogolin, J Izaac, N Killoran - Physical Review A, 2019 

Stochastic PSR for general Hamiltonian evolution   
• L Banchi, G Crooks, Quantum 5, 386 (2021) 

Continuous variable systems / GBS distribution 
• N Killoran, et al.  Phys. Rev. Research (2019) 
• L Banchi, N Quesada, J M Arrazola, Phys. Rev. A 102, 012417 (2020)

eiθ ̂σ
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MORE GRADIENTS!

Gradient-based optimisation of “Quantum Programs”  

 

• L Banchi, J Pereira, S Lloyd, S Pirandola,                                                                              
npj Quantum Information 6 (1), 1-10, (2020) 

“Optimism” for training QGANS without limit cycles 
• P Braccia, F Caruso, L Banchi, New J. Phys. 23 053024 (2021) 
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 FOUNDATIONAL QUESTION: 
WHAT CAN WE EXPECT?

We have a training set  made of   correctly classified 
images 

We can empirically check generalisation using a testing 
set  with  correctly classified images 

We choose a “good" quantum embedding  and 
optimal discrimination via POVM  

What training error / testing error can we 
expect? 

𝒯 T

𝒯′ T′ 

x ↦ ρ(x)
{Πc}



 “COMPLEXITY” OF  
QUANTUM EMBEDDINGS

RBayes
R(⇧⇤, ⇢)

R(⇧T , ⇢)

A(⇢)

GT (⇢)

Average testing error

Classification error
⇡ Training error

Embedding complexity

E
rr
or

L Banchi, J Pereira, S Pirandola 
PRX Quantum 2, 040321 (2021)



QUANTUM BIAS-VARIANCE 
TRADEOFF 

Bound for the generalisation error  

         

Bound for the approximation error  

G𝒯 ≤ 2
ℬ
T

+
2 log(1/δ)

T
RBayes

R(⇧⇤, ⇢)

R(⇧T , ⇢)

A(⇢)

GT (⇢)

Average testing error

Classification error
⇡ Training error

Embedding complexity

E
rr
or

𝒜 = ∑
x

P(x |0) − P(x |1)

2
−

∥ρ0 − ρ1∥1

2
         

 

ℬ = 2I2(X:Q) 𝒜 ≤ K −
2I(C:Q)

NC

ρCXQ = ∑
cx

P(c, x) |cx⟩⟨cx | ⊗ ρ(x) .    where ρc = ∑
x

P(x |c)ρ(x)



Good embeddings should maximise  and  
minimise  

Spoiler: Information Bottleneck! 

Two extreme cases:

I(C:Q)
I2(X:Q)

RBayes
R(⇧⇤, ⇢)

R(⇧T , ⇢)

A(⇢)

GT (⇢)

Average testing error

Classification error
⇡ Training error

Embedding complexity

E
rr
or

 ℬ = 2I2(X:Q)

𝒜 ≤ K −
2I(C:Q)

NC

 Basis encoding:   
     minimum  ,    maximum    

x ↦ ρ(x) = |x⟩⟨x |
𝒜(ρ) = 0 𝒢𝒯(ρ)

 Constant embedding :   
     maximum  ,    minimum    

x ↦ ρ
𝒜(ρ) 𝒢𝒯(ρ) = 0

for MNIST with 8-bit colours 
 qubits!28 × 28 × 8 ≈ 6000



For large N  
 

 
where  

Proof from 

𝒜(ρ) ≤ KFN
max

ℬ ≈ 𝒪(N)
Fmax = max

x≠y
F(ρ(x), ρ(y))

ρCXQ = ∑
cx

P(c, x) |cx⟩⟨cx | ⊗ ρ(x)⊗N

Bigger Hilbert spaces have lower approximation 
error, but larger generalisation error 
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Angle encoding
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In the numerical example we consider  
  x ↦ |ψ(x)⟩⟨ψ(x) |⊗N

|ψ(x)⟩ = cos(x) |0⟩ + sin(x) |1⟩



QUANTUM KERNELS
For pure state embeddings  we find  

 

where is a (normalised) kernel matrix. This makes the 

calculation  easier for large-dimensional embeddings.  

