
Fast inference of deep
neural networks in

FPGAs

 Maurizio Pierini

๏The LHC delivers ~40M events/sec. This gives us little time
(<10 μsec) to reconstruct and filter these events

๏Coarse reconstruction, with worse resolution than offline

๏Simple algorithms, e.g., sums and products (at some point,
deploying invariant mass trigger was a big deal)

๏Extended use of Look Up Tables to parameterise complex
functions (with limitation in terms of dimensionality)

The LHC Big Data Problem

2

High-Level

Trigger
L1

trig
ger

1 KHz

1 MB/evt

40 MHz

100 KHz

Enter Machine Learning

3

DeepLearningforImagingCalorimetry

VitoriaBarinPacela,⇤Jean-RochVlimant,MaurizioPierini,andMariaSpiropulu
CaliforniaInstituteofTechnologyand

CMS

WeinvestigateparticlereconstructionusingDeepLearning,basedonadatasetconsistingofsingle-

particleenergyshowersinahighly-granularLinearColliderDetectorcalorimeterwitharegular3D

arrayofcells.Weperformenergyregressiononphotons,electrons,neutralandchargedpions,and

discusstheperformanceofourmodelineachparticledataset.

I.INTRODUCTION

OnethegreatestchallengesattheLHCat
CERNistocollectandanalysedatae�ciently.
Sophisticatedmachinelearningmethodshave
beenresearchedtotacklethisproblem,suchas
boosteddecisiontreesanddeeplearning.In
thisproject,weareusingdeepneuralnetworks
(DNN)[1][2]torecognizeimagesoriginatedby
thecollisionsintheLinearColliderDetector
(LCD)calorimeter[3][4],designedtooperate
attheCompactLinearCollider(CLIC).

Preliminarystudieshaveexploredthepossi-
bilityofreconstructingparticlesfromcalorimet-
ricdepositsusingimagerecognitiontechniques
basedonconvolutionalneuralnetworks,using
adatasetofsimulatedhitsofindividualpar-
ticlesontheLCDsurface.Thedatasetcon-
sistsofcalorimetricshowersproducedbysin-
gleparticles(pions,electronsorphotons)hit-
tingthesurfaceofanelectromagneticcalorime-
ter(ECAL)andeventuallyshoweringwithin
ahadroniccalorimeter(HCAL).Thisproject
aimedatreconstructingtheenergyofparticles
throughregression.

Thecodeusedfordefiningthemod-
elsandtrainingtheDNNsishostedat
https://github.com/vitoriapacela/NotebooksLCD,
andanalysistoolsarehostedat
https://github.com/vitoriapacela/RegressionLCD.

⇤vitoria.barinpacela@helsinki.fi

FIG.1.Visualizationofthedata.Chargedpion

eventdisplayedintheECALandHCAL.Everyhit

isshowninitsrespectivecellineachofthecalorime-

ters.Warmercolors(likeorangeandpink)repre-

senthigherenergies,as420GeV,whereascolder

colors,likeblue,representlowerenergies,as50

GeV.[5]

II.METHODS

Thedatasetsweresimulatedascloseaspos-
sibletorealcollisiondata,usingapreliminary
versionoftheCLICdetectordesign,imple-
mentedintheDDhepsoftwareframework[3].
Theyconsistof3Darraysrepresentingenergy
valuesinthecellsoftheECALandHCAL,and
thetrueenergyoftheparticle.TheECALdata
arrayshaveshape25x25x25,whereasthe
HCALdataarrayshaveshape4x4x60.Events
areofdiscrete,integer-valuedenergiesoverthe
range10-510GeV,andfixeddirection,sothat
theyimpactthecenterofthecalorimeterbar-
rel,withanimpactangleof90�.Thedatasets
foreachparticlearestoredintheHierarchical
DataFormat(HDF5)[6],whichisdesignedto
storeandorganizelargeamountsofdata.Each
HDF5filecontains10000events,andthereare

Which Particle?
Which Energy?

Which Direction?

๏We know how to get from the data the answers we want

๏physics + intuition + computing

๏But the process is slow

๏We can use DL solutions as a shortcut: we teach neural networks
how to give us the answer we want directly from the raw data

๏Problem: how do we put a NN on an FPGA?

๏HLS4ML aims to be this automatic tool

๏reads as input models trained on standard DeepLearning libraries

๏comes with implementation of common ingredients (layers, activation functions, etc)

๏Uses HLS softwares to provide a firmware implementation of a given network

๏Could also be used to create co-processing kernels for HLT environments

HLS4ML: the idea

4
ML @ L1T - Sioni Summers29/4/2022

high level synthesis for machine learning

4

2 Building neural networks with hls4ml

In this section we give an overview of the basic task of translating a given neural network model into
a firmware implementation using HLS. We then pick a specific use-case to study, though the study
will be discussed in a way that is meant to be applicable for a broad class of problems. We conclude
this section by discussing how to create an e�cient and optimal firmware implementation of a neural
network in terms of not only performance but also resource usage and latency.

2.1 hls4ml concept

Our basic task is to translate a trained neural network by taking a model architecture, weights, and
biases and implementing them in HLS in an automated fashion. This automated procedure is the task
of the software/firmware package, hls4ml. A schematic of a typical workflow is illustrated in Fig. 1.

�����������
�����

������
���������"�

#������

$

� ��������� ������
�����������

�� �����������

�����
�������

�����
���!������

��������������������

� ���������"����
������

�����

� ���	���
����"����"������"

hls 4 ml

hls4ml

HLS 4 ML

Figure 1: A typical workflow to translate a model into a firmware implementation using hls4ml.

The part of the workflow that is illustrated in red indicates the usual software workflow required
to design a neural network for a specific task. This usual machine learning workflow, with tools such
as Keras and PyTorch, involves a training step and possible compression steps (more discussion
below in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of
hls4ml which translates a model into an HLS project that produces a firmware block. This automated
tool has a number of configurable parameters which can help the user customize the network translation
for their application.

The time to perform the hls4ml translation is much shorter (minutes to hours) than a custom
design of a neural network and can be used to rapidly prototype machine learning algorithms without
dedicated engineering support. For physicists, this makes designing physics algorithms for the trigger
or DAQ significantly more accessible and e�cient, thus allowing the "time to physics" to be greatly
reduced.

– 5 –

https://fastmachinelearning.org/hls4ml/

hls4ml: a user-friendly, open-source tool to develop and optimize FPGA firmware for
Machine Learning inference:
• input models trained with standard ML libraries like (Q)Keras, PyTorch, (Q)ONNX
• Python package for conversion, configuration and optimization
• uses HLS software: rapid design space exploration + more accessible to non-FPGA-experts
• comes with implementation of common ingredients - layer types, activation functions
• and novel ingredients for fast, efficient inference - low-precision NNs, network optimisations

https://arxiv.org/abs/1804.06913

2 Building neural networks with hls4ml

In this section we give an overview of the basic task of translating a given neural network model into
a firmware implementation using HLS. We then pick a specific use-case to study, though the study
will be discussed in a way that is meant to be applicable for a broad class of problems. We conclude
this section by discussing how to create an e�cient and optimal firmware implementation of a neural
network in terms of not only performance but also resource usage and latency.

2.1 hls4ml concept

Our basic task is to translate a trained neural network by taking a model architecture, weights, and
biases and implementing them in HLS in an automated fashion. This automated procedure is the task
of the software/firmware package, hls4ml. A schematic of a typical workflow is illustrated in Fig. 1.

�����������
�����

������
���������"�

#������

$

� ��������� ������
�����������

�� �����������

�����
�������

�����
���!������

��������������������

� ���������"����
������

�����

� ���	���
����"����"������"

hls 4 ml

hls4ml

HLS 4 ML

Figure 1: A typical workflow to translate a model into a firmware implementation using hls4ml.

The part of the workflow that is illustrated in red indicates the usual software workflow required
to design a neural network for a specific task. This usual machine learning workflow, with tools such
as Keras and PyTorch, involves a training step and possible compression steps (more discussion
below in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of
hls4ml which translates a model into an HLS project that produces a firmware block. This automated
tool has a number of configurable parameters which can help the user customize the network translation
for their application.

The time to perform the hls4ml translation is much shorter (minutes to hours) than a custom
design of a neural network and can be used to rapidly prototype machine learning algorithms without
dedicated engineering support. For physicists, this makes designing physics algorithms for the trigger
or DAQ significantly more accessible and e�cient, thus allowing the "time to physics" to be greatly
reduced.

– 5 –

Catapult
Coming Soon

Catapult
Coming Soon

HLS4ML: the implementation

5
ML @ L1T - Sioni Summers29/4/2022

hls4ml - NN implementation
• Dataflow architecture: each layer is an independent compute unit

- With tunable parallelism and quantization

• Fully on-chip: NN must fit within available FPGA resources (pynq-z2 floorplan shown)

- Example: small CNN trained on MNIST

5

Conv2D

Conv2D

ReLU

MaxPool2D

ReLU

MaxPool2D

Flatten

Dense
Softmax Prediction

FIFOs
ML @ L1T - Sioni Summers29/4/2022

hls4ml - NN implementation
• Dataflow architecture: each layer is an independent compute unit

- With tunable parallelism and quantization

• Fully on-chip: NN must fit within available FPGA resources (pynq-z2 floorplan shown)

- Example: small CNN trained on MNIST

5

Conv2D

Conv2D

ReLU

MaxPool2D

ReLU

MaxPool2D

Flatten

Dense
Softmax Prediction

FIFOs

ML @ L1T - Sioni Summers29/4/2022

hls4ml - NN implementation
• Dataflow architecture: each layer is an independent compute unit

- With tunable parallelism and quantization

• Fully on-chip: NN must fit within available FPGA resources (pynq-z2 floorplan shown)

- Example: small CNN trained on MNIST

5

Conv2D

Conv2D

ReLU

MaxPool2D

ReLU

MaxPool2D

Flatten

Dense
Softmax Prediction

FIFOs

๏Dataflow architecture: each layer is an independent compute unit

๏With tunable parallelism and quantization

๏Fully on-chip: NN must fit within available FPGA resources (pynq-z2 floorplan shown)

๏Example: small CNN trained on MNIST

๏You have a jet at LHC: spray of
hadrons coming from a “shower”
initiated by a fundamental
particle of some kind (quark,
gluon, W/Z/H bosons, top quark)

๏You have a set of jet features
whose distribution depends on the
nature of the initial particle

๏You can train a network to start
from the values of these
quantities and guess the nature
of your jet

๏To do this you need a sample for
which you know the answer

Example: fast inference

6

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic!
Might not be the best application, but a familiar one

ML in substructure is well-studied

https://arxiv.org/abs/1804.06913

https://arxiv.org/abs/1804.06913

Javier Duarte I hls4ml !8

• Groomed mass separates top, W/Z, and quark/gluon

• top/gluon have greater multiplicity than W/Z/quark

• ECF N2β=1 separates 2 and 3-prong jets (W/Z/top) from 1-prong jets (quark/gluon)

Observables

mmMDT

N�=1,2
2

M�=1,2
2

C�=0,1,2
1

C�=1,2
2

D�=1,2
2

D(↵,�)=(1,1),(1,2)
2Õ

z log z
Multiplicity

Table 1: A summary of the observables used in the analysis.

this study [51–54]. A brief description of each of these variables is presented in Ref. [55]. These are
used as expert-level inputs to a neural network classifier which is near optimal3.

Benchmark networks and floating point performance

We train a neural network for the classification task of q, g, W , Z , and t discrimination. The data are
randomly split into training (60%), validation (20%), and testing (20%) datasets. The input features
are standardized by removing the mean and scaling to unit variance. The architecture, illustrated in
Fig. 4 (left), is a fully-connected neural network with three hidden layers. The activation function
for the hidden layers is ReLU [56] while the output layer activation function is a softmax function to
provide probabilities for each class. The categorical cross-entropy loss function is minimized with
and without L1 regularization of the weights (Sec. 2.3) using the Adam algorithm [57] with an initial
learning rate of 10�4 and a minibatch size of 1024. The learning rate is halved if the validation loss
fails to improve over 10 epochs. Training is performed on an AWS EC2 P2 GPU instance [58] with
Keras [10]. We also consider a simpler architecture with one hidden layer, see Fig. 4 (right), when
studying the final FPGA implementation on a specific device. This is described further in Sec. 3.3.

The performance of the neural network classifier is shown in Fig. 5. The general features of this
performance plot are typical of jet substructure classification tasks. Top-quark jets, by virtue of their
large mass and three-prong nature, have the best separation from the rest of the jet types. The W and
Z jets are similar in performance because of their masses and two-prong nature while quark and gluon
jets are notoriously challenging to classify. Given this multi-jet classifier performance, we explore
how to implement such a neural network architecture in an FPGA using hls4ml.

3More sophisticated approaches exist, but the goal of this study is not to achieve better performance than existing
algorithms. Instead, the goal is to examine the implementation of several e�ective neural network architectures in FPGAs.

– 8 –

Jet Substructure Inputs
mass

ECFs

multiplicity

7

𝔁1 𝔁N-1 𝔁N

๏Simple DNN based on high-level features (jet masses,
multiplicities, energy correlation functions)

Example: jet tagging

Javier Duarte I hls4ml !8

• Groomed mass separates top, W/Z, and quark/gluon

• top/gluon have greater multiplicity than W/Z/quark

• ECF N2β=1 separates 2 and 3-prong jets (W/Z/top) from 1-prong jets (quark/gluon)

Observables

mmMDT

N�=1,2
2

M�=1,2
2

C�=0,1,2
1

C�=1,2
2

D�=1,2
2

D(↵,�)=(1,1),(1,2)
2Õ

z log z
Multiplicity

Table 1: A summary of the observables used in the analysis.

this study [51–54]. A brief description of each of these variables is presented in Ref. [55]. These are
used as expert-level inputs to a neural network classifier which is near optimal3.

Benchmark networks and floating point performance

We train a neural network for the classification task of q, g, W , Z , and t discrimination. The data are
randomly split into training (60%), validation (20%), and testing (20%) datasets. The input features
are standardized by removing the mean and scaling to unit variance. The architecture, illustrated in
Fig. 4 (left), is a fully-connected neural network with three hidden layers. The activation function
for the hidden layers is ReLU [56] while the output layer activation function is a softmax function to
provide probabilities for each class. The categorical cross-entropy loss function is minimized with
and without L1 regularization of the weights (Sec. 2.3) using the Adam algorithm [57] with an initial
learning rate of 10�4 and a minibatch size of 1024. The learning rate is halved if the validation loss
fails to improve over 10 epochs. Training is performed on an AWS EC2 P2 GPU instance [58] with
Keras [10]. We also consider a simpler architecture with one hidden layer, see Fig. 4 (right), when
studying the final FPGA implementation on a specific device. This is described further in Sec. 3.3.

The performance of the neural network classifier is shown in Fig. 5. The general features of this
performance plot are typical of jet substructure classification tasks. Top-quark jets, by virtue of their
large mass and three-prong nature, have the best separation from the rest of the jet types. The W and
Z jets are similar in performance because of their masses and two-prong nature while quark and gluon
jets are notoriously challenging to classify. Given this multi-jet classifier performance, we explore
how to implement such a neural network architecture in an FPGA using hls4ml.

3More sophisticated approaches exist, but the goal of this study is not to achieve better performance than existing
algorithms. Instead, the goal is to examine the implementation of several e�ective neural network architectures in FPGAs.

– 8 –

Jet Substructure Inputs
mass

ECFs

multiplicity

๏Simple DNN based on
high-level features
(jet masses,
multiplicities, energy
correlation functions)

8

Full model

EXAMPLE: JET SUBSTRUCTURE

5 output multi-classifier:

Does a jet originate from a quark, gluon, W/Z boson, top quark?

Network architecture
16 expert inputs

jet masses, multiplicity

ECFs (β=0,1,2)

11

• 3-layer model trained
without regularization

• No pruning applied

• Resulting distribution of
weights 
 
 
 
 
 
 
 

3-layer model: no reg., no pruning

4

HLS4ML Preliminary16 inputs

64 (relu)

32 (relu)

5 (softmax)

32 (relu) Fully connected deep
neural network

Sensitivity = True Positive Rate

1-
sp

ec
ifi

ci
ty

 =
 fa

ls
e

po
si

tiv
e

ra
te

CASE STUDY: JET SUBSTRUCTURE

5 output multi-classifier:

Does a jet originate from a quark, gluon, W/Z boson, top quark?

Network architecture
16 expert inputs

jet masses, multiplicity

ECFs (β=0,1,2)

11

• 3-layer model trained
without regularization

• No pruning applied

• Resulting distribution of
weights 
 
 
 
 
 
 
 

3-layer model: no reg., no pruning

4

HLS4ML Preliminary

Fully connected deep
neural network

16 inputs

64 nodes
activation: ReLU

32 nodes
activation: ReLU

32 nodes
activation: ReLU

5 outputs
activation: SoftMax

Example: jet tagging

Better

The full model

9

Javier Duarte I hls4ml !11

ML in FPGAs?
FPGA

How many resources? DSPs, LUTs, FFs?
Can we fit in the latency requirements?

= 4,256  
synapses / 

mult.

+5×32

+32×32

+64×3216×64

๏Pruning: remove
parameters that don’t
really contribute to
performances

๏force parameters
to be as small as
possible
(regularization)

๏Remove the small
parameters

๏Retrain

Making the NN smaller: pruning

10

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression
• Iterative approach:

- train with L1 regularization (loss function augmented with penalty term):

 24

- sort the weights based on the value relative to the max value of the weights in that layer

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression

 26

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression

 27

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights
and multiplications w/o
performance loss

๏Pruning: remove
parameters that don’t
really contribute to
performances

๏force parameters
to be as small as
possible
(regularization)

๏Remove the small
parameters

๏Retrain

Making the NN smaller: pruning

11

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression
• Iterative approach:

- train with L1 regularization (loss function augmented with penalty term):

 24

- sort the weights based on the value relative to the max value of the weights in that layer

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression

 27

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights
and multiplications w/o
performance loss

Compression

12

Javier Duarte I hls4ml

Compression

!16

• Big reduction in DSP usage with pruned model!