Quantum kernels are used in  
• Quantum support vector machines  
• Quantum enhanced-feature space 

Take home message:  avoid   
                                              (bad generalisation)

ρ(x) = |ψ(x)⟩⟨ψ(x) |

ℬ = [Tr K]
2

Kxy = p(x)p(y) |⟨ψ(x) |ψ(y)⟩ |
ℬ

K ∝ identity

L Banchi, J Pereira, S Pirandola 
PRX Quantum 2, 040321 (2021)



To favour generalisation the final Hilbert 
space must be small, but the initial one can 
be big! 

We may iteratively discard information via 
pooling layers (e.g. QCNN) 

Pooling favours generalisation but harms the 
accuracy (via data processing)  

Take home message: if low training error 
is achievable with pooling layers, then 
generalisation can only be better!

(c)
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INFORMATION BOTTLENECK 
FOR QUANTUM CLASSIFIERS
 as “bottleneck” that squeezes the relevant 

information that  provides about  

IB principle (loss independent): minimise 

                  

Self-consistent solutions (similar for ) 

   

ρ(x)
x c

ℒIB = I(X:Q) − βI(C:Q)

ρ

λ̃z |ψ(z)⟩ = e(1−β)log ρ̄+β∑c P(c|z)log ρc |ψ(z)⟩
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APPLICATIONS



QUANTUM PHASE RECOGNITION (QQ)
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F[ρ(x), ρ(y)] is large whenever x and y belong to the same
class and small otherwise.

V. APPLICATIONS

In this section we study two different applications of our
theoretical results. The first one deals with “quantum data,”
where the parametric quantum states ρ(x) are fixed by the
problem. The second one focuses on the classification of
classical data, where the quantum embedding x !→ ρ(x)
can be optimized. In this latter case, we propose the varia-
tional quantum information bottleneck (VQIB) method for
optimizing embeddings in order to favor generalization.

A. Quantum phase recognition
In quantum phase recognition [9] the task is to rec-

ognize the phases of matter of a quantum many-body
system, by taking measurements on the quantum device
itself, without having access to a classical description of
its state. Here we focus on a paradigmatic exactly solv-
able model of quantum statistical mechanics, namely the
one-dimensional transverse-field Ising model [52]

H = −
L∑

i=1

(σ x
i σ

x
i+1 + hσ z

i ), (27)

where the σ x,y,z
j are the Pauli matrices acting on site j and

we consider periodic boundary conditions, σαL+1 ≡ σα1 . For
this model, the classical input is the magnetic field h ≡ x.
In the thermodynamic limit L → ∞, the model displays a
quantum phase transition at the critical value h = 1, sepa-
rating an ordered phase for |h| < 1 with twofold degener-
ate ground states from a disordered phase for |h| > 1 with
unique ground state. The model can be exactly solved via
fermionization [52]. To simplify our analysis for finite L,
here we ignore the subtleties of the different fermion par-
ity sectors by considering a small symmetry-breaking term
that forces the ground state to have even parity. In that case,
for even L, the ground state can be expressed as [53]

|$GS(h)〉 =
L/2⊗

k=1

[cos(θk,h/2)|00〉k + sin(θk,h/2)|11〉k],

(28)

where |00〉k and |11〉k are respectively the vacuum and
occupied states by two fermion pairs with opposite
momentum k, −k, and

θk,h = arccos
(

ck − h
1 + h2 − 2hck

)
, ck = cos

2πk
L

.