• ~15 clocks @ 200 MHz = 75 ns inference

75 ns

Xilinx Vivado 2017.2
Clock frequency: 200 MHz
FPGA: Xilinx Kintex Ultrascale
 (XCKU115-FLVB2104)

COMPRESSION 18

There are many schemes for compression
We do a simplistic, iterative version

Training with “L1” regularization, up-weight important synapses
Remove X% of weights and retrain
Rinse, repeat

Our case study: 70% network reduction with no performance loss

< total bits, integer bits >

Reaches 32-bit floating
point performance with
16-bit fixed point!

Distribution of
weights in NN

๏Quantisation: reduce the
number of bits used to
represent numbers (i.e.,
reduce used memory)

๏models are usually trained
at 64 or 32 bits

๏this is not necessarily
needed in real life

๏In our case, we could reduce
to 16 bits w/o loosing
precision

๏Beyond that, one would have to
accept some performance loss

Quantisation

13

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: quantization
• In FPGAs use fixed point data types → less resources and latency than 32-bit floating

point

• NN inputs, weights, biases, outputs represented as

 29

0101.1011101010

width
fractionalinteger

ap_fixed<14,4>

Quantization

Quantized [24, 36–39] and even binarized [40–43] neural networks have been studied in detail as an
additional way to compress neural networks by reducing the number of bits required to represent each
weight. FPGAs provide considerable freedom in the choice of data type and precision. Both are
important to consider to prevent the wasting of FPGA resources and latency. In hls4ml we use fixed
point arithmetic, which uses less resources and latency than floating point arithmetic. Resource usage
using floating point arithmetic and integer arithmetic use the same resources.

The inputs, weights, biases, sums, and outputs of each layer (see Eq. 2.1) are all represented as
fixed point numbers. For each, the number of bits above and below the binary point can be configured
for the use case. It is broadly observed that precision can be reduced significantly without causing a
loss in performance [XXX], but this must be done with care. In Fig. 7, we show the distribution of
the absolute value of the weights after the compression described in Sec. 2.3. In this case, to avoid
overflow in the weights, at least three bits should be assigned above the binary point — two to envelope
the largest absolute value and one for the sign. The neuron values, xm, and intermediate signals in the
FPGA used to compute them, require more bits, given the form of Equation 2.1. We determine the
number of bits to assign below the binary point by scanning physics performance versus number of
these bits.

Figure 7: Distribution of the absolute value of the weights after compression.

In addition to saving on resources used for signal routing, reducing precision saves on resources
and latency used for mathematical operations. For many applications the primary limitation will be
the DSP resources of the FPGA used for multiplication. The number of DSPs used per multiplier
depends on the precision of the numbers being multiplied and can change abruptly. For example, one
Xilinx DSP48 block [XXX] can multiply a 25-bit number with an 18-bit number, but two are required
to multiply a 25-bit number with a 19-bit number. Similarly, the latency of multipliers increases with
precision, though they can remain pipelined. Detailed exploration of the e�ect of calculation precision
is presented in Sec. 3.

– 12 –

integer bits = 2 + 1 for sign
(need more for neurons)

• But need more bits for neurons as computed with
multiplications and sums → we perform a scan of
physics performance versus bit precision

• To avoid overflow/underflow of weights at
least 3 bits needed

ap_fixed<width,integer>

weights

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: quantization
• In FPGAs use fixed point data types → less resources and latency than 32-bit floating

point

• NN inputs, weights, biases, outputs represented as

 29

0101.1011101010

width
fractionalinteger

ap_fixed<14,4>

Quantization

Quantized [24, 36–39] and even binarized [40–43] neural networks have been studied in detail as an
additional way to compress neural networks by reducing the number of bits required to represent each
weight. FPGAs provide considerable freedom in the choice of data type and precision. Both are
important to consider to prevent the wasting of FPGA resources and latency. In hls4ml we use fixed
point arithmetic, which uses less resources and latency than floating point arithmetic. Resource usage
using floating point arithmetic and integer arithmetic use the same resources.

The inputs, weights, biases, sums, and outputs of each layer (see Eq. 2.1) are all represented as
fixed point numbers. For each, the number of bits above and below the binary point can be configured
for the use case. It is broadly observed that precision can be reduced significantly without causing a
loss in performance [XXX], but this must be done with care. In Fig. 7, we show the distribution of
the absolute value of the weights after the compression described in Sec. 2.3. In this case, to avoid
overflow in the weights, at least three bits should be assigned above the binary point — two to envelope
the largest absolute value and one for the sign. The neuron values, xm, and intermediate signals in the
FPGA used to compute them, require more bits, given the form of Equation 2.1. We determine the
number of bits to assign below the binary point by scanning physics performance versus number of
these bits.

Figure 7: Distribution of the absolute value of the weights after compression.

In addition to saving on resources used for signal routing, reducing precision saves on resources
and latency used for mathematical operations. For many applications the primary limitation will be
the DSP resources of the FPGA used for multiplication. The number of DSPs used per multiplier
depends on the precision of the numbers being multiplied and can change abruptly. For example, one
Xilinx DSP48 block [XXX] can multiply a 25-bit number with an 18-bit number, but two are required
to multiply a 25-bit number with a 19-bit number. Similarly, the latency of multipliers increases with
precision, though they can remain pipelined. Detailed exploration of the e�ect of calculation precision
is presented in Sec. 3.

– 12 –

integer bits = 2 + 1 for sign
(need more for neurons)

• But need more bits for neurons as computed with
multiplications and sums → we perform a scan of
physics performance versus bit precision

• To avoid overflow/underflow of weights at
least 3 bits needed

ap_fixed<width,integer>

weights

Parallelisation

14Javier Duarte I hls4ml

Network Tuning: Parallelization

!15

related to the Initiation Interval = when new inputs are introduced to the algo.

• ReuseFactor: how much to parallelize

mult

mult

mult

mult

mult

mult

mult

reuse = 4
use 1 multiplier 4 times

reuse = 2
use 2 multipliers 2 times each

reuse = 1
use 4 multipliers 1 time each

Javier Duarte I hls4ml

Resource Usage and Timing

!18

reuse = 1
<16, 6> bits BRAM DSP FF LUT

Total 13 954 53k 36k

% Usage ~0% 17% 3% 5%

time
15 clocks [75 ns]

16 × 64
64 × 32

32 × 32
32 × 5

softmax (5)

Parallelisation

15

Parallelisation

16

TIMING 23

Behavior of pipeline
interval controlled well

by the reuse factor

Additional latency
introduced by reusing

the multipliers

15-40 clock cycles (75-200 ns)

RESOURCE USAGE 22

Tuning the throughput with reuse factor
will reduce the DSP usage

Foreseen architecture (FPGAs) will handle these networks

Inference-optimized GPUs could break the current paradigm

Looking forward to R&D projects with nVidia & E4 on this

๏Post-training quantisation
can affect accuracy

๏for a given bit
allocation, the loss
minimum at floating-point
precision might not be the
minimum anymore

๏One could specify
quantisation while look for
the minimum

๏Maximize accuracy for
minimal FPGA resources

๏We teamed up with Google to
exploit this strategy in a
QKeras+hls4ml bundle

Quantization-aware Training

17 https://arxiv.org/abs/2006.10159

Ultra Low-latency, Low-area Inference Accelerators using Heterogeneous Deep�antization with QKeras and hls4ml

Figure 9: Relative accuracy (left) and resource utilization (right) as a function of bit width. The right-hand panel shows themet-
rics for the benchmarkmodels: "Baseline" (B), "Baseline Pruned" (BP), "Baseline Heterogeneous" (BH), "QKeras Optimized" (O).
The relative accuracy is evaluated with respect to the �oating-point baseline model. Resources are expressed as a percentage
of the Xilinx VU9P FPGA targeted.

Table 3: Model accuracy, latency and resource utilization for six di�erent models. Resources are listed as percentage of total,
with absolute numbers quoted in parenthesis.

Model Accuracy [%] Latency [ns] Latency [clock cycles] DSP [%] LUT [%] FF [%]
Baseline 74.4 45 9 56.0 (1826) 5.2 (48321) 0.8 (20132)
Baseline pruned 74.8 70 14 7.7 (526) 1.5 (17577) 0.4 (10548)
Baseline heterogeneous 73.2 70 14 1.3 (88) 1.3 (15802) 0.3 (8108)
QKeras 6-bit 74.8 55 11 1.8 (124) 3.4 (39782) 0.3 (8128)
QKeras Optimized 72.3 55 11 1.0 (66) 0.8 (9149) 0.1 (1781)

at lowest resource cost. This model is referred to as the ‘baseline
heterogeneous (BH)’ model.