(29)

From the above expression, it is trivial to compute
the overlap f (h, h′) = 〈$GS(h′)|$GS(h)〉 =

∏L/2
k=1 cos[(θk,h
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FIG. 7. (a) Fidelity between two ground states of the quantum
Ising model with different values of the magnetic field h for L =
100. The model displays a quantum phase transition at the critical
value h = 1, separating ordered (|h| < 1) and disordered (|h| >
1) phases. (b) Testing error in quantum phase recognition as a
function of the magnetic field h. We use the fidelity classifier
with a training set of T random elements per phase. Each fidelity
is estimated via a SWAP test with S shots. For each h, the fidelity
is calculated 1000 times. Solid lines represent the mean fidelity,
while shaded areas are the confidence intervals within a standard
deviation.

−θk,h′)/2]. In the thermodynamic limit the fidelity induced
distance 1 − f (h, h + ε) for small ε diverges at the criti-
cal point [53]. Therefore, we may expect that the fidelity
between two states from the different phases become very
small. This is indeed shown in Fig. 7(a). Geometrically,
this means that the states belonging to different phases are
clustered in distant areas of the Hilbert space, as in Fig. 5.
However, f (h, h′) decreases exponentially in L for h )= h′,
so for large L, the matrix f (h, h′) is almost diagonal, thus
signaling bad generalization performances according to
our Eq. (21).

A scaling analysis of B as a function of L is beyond
the scope of this work. In what follows we test our the-
oretical predictions for a fixed chain length L = 100. In
this case, we consider a uniform distribution P(h) over
[0, 2] and compute B from Eq. (21)—where x there is the
magnetic field h. More specifically, we have discretized
the interval such that Eq. (21) can be computed from
the numerical eigenvalues, and we have observed that the
result converges to B * 5.9 for 100 discretization points.

040321-11

GENERALIZATION IN QUANTUM MACHINE LEARNING. . . PRX QUANTUM 2, 040321 (2021)

F[ρ(x), ρ(y)] is large whenever x and y belong to the same
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In this section we study two different applications of our
theoretical results. The first one deals with “quantum data,”
where the parametric quantum states ρ(x) are fixed by the
problem. The second one focuses on the classification of
classical data, where the quantum embedding x !→ ρ(x)
can be optimized. In this latter case, we propose the varia-
tional quantum information bottleneck (VQIB) method for
optimizing embeddings in order to favor generalization.

A. Quantum phase recognition
In quantum phase recognition [9] the task is to rec-

ognize the phases of matter of a quantum many-body
system, by taking measurements on the quantum device
itself, without having access to a classical description of
its state. Here we focus on a paradigmatic exactly solv-
able model of quantum statistical mechanics, namely the
one-dimensional transverse-field Ising model [52]
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j are the Pauli matrices acting on site j and

we consider periodic boundary conditions, σαL+1 ≡ σα1 . For
this model, the classical input is the magnetic field h ≡ x.
In the thermodynamic limit L → ∞, the model displays a
quantum phase transition at the critical value h = 1, sepa-
rating an ordered phase for |h| < 1 with twofold degener-
ate ground states from a disordered phase for |h| > 1 with
unique ground state. The model can be exactly solved via
fermionization [52]. To simplify our analysis for finite L,
here we ignore the subtleties of the different fermion par-
ity sectors by considering a small symmetry-breaking term
that forces the ground state to have even parity. In that case,
for even L, the ground state can be expressed as [53]

|$GS(h)〉 =
L/2⊗

k=1

[cos(θk,h/2)|00〉k + sin(θk,h/2)|11〉k],

(28)

where |00〉k and |11〉k are respectively the vacuum and
occupied states by two fermion pairs with opposite
momentum k, −k, and
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(
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1 + h2 − 2hck

)
, ck = cos

2πk
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From the above expression, it is trivial to compute
the overlap f (h, h′) = 〈$GS(h′)|$GS(h)〉 =

∏L/2
k=1 cos[(θk,h
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FIG. 7. (a) Fidelity between two ground states of the quantum
Ising model with different values of the magnetic field h for L =
100. The model displays a quantum phase transition at the critical
value h = 1, separating ordered (|h| < 1) and disordered (|h| >
1) phases. (b) Testing error in quantum phase recognition as a
function of the magnetic field h. We use the fidelity classifier
with a training set of T random elements per phase. Each fidelity
is estimated via a SWAP test with S shots. For each h, the fidelity
is calculated 1000 times. Solid lines represent the mean fidelity,
while shaded areas are the confidence intervals within a standard
deviation.

−θk,h′)/2]. In the thermodynamic limit the fidelity induced
distance 1 − f (h, h + ε) for small ε diverges at the criti-
cal point [53]. Therefore, we may expect that the fidelity
between two states from the different phases become very
small. This is indeed shown in Fig. 7(a). Geometrically,
this means that the states belonging to different phases are
clustered in distant areas of the Hilbert space, as in Fig. 5.
However, f (h, h′) decreases exponentially in L for h )= h′,
so for large L, the matrix f (h, h′) is almost diagonal, thus
signaling bad generalization performances according to
our Eq. (21).

A scaling analysis of B as a function of L is beyond
the scope of this work. In what follows we test our the-
oretical predictions for a fixed chain length L = 100. In
this case, we consider a uniform distribution P(h) over
[0, 2] and compute B from Eq. (21)—where x there is the
magnetic field h. More specifically, we have discretized
the interval such that Eq. (21) can be computed from
the numerical eigenvalues, and we have observed that the
result converges to B * 5.9 for 100 discretization points.
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Task: recognize the phases of matter of a 
quantum many-body system by taking 
measurements on the quantum system itself

Ordered  / disordered  phases ( |h | < 1) ( |h | > 1)

T : number of training samples per class 
S : number of measurement shots

⟹ ℬ ≃ 5.9
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FIG. 8. (a) Union of the training and testing sets from a gen-
erated 2-moon dataset. Data (filled circles) with different colors
belong to two different classes. Wrongly classified data in the
testing set after training are marked with a red diagonal cross
(β = 30) or with a blue cross (β = 1.5). (b) Fidelity F between
two embeddings for β = 30, using the data from (a). Data points
are ordered to first have all points from the first class and then all
points from the second class. Dark black points represent F ! 0,
while light yellow points represent F ! 1. (c) Fidelity F between
two embeddings, as in (b) but for β = 1.5. White points represent
F = 1 while dark red points have infidelity 1 − F ! 10−7.

A), as for N → ∞ copies we may formally get zero
approximation error.

As shown in Fig. 8(b), for large β, the trained embed-
ding is able to separate most data points belonging to
different classes into almost orthogonal quantum states.
More precisely, the fidelity is almost zero for most inputs
belonging to different classes, yet being mostly very high
for states belonging to the same class, thus signaling good
generalization. Indeed, by generating a testing set with 100
elements per class [also shown in Fig. 8(a)], we observe a
testing error ! 4.5%. With a much larger testing set of 104

points we get a testing error of ! 2.6%.
Nonetheless, even better generalization can be obtained

for β = 1.5, although the optimized embedding is almost
constant, as shown in Fig. 8(c), with largest infidelity !
10−7. The testing errors over the testing sets of 100 or 104

elements per class described above are respectively 3.5%
and 1.9%, both smaller than those obtained with larger β.
The price to pay is that, due to the small infidelities, many

more measurements are needed to estimate the fidelity with
the due high precision for correct discrimination.

The wrongly classified samples in the smaller testing set
are shown in Fig. 8(a) with a cross. We observe that, for
the small β = 1.5, only the elements near the boundaries
may be wrongly classified, while for the larger β = 30, in
spite of neater class separation shown in Fig. 8(b), there
are wrongly classified samples in the “bulk” of the moons.
Something similar was also observed in the numerical
simulation shown in Fig. 6(c).

Our analysis shows that the variational quantum infor-
mation bottleneck method can be successfully used to
train quantum embeddings with different generalization
properties.