We then train several models using quantization-aware training
with QKeras based on the baseline model architecture. The �rst,
referred to as "QKeras optimized (QO)", is heterogeneously quan-
tized to a per-layer precision maximizing model accuracy while
minimizing area. It uses a reduced number of neurons per layer: 32,
16 and 16 instead of the original 64, 32 and 32. Additionally, three
layers of full-precision batch normalization is added.

A summary of the per-layer quantizations for the baseline (and
baseline pruned) and optimized model is given in Table 2. Finally,
we train a range of homogeneously quantized QKeras models in
order to quantify the impact of a given bit width on resources and
accuracy.

3.5 Performance
Each model is trained using QKeras version 0.7.4, translated into
�rmware using hls4ml version 0.2.1, and then synthesized with
Vivado HLS (2019.2), targeting a Xilinx Virtex Ultrascale 9+ FPGA
with a clock frequency of 200 MHz. We compare the resource con-
sumption and latency on chip for each model, to the model accuracy.
The resources at disposal on the FPGA are digital signal processors
(DSPs), lookup tables (LUTs), memory (BRAM) and �ip-�ops (FF).

The BRAM is only used as a LUT read-only memory for calculating
the �nal Softmax function and is the same for all models, namely
1.5 units corresponding to a total of 54 Kb. The estimated resource
consumption and latency from logic-synthesis, together with the
model accuracy, are listed in Table 3. A fully parallel implemen-
tation is used, with an "initiation interval" of 1 clock cycle in all
cases. Resource utilization is quoted in percentage of total available
resources, with absolute numbers quoted in parenthesis.

The most resource e�cient model is the QKeras optimized (QO)
model, reducing the DSP usage by ⇠ 98%, LUT usage by ⇠ 80%,
and the FFs by ⇠ 90%. The drop in accuracy is less than 3% despite
using half the number of neurons per layer and an overall lower
precision. The extreme reduction of DSP utilization is especially
interesting as, on the FPGA, DSPs are scarce and usually become
the critical resource for ML applications. DSPs are used for all
multiply-add operations, however, if the precision of the incoming
numbers are much lower than the DSP precision (which, in this
case, is 18 bits) multiply-add operations are moved to LUTs. This
is an advantage, as a representative FPGA for the LHC trigger
system has O(1000) DSPs compared to O(1) million LUTs. If the
bulk of multiplication operations is moved to LUTs, this allows for
deeper and more complex models to be implemented. In our case,
the critical resource reduces from 56% of DSPs for the baseline to

Ultra Low-latency, Low-area Inference Accelerators using Heterogeneous Deep�antization with QKeras and hls4ml

Figure 9: Relative accuracy (left) and resource utilization (right) as a function of bit width. The right-hand panel shows themet-
rics for the benchmarkmodels: "Baseline" (B), "Baseline Pruned" (BP), "Baseline Heterogeneous" (BH), "QKeras Optimized" (O).
The relative accuracy is evaluated with respect to the �oating-point baseline model. Resources are expressed as a percentage
of the Xilinx VU9P FPGA targeted.

Table 3: Model accuracy, latency and resource utilization for six di�erent models. Resources are listed as percentage of total,
with absolute numbers quoted in parenthesis.

Model Accuracy [%] Latency [ns] Latency [clock cycles] DSP [%] LUT [%] FF [%]
Baseline 74.4 45 9 56.0 (1826) 5.2 (48321) 0.8 (20132)
Baseline pruned 74.8 70 14 7.7 (526) 1.5 (17577) 0.4 (10548)
Baseline heterogeneous 73.2 70 14 1.3 (88) 1.3 (15802) 0.3 (8108)
QKeras 6-bit 74.8 55 11 1.8 (124) 3.4 (39782) 0.3 (8128)
QKeras Optimized 72.3 55 11 1.0 (66) 0.8 (9149) 0.1 (1781)

at lowest resource cost. This model is referred to as the ‘baseline
heterogeneous (BH)’ model.

We then train several models using quantization-aware training
with QKeras based on the baseline model architecture. The �rst,
referred to as "QKeras optimized (QO)", is heterogeneously quan-
tized to a per-layer precision maximizing model accuracy while
minimizing area. It uses a reduced number of neurons per layer: 32,
16 and 16 instead of the original 64, 32 and 32. Additionally, three
layers of full-precision batch normalization is added.

A summary of the per-layer quantizations for the baseline (and
baseline pruned) and optimized model is given in Table 2. Finally,
we train a range of homogeneously quantized QKeras models in
order to quantify the impact of a given bit width on resources and
accuracy.

3.5 Performance
Each model is trained using QKeras version 0.7.4, translated into
�rmware using hls4ml version 0.2.1, and then synthesized with
Vivado HLS (2019.2), targeting a Xilinx Virtex Ultrascale 9+ FPGA
with a clock frequency of 200 MHz. We compare the resource con-
sumption and latency on chip for each model, to the model accuracy.
The resources at disposal on the FPGA are digital signal processors
(DSPs), lookup tables (LUTs), memory (BRAM) and �ip-�ops (FF).

The BRAM is only used as a LUT read-only memory for calculating
the �nal Softmax function and is the same for all models, namely
1.5 units corresponding to a total of 54 Kb. The estimated resource
consumption and latency from logic-synthesis, together with the
model accuracy, are listed in Table 3. A fully parallel implemen-
tation is used, with an "initiation interval" of 1 clock cycle in all
cases. Resource utilization is quoted in percentage of total available
resources, with absolute numbers quoted in parenthesis.

The most resource e�cient model is the QKeras optimized (QO)
model, reducing the DSP usage by ⇠ 98%, LUT usage by ⇠ 80%,
and the FFs by ⇠ 90%. The drop in accuracy is less than 3% despite
using half the number of neurons per layer and an overall lower
precision. The extreme reduction of DSP utilization is especially
interesting as, on the FPGA, DSPs are scarce and usually become
the critical resource for ML applications. DSPs are used for all
multiply-add operations, however, if the precision of the incoming
numbers are much lower than the DSP precision (which, in this
case, is 18 bits) multiply-add operations are moved to LUTs. This
is an advantage, as a representative FPGA for the LHC trigger
system has O(1000) DSPs compared to O(1) million LUTs. If the
bulk of multiplication operations is moved to LUTs, this allows for
deeper and more complex models to be implemented. In our case,
the critical resource reduces from 56% of DSPs for the baseline to

https://arxiv.org/abs/2006.10159

๏One can push quantisation
to extremes

๏binary & ternary networks

๏Multiplications can be
replaced by bit
manipulations, saving
resources

๏Can achieve low latencies
at small accuracy cost and
minimal resource
consumption

Extreme Quantization

18

Table 1: Classification performance evaluated on the testing sample of the baseline MNIST and LHC jet classifiers used
as benchmark models in this study: AUC and per-class accuracy.

Class MNIST Class Jet tagging
AUC Accuracy [%] AUC Accuracy [%]

0 0.9997 99.7
g 0.939 891 0.9995 99.8

2 0.9991 99.6 q 0.904 853 0.9993 99.6
4 0.9996 99.6 W 0.946 915 0.9994 99.6
6 0.9992 99.6 Z 0.939 927 0.9996 99.6
8 0.9994 99.4 t 0.958 939 0.9991 99.5

Figure 3: Activation functions used to define the models described in Section 4: binary tanh (top-left), ternary tanh
(top-right), ReLU (bottom-left) and clipped ReLU (bottom-right).

3 Implementing binary and ternary networks in hls4ml

Binary and ternary networks are extreme examples of quantized neural networks [2]. A network is quantized when
its parameters (operations) are represented (performed) with reduced numerical precision. This precision could be
the same across the full network or specific to each component (e.g., for di�erent layers). Quantization reduces the
computing resources of model inference and its level can be tuned to yield little or no loss in model performance. In the
case of binary (ternary) networks, each weight assumes a value of +1 or �1 (+1, 0, or �1). Two- and three-valued
activation functions are used after each layer, acting as discrete versions of the tanh function. As alternatives, we also
investigate a standard ReLU function as well as its clipped version [27], defined as min(ReLU(x), ymax), with ymax being
a positive hyperparameter. In our study, we fix ymax = 1. The four functions are shown in Fig. 3.
In order to convert the models described in Sections 2, we rely on the MLP-related functionalities o�ered by the hls4ml
library, discussed at length in Ref. [2]. In addition to that, we exploit a set of custom implementations [18], specific to
binary and ternary networks, that allow one to speed up the execution of the building-block architecture shown in Fig. 4.
The implementation of these solutions is integrated in recent versions of the hls4ml library, starting with the v0.1.6
tag of the GitHub repository [28]. With respect to the work presented in Ref. [2], this version provides a special support
for large dense layers containing hundreds of nodes as in the models we consider in this study. This functionality will be
described in more detail in a future publication.

5

Binary networks use 1-bit representations for both weights and activations. In this case, the product between two
quantities can be optimized as an extremely lightweight operation. By encoding an arithmetical value of ‘�1’ as ‘0’, the
product can be expressed as an XNOR operation. As described in Table 2, an XNOR filter returns 0 when the two input
values are di�erent and 1 otherwise. For models using ternary weights or greater than 1 bit for activations, the much
larger FPGA logic is always used rather than digital signal processing (arithmetic) blocks (DSPs), whose number is
typically limited.

Table 2: Left: All possible products between A and B with values constrained to ±1. Right: The corresponding
truth-table when the quantities A and B are each encoded with 1 bit, and the XNOR operation is used for the product.

A B A ⇥ B
-1 -1 1
-1 1 -1
1 -1 -1
1 1 1

A B A � B
0 0 1
0 1 0
1 0 0
1 1 1

The binary and ternary tanh activation functions are implemented by testing the sign (in the case of binary tanh) or sign
and magnitude (for ternary tanh) of the input and yielding the corresponding value ±1 or 0 as seen in Fig. 3. A binary or
ternary tanh activation layer preceded by a batch normalization (BN) layer [29] can be further optimized. The BN layer
shifts the output of the dense layers to the range of values in which the activation function is nonlinear, enhancing the
network’s capability of modeling nonlinear responses. The usual BN transformation y for an input x is

y =
x � µ

p
�2 + ✏

� + �, (3)

given the mean µ, variance �2, scale �, and shift � learned during the network training. For a BN followed by a binary
tanh activation, the sign of y is enough to determine a node output value. To avoid calculating the scaling of x using
FPGA DSPs, the four BN parameters are used to compute the value of x at which y flips sign. This calculation is
performed at compilation time, when the model is converted to HLS firmware using hls4ml. Similarly, the two values
of x around which the output of the ternary tanh activation changes are also calculated at compilation time. In the
FPGA, each node output is then simply compared against these precomputed thresholds, outputting the corresponding
±1, or 0. An additional optimization step sets the type of x in the HLS implementation to integer with a bit width
corresponding to the largest integer expected for each binary/ternary layer, found at compilation time. This procedure
further saves FPGA resources.
The binary and ternary layers considered for this work are fully integrated and compatible with the hls4ml package.
While not explored here, the package also supports models mixing binary/ternary layers with higher precision layers for
fully customized networks.

4 Binarization and ternarization strategies

Given a full-precision model, one could follow di�erent strategies to turn it into a binary or ternary model. One could
just replace each full-precision component by the corresponding binary/ternary element, in order to minimize resource
utilization. This might result in a loss of accuracy. As an alternative, one could train a binary/ternary model with
arbitrarily large architecture, in order to match the accuracy obtained at full precision, at a cost of a larger latency and
resource consumption. The ultimate strategy to follow depends on the use case. In this work, we present a few options,
covering these two extremes and intermediate solutions.
In this work, we focus on binary/ternary MLPs. The basic structure for the adopted architectures is shown in Fig. 4.
Each model consists of a sequence of blocks, each composed of a dense, BN, and activation layer. For binary and
ternary tanh, a BN+activation layer sequence can be implemented at small resource cost (see Section 3), which makes
this choice particularly convenient for fast inference on edge devices.
The binarization/ternarization of a given model can be done in di�erent ways, e.g., preserving the model architectures or
its performance. As a consequence, for each benchmark problem we consider seven models:

• Baseline: the three-layer MLP described in Section 2.
• Binarized (BNN): a binary version of the baseline model, built preserving the model architecture (number

of layers and nodes) while applying the following changes: use a binary representation (±1) for the weights;
replace the inner-layer ReLU activation functions with a binary tanh (see Fig. 3); introduce BN layers in

6

Figure 7: Comparison of the resource utilization estimated by the HLS compiler and obtained by the logic synthesis
versus the maximum latency achieved by the design for the BNN and baseline MNIST-classification models. The TNN
model gives similar resource utilization as the BNN and is omitted.

As a final test, we train a larger BNN model consisting of three dense layers with 256 nodes each, as in the study
of Ref. [18], allowing for a direct comparison of our implementation of a binary architecture with what presented
there. The hls4ml implementation of this model yields a total accuracy of 95% for both floating-point and fixed-point
precision, where the latter is fixed to h16, 6i. With an II of 28, we obtain a maximum latency of 0.31 µs with a resource
utilization comparable to that in Ref. [18]. In particular, the deployed model obtained with hls4ml after the logic
synthesis utilizes 0% DSPs, 7% FFs, 23% LUTs, and 16% BRAMs on a Xilinx Virtex Ultrascale 9+ FPGA card.

5.2 LHC jet identification

As a second benchmark example, we consider the LHC jet-tagging problem introduced in Section 2 and study all the
binarization/ternarization strategies described in Section 4. For all models a fixed-point precision of h16, 6i is su�cient
to reproduce the FPP accuracy after quantization. The AUCs and accuracy before and after quantization are reported in
Table 5 for all models, while a comparison of the resource utilization is found in Table 6.
Unlike what is seen for the MNIST digit classification, the simple binarization/ternarization of the baseline model
results in a big accuracy loss. This is partially mitigated by the use of ReLU and clipped ReLU activations. As an
alternative approach, we also consider optimized binary and ternary architectures (best models in Table 5), fixed through
a Bayesian optimization of the network hyperparameters. The result of the Bayesian hyperparameter optimization for
BNN and TNN converges to architectures with about 40 and 4 times more parameters with respect to the baseline
architecture, respectively. With these larger architectures, binary and ternary methods almost match, with a moderate
loss in accuracy. Optimizing the architecture of the binary and ternary models yields comparable precisions, but with a
di�erent resource balance (e.g., DSPs vs. LUTs), o�ering an alternative that might better fit certain use cases.
The results of Tables 5 and 6 confirm that ternary networks generally o�er a better resource vs. accuracy balance than
binary networks, with a minimal (often negligible) additional resource cost and a comparable (sometimes smaller)

11

https://arxiv.org/abs/2003.06308

https://arxiv.org/abs/2003.06308

Fast CNN inference on FPGAs

1

Softmax

Output:
Dense output (n=10)
Softmax

Block 4:
Dense 0 (n=42)
Batch Norm.
ReLU

Flatten (96) Block 3:
Conv 2 (f=24, k=3)
Max Pooling (2,2)
Batch Norm.
ReLU

Block 2:
Conv 1 (f=16, k=3)
Max Pooling (2,2)
Batch Norm.
ReLU

Block 1:
Conv 0 (f=16, k=3)
Max Pooling (2,2)
Batch Norm.
ReLU

Input:
32x32x3

ReLU

Block 5:
Dense 1 (n=64)
Batch Norm.
ReLU

ReLU ReLU ReLU ReLU

Figure 4: The neural network architecture, chosen through a Bayesian optimization over the hyperparameters, for
classifying digits from the SVHN dataset. Each convolutional block consists of a convolutional layer, max pooling,
batch normalization, and ReLU activation. The convolutional layers in the three convolutional blocks use 16, 16, and
24 filters, respectively, and each has a kernel size of 3⇥ 3. The pooling layers have a size of 2⇥ 2. The convolutional
blocks are followed by two fully-connected layers consisting of 42 and 64 neurons, with batch normalization and ReLU
activation. The bias term is removed from all layers except the final output layer.

Table 1: Number of trainable weights, floating-point operations, energy consumption and layer size in bits for each
convolutional or dense layer (not including the activation layers). Batch normalization and pooling layers are not
included as they are negligible in size and energy consumption in comparison. The energy is estimated assuming a 45
nm process using QTOOLS. The total energy and bit size includes all model layers.

Layer name Layer type Input shape Weights MFLOPs Energy [nJ] Bit size
Conv 0 Conv2D (32, 32, 3) 432 0.778 1,795 3,456
Conv 1 Conv2D (15, 15, 16) 2,304 0.779 1,802 18,432
Conv 2 Conv2D (6, 6, 16) 3,456 0.110 262 27,648
Dense 0 Dense (96) 4,032 0.008 26 32,256
Dense 1 Dense (42) 2,688 0.005 17 21,504
Output Dense (64) 65 0.001 4 5,200
Model total 12,858 1.71 3,918 170,816

In our case, this balance is found through a Bayesian optimization over the model hyperparameters using KERAS
TUNER [48]. The first few layers are chosen to be 2D convolutional blocks. Each block consists of a convolutional
layer followed by a max pooling layer, a batch normalization [49] layer, and a rectified linear unit (ReLU) [50, 51]
activation function. Pooling the convolutional layer output before applying the activation function reduces the necessary
operations, but does not impact the model accuracy because monotonic activation functions like ReLU commute
with max pooling (but not average pooling) [52]. Besides speeding up the model training, this choice allows us to
reduce the number of multiplications in a convolutional block at no accuracy cost. As done in other models (e.g.
ResNet [53]), performing the batch normalization before the activation function allows us to maximally exploit the
non-linear properties of the activation function, shifting its input to the region near the function’s non-linearity.

The number of filters and their sizes, together with the type and size of the pooling layers, are free hyperparameters in
the optimization. In our case, we set the optimization range so that the maximum number of loop iterations per layer is
below the unroll limit described in Section 3 in order to achieve the lowest possible latency. Pooling layers are used to
keep the size of the final dense layers small.