VI. CONCLUSIONS

We have introduced measures of complexity to quan-
tify the generalization and approximation capability QML
classification problems, either with general parametric
quantum states ρ(x) or quantum embeddings x %→ ρ(x)
of classical data x, when optimal measurements are per-
formed on the system. One of the main results of this
paper is the bound on the generalization error via the
Rényi mutual information I2(X :Q) between the embed-
ding space Q and the classical input space X . Thanks to
our bound, overfitting does not occur when the number
of training pairs T is much bigger than 2I2(X :Q). Moreover,
we have shown how to bound the approximation error via
the mutual information between the embedding space and
the class space, and shown that the classification error can
approach it lowest possible value (Bayes risk), in the limit
of many measurement shots or large Hilbert spaces. Our
bounds were obtained for the linear loss function, rou-
tinely employed in QHT, but different losses can be linked
to the linear loss via bounds. We have also introduced an
information bottleneck principle for quantum embeddings,
which is independent of the choice of loss function and
allows us to explore different trade-offs between accuracy
and generalization.

Based on our theoretical results and bounds, we have
studied different applications for both the classification of
quantum and classical data. In particular, we have stud-
ied the classification of the quantum phases of an Ising
spin chain and proposed the variational quantum informa-
tion bottleneck to train quantum embeddings with good
generalization properties.

Our analysis can be applied to models of moderate
complexity, such as those that can be trained with near-
term quantum hardware. It is currently an open question
to understand whether quantum classifiers of very high
complexity can mimic the generalization capabilities of
classical deep learning.
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quantum circuit where all data are loaded in the co-
e�cients of the initial wave function [8, 9, 13–15]. In
the simplest of cases, data are uploaded as rotations of
qubits in the computational basis. A quantum circuit
would then follow that should perform some classifi-
cation.

This strategy would be insu�cient to create a uni-
versal quantum classifier with a single qubit. A first
limitation is that a single qubit only has two degrees
of freedom, thus only allowing to represent data in
a two-dimensional space. No quantum classifier in
higher dimensions can be created if this architecture
is to be used. A second limitation is that, once data
is uploaded, the only quantum circuit available is a
rotation in the Bloch sphere. It is easy to prove that
a single rotation cannot capture any non-trivial sepa-
ration of patterns in the original data.

We need to turn to a di↵erent strategy, which turns
out to be inspired by neural networks. In the case of
feed-forward neural networks, data are entered in a
network in such a way that they are processed by sub-
sequent layers of neurons. The key idea is to observe
that the original data are processed several times, one
for each neuron in the first hidden layer. Strictly
speaking, data are re-uploaded onto the neural net-
work. If neural networks were a↵ected by some sort
of no-cloning theorem, they could not work as they
do. Coming back to the quantum circuit, we need to
design a new architecture where data can be intro-
duced several times into the circuit.

The central idea to build a universal quantum clas-
sifier with a single qubit is thus to re-upload classical
data along with the computation. Following the com-
parison with an artificial neural network with a single
hidden layer, we can represent this re-upload diagram-
matically, as it is shown in Figure 1. Data points in a
neural network are introduced in each processing unit,
represented with squares, which are the neurons of the
hidden layer. After the neurons process these data, a
final neuron is necessary to construct the output to be
analyzed. Similarly, in the single-qubit quantum clas-
sifier, data points are introduced in each processing
unit, which this time corresponds to a unitary rota-
tion. However, each processing unit is a↵ected by the
previous ones and re-introduces the input data. The
final output is a quantum state to be analyzed as it
will be explained in the next subsections.

The explicit form of this single-qubit classifier is
shown in Figure 2. Classical data are re-introduced
several times in a sequence interspaced with process-
ing units. We shall consider the introduction of data
as a rotation of the qubit. This means that data from
three-dimensional space, x̨, can be re-uploaded using
unitaries that rotate the qubit U(x̨). Later processing
units will also be rotations as discussed later on. The
whole structure needs to be trained in the classifica-
tion of patterns.