The convolutional blocks are followed by a series of fully-connected layers, the amount of layers and their size again
determined through the hyperparameter optimization. A final ten-node dense layer, activated by a softmax function,
returns the probability for a given image to be assigned to each of the ten classes. The result of the Bayesian optimization,
shown in Fig. 4, consists of three convolutional blocks and two dense layers. The convolutional layers in the three
blocks have 16, 16, and 24 filters, respectively, and each has a kernel size of 3 ⇥ 3. The pooling layers have a size
of 2⇥ 2. The two hidden dense layers consist of 42 and 64 neurons, with batch normalization and ReLU activation.
We implemented this model in TENSORFLOW [12], using the KERAS API [13]. To reduce the number of required
operations, the bias term is removed from all layers, except for the final output layer, while keeping batch normalization
on to prevent internal covariate shift [49].

We refer to this model as the Baseline Floating-point (BF) model. The number of floating-point operations (FLOPs)
and weights for each convolutional or dense layer is listed in Table 1 (not including the activation layers). In addition,

6

1

Softmax

Output:
Dense output (n=10)
Softmax

Block 4:
Dense 0 (n=42)
Batch Norm.
ReLU

Flatten (96) Block 3:
Conv 2 (f=24, k=3)
Max Pooling (2,2)
Batch Norm.
ReLU

Block 2:
Conv 1 (f=16, k=3)
Max Pooling (2,2)
Batch Norm.
ReLU

Block 1:
Conv 0 (f=16, k=3)
Max Pooling (2,2)
Batch Norm.
ReLU

Input:
32x32x3

ReLU

Block 5:
Dense 1 (n=64)
Batch Norm.
ReLU

ReLU ReLU ReLU ReLU

Figure 4: The neural network architecture, chosen through a Bayesian optimization over the hyperparameters, for
classifying digits from the SVHN dataset. Each convolutional block consists of a convolutional layer, max pooling,
batch normalization, and ReLU activation. The convolutional layers in the three convolutional blocks use 16, 16, and
24 filters, respectively, and each has a kernel size of 3⇥ 3. The pooling layers have a size of 2⇥ 2. The convolutional
blocks are followed by two fully-connected layers consisting of 42 and 64 neurons, with batch normalization and ReLU
activation. The bias term is removed from all layers except the final output layer.

Table 1: Number of trainable weights, floating-point operations, energy consumption and layer size in bits for each
convolutional or dense layer (not including the activation layers). Batch normalization and pooling layers are not
included as they are negligible in size and energy consumption in comparison. The energy is estimated assuming a 45
nm process using QTOOLS. The total energy and bit size includes all model layers.

Layer name Layer type Input shape Weights MFLOPs Energy [nJ] Bit size
Conv 0 Conv2D (32, 32, 3) 432 0.778 1,795 3,456
Conv 1 Conv2D (15, 15, 16) 2,304 0.779 1,802 18,432
Conv 2 Conv2D (6, 6, 16) 3,456 0.110 262 27,648
Dense 0 Dense (96) 4,032 0.008 26 32,256
Dense 1 Dense (42) 2,688 0.005 17 21,504
Output Dense (64) 65 0.001 4 5,200
Model total 12,858 1.71 3,918 170,816

In our case, this balance is found through a Bayesian optimization over the model hyperparameters using KERAS
TUNER [48]. The first few layers are chosen to be 2D convolutional blocks. Each block consists of a convolutional
layer followed by a max pooling layer, a batch normalization [49] layer, and a rectified linear unit (ReLU) [50, 51]
activation function. Pooling the convolutional layer output before applying the activation function reduces the necessary
operations, but does not impact the model accuracy because monotonic activation functions like ReLU commute
with max pooling (but not average pooling) [52]. Besides speeding up the model training, this choice allows us to
reduce the number of multiplications in a convolutional block at no accuracy cost. As done in other models (e.g.
ResNet [53]), performing the batch normalization before the activation function allows us to maximally exploit the
non-linear properties of the activation function, shifting its input to the region near the function’s non-linearity.

The number of filters and their sizes, together with the type and size of the pooling layers, are free hyperparameters in
the optimization. In our case, we set the optimization range so that the maximum number of loop iterations per layer is
below the unroll limit described in Section 3 in order to achieve the lowest possible latency. Pooling layers are used to
keep the size of the final dense layers small.

The convolutional blocks are followed by a series of fully-connected layers, the amount of layers and their size again
determined through the hyperparameter optimization. A final ten-node dense layer, activated by a softmax function,
returns the probability for a given image to be assigned to each of the ten classes. The result of the Bayesian optimization,
shown in Fig. 4, consists of three convolutional blocks and two dense layers. The convolutional layers in the three
blocks have 16, 16, and 24 filters, respectively, and each has a kernel size of 3 ⇥ 3. The pooling layers have a size
of 2⇥ 2. The two hidden dense layers consist of 42 and 64 neurons, with batch normalization and ReLU activation.
We implemented this model in TENSORFLOW [12], using the KERAS API [13]. To reduce the number of required
operations, the bias term is removed from all layers, except for the final output layer, while keeping batch normalization
on to prevent internal covariate shift [49].

We refer to this model as the Baseline Floating-point (BF) model. The number of floating-point operations (FLOPs)
and weights for each convolutional or dense layer is listed in Table 1 (not including the activation layers). In addition,

6

)-*1)-*,),*1 ,*, ,*1 -*, -*1

Saecdpo

,

.,,

0,,

2,,

4,,

-,,,

-.,,

-0,,

-2,,

J
qi

^a
n�k

b�S
ae
cd
po

?kjr�,
?kjr�-
?kjr�.
@ajoa�,
@ajoa�-
Kqplqp�`ajoa

>B�ik`ah

)-*1)-*,),*1 ,*, ,*1 -*, -*1

Saecdpo

,

-,,,

.,,,

/,,,

0,,,

1,,,

2,,,

3,,,

J
qi

^a
n�k

b�S
ae
cd
po

?kjr�,
?kjr�-
?kjr�.
@ajoa�,
@ajoa�-
Kqplqp�`ajoa

>L�ik`ah

Figure 5: The weights per layer for the the Baseline Floating-point (BF) model (left) and the Baseline Pruned (BP)
model (right). The BP model is derived by starting from the BF model and repeating the training while applying a
pruning procedure with a target sparsity of 50% for each layer.

an estimate of the per-layer energy consumption and the layer size in bits is quoted. These estimates are obtained
using QTOOLS [16], a library for estimating model size and energy consumption, assuming a 45 nm process [54].
Despite the first dense layer having the most weights, the number of FLOPs and the energy consumption is significantly
higher in the convolutional layers due to the much larger number of multiply-accumulate operations performed. The
per-layer summaries does not include results for batch normalization or pooling layers, as the contribution from these
are negligible in comparison. The total model energy and bit size, however, includes contributions from all layers of the
model.

The training is performed minimizing the categorical crossentropy loss [55] using the Adam optimizer [56]. The optimal
learning rate is obtained using the hyperparameter optimization described above, found to be 0.003, and is set as the
starting learning rate. If there is no improvement in the loss for five epochs, the learning rate is reduced by 90% until a
minimum learning rate of 10�6 is reached. The batch size is 1,024 and the training takes at most 100 epochs. Early
stopping is enabled when no improvement in the validation loss is observed across ten epochs.

6 Compression by pruning

Weight pruning is an established strategy to compress a neural network and consequently reducing its resource utilization.
One strategy, magnitude-based pruning, consists of eliminating redundant weights in the weight tensors by setting the
value of the smallest weights in a tensor to zero [57–61, 1]. All zero-weight multiplications are omitted by the HLS
library when translating the network into firmware, consequently saving significant FPGA resources.

Pruning can be done either (1) after training, setting to zero all weights below some fixed threshold or below some
percentile of the weight distribution, or (2) during training, where small values are set to zero based on their magnitude
in an iterative way. Post-training pruning is more effective when the weights are encouraged to assume small values
through L1 regularization in the loss function during training and then setting to zero these weights once the training is
complete. This process can be repeated until the target sparsity is achieved. Previous applications of this procedure in
the context of hls4ml development are discussed in Ref. [1].

While applying post-training pruning in a cycle of training iterations allows the network to adapt to the progressive
reduction of available weights, in-training pruning provides even more adaptive power, generally resulting in better
performance. In this work, we focus on in-training pruning.

Pruning is enforced using the TENSORFLOW pruning API, a KERAS-based interface consisting of a simple drop-in
replacement of KERAS layers. A sparsity of 50% is targeted, meaning only 50% of the weights are retained in the pruned
layer and the remaining ones are set to zero. Before pruning, the weights of each layer are initialized to the weights of

7

PRUNING

Figure 8: Relation between accuracy and model bit size for an ensemble of trial models, resulting from a Bayesian
optimization performed over layer quantizers and number of filters, using AUTOQKERAS. Each figure corresponds
to a given quantization and filter configuration tested for the first (top left), second (top right) and third (bottom)
convolutional layer. The size of each marker corresponds to the number of filters tested for that layer, and the color to
the quantization (binary, ternary or mantissa quantization). The red arrow indicates the model yielding the best accuracy
versus size trade-off.

preserve the model accuracy. How much model accuracy reduction can be tolerated is ultimately an application-specific
question.