As we shall see, the performance of the single-qubit

(a) Neural network (b) Quantum classifier

Figure 1: Simplified working schemes of a neural network

and a single-qubit quantum classifier with data re-uploading.

In the neural network, every neuron receives input from all

neurons of the previous layer. In contrast with that, the

single-qubit classifier receives information from the previous

processing unit and the input (introduced classically). It pro-

cesses everything all together and the final output of the

computation is a quantum state encoding several repetitions

of input uploads and processing parameters.

quantum classifier will depend on the number of re-
uploads of classical data. This fact will be explored
in the results section.

2.2 Processing along re-uploading
The single-qubit classifier belongs to the category of
parametrized quantum circuits. The performance of
the circuit is quantified by a figure of merit, some
specific ‰2 to be minimized and defined later. We
need, though, to specify the processing gates present
in the circuit in terms of a classical set of parameters.

Given the simple structure of a single-qubit circuit
presented in Figure 2, the data is introduced in a sim-
ple rotation of the qubit, which is easy to character-
ize. We just need to use arbitrary single-qubit rota-
tions U(„1, „2, „3) œ SU(2). We will write U(„̨) with

„̨ = („1, „2, „3). Then, the structure of the universal
quantum classifier made with a single qubit is

U(„̨, x̨) © U(„̨N )U(x̨) . . . U(„̨1)U(x̨), (1)

which acts as
|ÂÍ = U(„̨, x̨)|0Í. (2)

The final classification of patterns will come from
the results of measurements on |ÂÍ. We may introduce
the concept of processing layer as the combination

L(i) © U(„̨i)U(x̨), (3)

so that the classifier corresponds to

U(„̨, x̨) = L(N) . . . L(1), (4)

where the depth of the circuit is 2N . The more layers
the more representation capabilities the circuit will
have, and the more powerful the classifier will be-
come. Again, this follows from the analogy to neural
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We then train a fidelity classifier [19] to recognize the
phases of the quantum Ising model (27). In general, the
fidelity classifier associates to an unknown state |ψ〉 the
class of the state from the training set with highest fidelity
with |ψ〉. Such fidelity can be estimated via the SWAP test
using S shots, namely S copies of |ψ〉. Since the SWAP
test measurement operator is idempotent, the result of the
SWAP test is a Bernoulli random variable with mean F , the
fidelity, and variance F(1 − F)/S. The fidelity measure-
ment provides a nonoptimal classification POVM, so this
classifier is expected to perform slightly worse then the
optimal strategies discussed theoretically in the previous
sections.

For numerical simulations, we consider a training set
with T random elements with h > 1 and T random ele-
ments with h < 1, and verify the quantum phase recogni-
tion problem by generating new testing states |"GS(h)〉 for
h uniformly distributed in [0, 2]. In Fig. 7(b) we numer-
ically observe that even with T = 1 the testing error is
almost zero, except near the critical point. By increasing
the number of shots, the fidelity is estimated more pre-
cisely, and given that states belonging to different phases
have very low fidelity, as shown in Fig. 7(a), the testing
error decreases. When T ≈ B, the training error is nor-
mally very low, except near the critical point. For T =
10 $ B, we always find zero training error, irrespective
of the number of shots. Therefore, this analysis confirms
the predictions of our Theorem 1.

B. Variational quantum information bottleneck
We now focus on using a quantum algorithm to clas-

sify classical data. In this case, the states ρ(x) are not
fixed by the problem, as in the previous section, and can
be optimized together with the measurement POVM. The
embedding x %→ ρ(x) can be optimized by training a quan-
tum circuit as in Fig. 1. More specifically, we consider
one of the simplest yet most general classification circuits
with a single-qubit classifier, dubbed “data reuploading”
[8]: here we use a slightly modified version where the
embedding is obtained as a composition of L layers of
x-dependent single-qubit rotations around the y and z axes

|ψw(x)〉 =
L∏

$=1

[Rz(wz$ · x+wz$
0 )Ry(wy$ · x+wy$

0 )]|0〉, (30)

where Rα(θ) = eiθσα , the σα are the Pauli matrices, and the
weight tensor wα$k can be optimized during training.