We use PTQ to generate a range of compressed models, further discussed in Section 8, scanning bit widths from 16 to 1,
with 6 integer bits. For simplicity, we assume the same precision for all model layers.

7.2 Quantization-aware training

QAT [64] is an efficient procedure to limit accuracy loss while reducing the numerical precision of the network
components. Here, quantized weights and biases are used in the training during the forward pass, while full precision is
used in the backward pass in order to facilitate the drift towards the optimal point in the loss minimization (known as
the straight-through estimator) [65]. The hls4ml library supports QAT through its interface to QKERAS [16].

We train a range of quantized QKERAS models using the same architecture as in Fig. 4, imposing a common bit width
across the model. We scan the bit width from 16 to 3, as well as train a ternary and a binary quantized model. We refer
to these models as QKeras (Q) models. In addition, we train pruned versions of these models, targeting a sparsity of 50
%. These are referred to as QKeras Pruned (QP) models.

Only convolutional layers, dense layers, and activation functions are quantized. The batch normalization layers are
not quantized during training, as support for the QKERAS quantized equivalent of the KERAS batch normalization
layer is not supported in hls4ml at the time of this writing. Support for this is planned for a future version of hls4ml.

10

QUANTIZATION

Fast CNN inference on FPGAs

however, pruning negatively impacts the model performance. The accuracy is constant down to four bit precision, with
marginal accuracy loss down to three bits. Statistical uncertainty due to the choice of training set is also small: less
than 1%, for bit widths down to three. Using ternary quantization, the model accuracy drops to 87–88% and has a
higher statistical uncertainty. When quantizing down to binary precision, the model accuracy is reduced to 72% for
the unpruned model and 64% for the pruned model. The significant reduction in accuracy due to pruning for binary
networks is due to too little information being available in the network to accurately classify unseen data. A large
spread in model accuracy for the binary network across the 10 folds is observed, indicating that the model is less robust
to fluctuations in the training dataset. As demonstrated in Ref. [8], this can be mitigated by increasing the model size
(more filters and neurons per layer). The AQ models obtain a slightly lower accuracy than the baselines, but uses, as
will be demonstrated in Section 8, significantly fewer resources.

8 FPGA porting

The models described above are translated into firmware using hls4ml version 0.5.0, and then synthesized with Vivado
HLS 2020.1, targeting a Xilinx Virtex UltraScale+ VU9P (xcvu9pflgb2104-2L) FPGA with a clock frequency of
200 MHz. For the QKERAS quantized models, the sign is not accounted for when setting the bit width per layer during
QAT, so layers quantized with total bit width b in QKERAS are therefore implemented as fixed-point numbers with total
bit width b+ 1 in hls4ml. We compare the model accuracy, latency, and on-chip resource consumption. The accuracy
after translating the model into C/C++ code with hls4ml (solid line) for the different models, is shown in Figure 12
and compared to the accuracy evaluated using KERAS. No pre-synthesis results are shown for the BF and BP models,
as these are quantized during synthesis. Nearly perfect agreement in evaluated accuracy before and after synthesis is
observed for the Q and QP models and the translation into fixed-point precision is lossless.

. 0 2 4 -, -. -0 -2
>ep�se`pd

,*2

,*4

-*,

-*.
=_

_q
n]
_u

Gan]o
dho0ih

>B
>L
M
ML
=M
=ML

=M =ML

Figure 12: Model accuracy as a function of bit width for the Baseline Floating-point (BF), Baseline Pruned (BP),
QKeras (Q) and QKeras Pruned (QP) models. The heterogeneously quantized models AutoQ (AQ) and AutoQ Pruned
(AQP) are shown in the sidebar.

While the accuracy of the Q and QP models trained via QAT remains high down to a bit width of three, the accuracy
of the PTQ models fall off sharply with decreasing bit width and have almost no discrimination power for bit widths
smaller than 14. PTQ has a higher negative impact on the unpruned models, indicating that rounding errors are the
biggest cause for accuracy degradation (there are no rounding errors for zeroes, which comprise 50% of the pruned
model weights). The heterogeneously quantized models AQ and AQP have slightly lower accuracy than the baseline
h16, 6i model.

We then study the resource consumption and latency of the different models after logic-synthesis. The resources
available on the FPGA are digital signal processors (DSPs), lookup tables (LUTs), BRAMs, and flip-flops (FFs). In
Fig. 13, the resource consumption relative to the total available resources is shown. Here, a fully parallel implementation

13

significantly fewer LUT resources than the unpruned equivalent. The point where most multiplications are moved from
DSPs to LUTs is marked by a steep drop in DSP consumption starting at a bit width of 10.

The heterogeneously quantized models, AQ and AQP, consume very little FPGA resources, comparable to that of the
Q and QP models quantized to a bit width of three. All models use very few FFs, below 4% of the total budget. The
BRAM consumption is also small and below 4% for all models. For the Q and QP models, the same amount of BRAMs
is used down to a bit width of four, and then is further reduced. For the BF and BP models, BRAM consumption falls
off steadily with bit width. Some dependence on bit width can be traced back to how operations are mapped to the
appropriate resources through internal optimizations in HLS. Depending on the length and the bit width of the FIFO
buffers used for the convolutional layer sliding window, HLS will decide whether to place the operation on BRAMs or
LUTs and migration between the two is expected. Most of the BRAMs, are spent on channels, the output of different
layers.

The latency and II for all models is shown in Figure 14. A total latency of about 5µs is observed for all models, similar
to the II. The latency is independent of bit width when running at a fixed clock period. We leave it for future studies to
explore running the board at higher clock frequencies.

. 0 2 4 -, -. -0 -2
>ep�se`pd

-,.0

-,/.

-,0,

-,04

-,12

-,20

H]
pa
j_
u�
$_
hk
_g
�_
u_
ha
o%

>B
>L
M
ML
=M
=ML

1*-.

1*.,

1*.4

H]
pa
j_
u�
$ǃ
o%

=M =ML

Figure 14: The model latency (left) and initiation interval (right) as a function of bit width for the Baseline Floating-point
(BF), Baseline Pruned (BP), QKeras (Q), and QKeras Pruned (QP) models. The heterogeneously quantized AutoQ
(AQ) and AutoQ Pruned (AQP) models are displayed in the right sub-plot.

A summary of the accuracy, resource consumption and latency for the Baseline Floating-point (BF) and Baseline
Pruned (BP) models quantized to a bit width of 14, the QKeras (Q) and QKeras Pruned (QP) models quantized to a
bit width of 7 and the heterogeneously quantized AutoQ (AQ) and AutoQ Pruned (AQP) models, is shown in Table 3.
Resource utilization is quoted as a fraction of the total available resources on the FPGA, and the absolute number of
resources used is quoted in parenthesis. The accuracy of the post-training quantized BF and BP models drops below
50% for bit widths narrower than 14 and can not be used for inference. The QAT models, Q and QP, quantized to a
bit width of 7 maintain a high accuracy despite using only a fraction of the available FPGA resources. The models
using the fewest resources are the AQ and AQP heterogeneously quantized models, reducing the DSP consumption by
99% while maintaining a relatively high accuracy. Finding the best trade-off between model size and accuracy in an
application-specific way can be done using AUTOQKERAS, as demonstrated in Sec. 7.

To further reduce the resource consumption, the reuse factor R can be increased. This comes at the cost of higher
latency. The model latency and resource consumption as a function of bit width and for different reuse factors for the
QP models are shown in Figure 15. The latency and II increase with R, while the DSP consumption goes down. The
LUT consumption is minimally affected by the reuse factor, consistent with the results reported in Ref. [1]. The BRAM
consumption is the same for all reuse factors, around 3%, and therefore not plotted. The corresponding study for the BF,
BP and Q models can be found in Appendix A.

15

Execution time reduced to 5 μsec to basically no
accuracy loss down to 6 bits

๏Slightly simplified version of
GarNet

๏Double message passing
(vertices <-> aggregators) can
be condensed in FPGA-friendly
math

GraphNets on FPGAs

21

https://arxiv.org/abs/2008.03601

Figure 1: Processing flow of the modified GarNet algorithm: (a) The input features (gj
v) of each vertex are

processed by a linear network, that returns a new set of features (f i
v) and its distance from the S aggregators

(dav). (b) A graph is built in the learned space, using the dav distances. (c) A message is gathered by each
aggregator, as a weighted sum across the vertices of f

i
v, with Wav = exp(≠d

2
av) as weights. (d) A message is

from each aggregator (f̃ i
av) is passed back to each vertex, with the same Wav weight. (e) The aggregated

outputs of each vertex are given as input to a neural network, which returns the learned representation.

with linear activation functions, so one can write them as linear transformations

f
i
v =

Finÿ

j=1
w

i
jg

j
v + b

i (1)

dav =
Finÿ

j=1
–ajg

j
v + —a , (2)

5

where (wi
j , b

i) and (–aj , —a) are the kernels and biases of the encoder and distance calculator networks,
respectively.