Based on the quantum information bottleneck principle
proposed in Sec. B we study the variational minimization
of the QIB Lagrangian (24) with respect to the parametric
states (30). For single-qubit states, the entropies in Eq. (24)
can be expressed without loss of generality in terms of the

purity as

S(ρ) = −(λ− log2 λ−) − (λ+ log2 λ+) =: s(P), (31)

where

λ±(ρ) = 1 ±
√

2P(ρ) − 1
2

(32)

are the eigenvalues of ρ, which depend only on the purity
P(ρ) = Tr[ρ2]. Since the state (30) is pure, S[ρ(x)] = 0
in Eq. (24). Moreover, in order to train the embedding, we
approximate the averages over the distribution P(c, x) with
empirical averages over the elements of the training set T ,
so from Eq. (24) we get

LT
IB = (1 − β)s(Ptot) + β

∑

c

Tc

T
s(Pc), (33)

where constant terms have been neglected, and by explicit
computation, the purities read

Ptot =
T + 2

∑T
x<y F[ρ(x), ρ(y)]2

T2 , (34)

Pc =
Tc + 2

∑Tc
x<y F[ρ(x), ρ(y)]2

T2
c

, (35)

where
∑T refers to the double sum over the elements

(cx, x), (cy , y) from the training set, while in
∑Tc the sum is

restricted over elements with class cx = cy = c. The order-
ing x < y refers to the index of the inputs in the training
set, and is used just to avoid double counting.

As an example for numerical simulations, we consider
a binary classification problem with the 2-moons dataset
shown in Fig. 8(a), where each point is described by two
real coordinates x ≡ (x1, x2). Moon points are organized
in the two different patterns shown with different col-
ors in Fig. 8(a), which represent the two classes. Data
have been generated using a noise parameter 0.3, which
makes the classification less deterministic. We generate
a training set of 100 samples per class and optimize Eq.
(33) using the Nelder-Mead algorithm with starting point
wα$k = 0 (constant embedding). In Figs. 8(b) and 8(c),
we show the fidelity between two trained embeddings
F[ρ(x), ρ(y)], where training is performed using either
β = 30 or β = 1.5. After training, we use the fidelity clas-
sifier [19] to study both the training and testing errors.
Unlike the previous section, here we study an exact evalua-
tion of the fidelity, which would require an infinite amount
of measurement shots. The training error we get with the
optimized embedding is always zero. This is consistent
with our theoretical analysis (see Theorem 3 in Appendix
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CONCLUSIONS

Quantum and Classical Algorithms to process either classical data (e.g. images) or 
quantum information encoded in quantum states 

Different applications:  

quantum pattern recognition with entanglement-enhanced quantum sensor 

Classification of quantum states and phases of matter 

Quantum embeddings of classical data 

Foundational aspects: generalisation & sample complexity, information theoretic 
tools
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Empirical loss / training error 

 

Abstract classification error 

 

Optimal empirical measurement    

Real optimal   

Testing error    

R𝒯(Π, ρ) =
1
T ∑

(ck,xk)∈𝒯
∑
c≠ck

Tr[Πcρ(xk)] = 1 −
1
T ∑

(ck,xk)∈𝒯

Tr[Πck
ρ(xk)]

R(Π, ρ) = 𝔼(c,x)∼P(c,x) ∑
c≠c̃

Tr[Πc̃ρ(x)] = 1 − 𝔼(c,x)∼P(c,x)Tr[Πcρ(x)]

Π𝒯 = argminΠR𝒯(Π, ρ)

Π* = argminΠR(Π, ρ)

R𝒯′ 
(Π𝒯, ρ)