• Aggregation (Fig. 1c): The learned representation vectors f
i
v of the vertices are weighted by a

potential function Wav = exp(≠d
2
av) and averaged across the vertices. In other words, the ith

averaged feature h
i
a of aggregator a is written as

h
i
a = 1

Vmax

Vÿ

v=1
Wavf

i
v. (3)

The factor Vmax in the denominator is the maximum possible value for the vertex multiplicity V

(as V may have a di�erent value for each input sample). Through this normalization by a common
factor, the information about the size of the sample (cardinality of V) is e�ectively encoded into h

i
a.

• Output transformation (Figs. 1d and 1e): The aggregated features are sent back to the vertices
using the same weights as

f̃
i
av = Wavh

i
a, (4)

and then transformed by a single-layer decoder network with linear activation function into the final
output representation g

Õk
v (k = 1, . . . , Fout). With the kernel u and bias c of the decoder, this is

written as

g
Õk
v =

FLRÿ

i=1

Sÿ

a=1
u

k
iaf̃

i
av + c

k
. (5)

This simplified algorithm di�ers from the original design in the following ways. First, only the mean over
vertices is computed at the aggregators, whereas the maximum is also used in the original design. In other
words, the aggregators in the original design have

h
Õi
a = max

v
Wavf

i
v (6)

as an additional set of features. Secondly, as already noted, the input feature vector is not used as a part of
the input to the decoder network. In the original GarNet design, the decoder is expressed as

g
Õk
v =

FLRÿ

i=1

Sÿ

a=1
Wav

!
u

k
iah

i
a + u

Õk
iah

Õi
a

"
+

Finÿ

i=1
w

Õk
i g

i
v + c

k
, (7)

with additional sets of kernel weights u
Õ and w

Õ. Finally, the original design applies a nonlinear (tanh)
activation function to the decoder, while the simplified version uses a linear activation. In the specific case
considered in the next section, these simplifications result in negligible degradation of the network performance.
In the remainder of this paper, this simplified version of the algorithm is referred to as GarNet.
It is worth pointing out that while the GarNet layer uses only linear activation functions for all of the internal
neural networks, it can still learn nonlinear functions through the non-linearity of the potential function Wav.
On the other hand, having no nonlinear activation functions allows a compact FPGA firmware implementation
of the layer, consisting mostly of multiplications and additions. The only substantial computation comes
with the exponential function, whose values can be pre-computed with su�cient granularity and stored.
An FPGA firmware implementation of the GarNet layer using Vivado [30] HLS is integrated into the hls4ml

library. The HLS source code is written in C++ and is provided as a template, from which an HLS function
for a GarNet layer can be instantiated, specifying the configurable parameters such as S, FLR, and Fout. In
the following, we provide some noteworthy details of the implementation.
In the HLS source code of GarNet, all quantities appearing in the computation are expressed as either
integers or fixed-point numbers with fractional precision of at least eight bits. In particular, the distance
parameter dav is represented with three integer bits, eight fractional bits, and one sign bit. During the layer
computation, dav is reinterpreted as a 12-bit unsigned integer, which is used to retrieve the corresponding
pre-computed value of Wav from a table with 4,096 entries.
The processing flow in Eqs. (1) to (5) is compactified in the hls4ml implementation by exploiting the linearity
of the encoder, average aggregation, and the decoder. Equations (1), (3), and (5) can be combined into

g
Õk
v =

Sÿ

a=1
Wav

Q

a
Finÿ

j=1
w̃

k
jaG

j
a + b̃

k
aLa

R

b + c
k
, (8)

6where

w̃
k
ja =

FLRÿ

i=1
u

k
iaw

i
j , b̃

k
a =

FLRÿ

i=1
u

k
iab

i
, G

j
a = 1

Vmax

Vÿ

v=1
Wavg

j
v, and La = 1

Vmax

Vÿ

v=1
Wav. (9)

In particular, the kernel and bias tensors of the encoder and decoder are contracted into w̃ and b̃ at logic
synthesis time, resulting in fewer steps to arrive at the output from the input.
With this simplification, the input data from each sample are encoded into Wav, G

j
a, and La. Therefore, a

new sample can be processed as soon as the three quantities from the previous sample are computed. In
other words, the II of the overall GarNet layer depends on the number of clock cycles needed to compute
the three quantities. Furthermore, G

j
a and La can be derived trivially from Wav, making the latency of the

computation of the latter the critical determinant of the throughput of the algorithm.
The computation of Wav is performed independently on each vertex, and is therefore parallelizable across the
vertices. In a fully parallelized implementation, there would be Vmax logic units (one unit per vertex) operated
simultaneously. However, with V typically as large as O(102) or greater, this configuration would consume
too much of the FPGA resources and would not fit on a single chip. Therefore, the hls4ml implementation
of GarNet allows a partial parallelization of the algorithm controlled by a parameter called the reuse factor

(Rreuse). For Rreuse > 1, the logic unit to compute Wav is cloned Vmax/Rreuse times, such that each unit is
reused serially up to Rreuse times. This serial reuse is fully pipelined with the local II of one clock cycle. The
latency TW for computing Wav for all vertices is therefore given by

TW = T
0
W + Rreuse, (10)

where T
0
W ≥ 20 is the number of clock cycles needed to compute Wav for one vertex. The value of T

0
W

depends on the numerical precision of the fixed-point numbers in the computation.
Finally, the kernel and bias of the encoder and the kernel of the decoder can be quantized, such that each
element takes only values ≠1, 0, or 1 (ternary quantization) [31]. In the quantized version of the algorithm,
contracted kernel and bias w̃ and b̃ have elements that are O(1) integers. Multiplication of small integers
with fixed-point numbers can be performed in FPGAs using LUTs rather than DSPs, which are usually the
more scarce resource. Multiplications with LUTs also proceed faster than those with DSPs.

5 Case study: particle identification and energy regression in an imaging
calorimeter

As a case study, the hls4ml implementation of GarNet is applied to a representative task for the LHC L1T,
namely reconstructing electrons and pions in a simulated 3D imaging calorimeter. In the following, we first
describe the dataset used for the study, then define the task and the architectures of the ML models, and
present the inference performance of the models and the resource usage of the synthesized firmware.

5.1 Dataset

The calorimeter is a multi-layered full-absorption detector with a geometry similar to the one described in
Ref. [15]. The detector is made entirely of tungsten, which is considered as both an absorber and a sensitive
material, and no noise or threshold e�ects in the readout electronics are simulated. While this homogeneous
calorimeter design is not a faithful representation of a modern sampling calorimeter, this simplification allows
us to evaluate the performance of the ML models decoupled from detector e�ects.
The calorimeter extends 36 cm in x and y and has a total depth in z of 2 m, corresponding to approximately
20 nuclear interaction lengths and 170 radiation lengths. The coordinate origin is placed at the center of the
front face of the calorimeter. The calorimeter is segmented into 50 layers along z, with each layer divided into
small square cells in the x-y plane, forming a three-dimensional imaging detector. Cells are oriented so their
sides are parallel to the x and y axes. Tiling of the cells in each layer is uniform except for in one quadrant,
where the cell sides are half as long as those in the other area. The aim of the tiling is to incorporate the
irregularity of the geometry of a real-life particle physics calorimeter. The quadrant with smaller cells and
the remainder of the layer are respectively called the high granularity (HG) and low granularity (LG) regions.
The first 25 layers in z correspond to the electromagnetic calorimeter, with a layer thickness of 1 cm and
cell dimensions of 2.25 cm ◊ 2.25 cm in the HG region (4.5 cm ◊ 4.5 cm in LG). The remaining 25 layers
correspond to the hadron calorimeter, with a layer thickness of 7 cm and cell dimensions of 3 cm ◊ 3 cm in

7

where (wi
j , b

i) and (–aj , —a) are the kernels and biases of the encoder and distance calculator networks,
respectively.

• Aggregation (Fig. 1c): The learned representation vectors f
i
v of the vertices are weighted by a

potential function Wav = exp(≠d
2
av) and averaged across the vertices. In other words, the ith

averaged feature h
i
a of aggregator a is written as

h
i
a = 1

Vmax

Vÿ

v=1
Wavf

i
v. (3)

The factor Vmax in the denominator is the maximum possible value for the vertex multiplicity V

(as V may have a di�erent value for each input sample). Through this normalization by a common
factor, the information about the size of the sample (cardinality of V) is e�ectively encoded into h

i
a.

• Output transformation (Figs. 1d and 1e): The aggregated features are sent back to the vertices
using the same weights as

f̃
i
av = Wavh

i
a, (4)

and then transformed by a single-layer decoder network with linear activation function into the final
output representation g

Õk
v (k = 1, . . . , Fout). With the kernel u and bias c of the decoder, this is

written as

g
Õk
v =

FLRÿ

i=1

Sÿ

a=1
u

k
iaf̃

i
av + c

k
. (5)

This simplified algorithm di�ers from the original design in the following ways. First, only the mean over
vertices is computed at the aggregators, whereas the maximum is also used in the original design. In other
words, the aggregators in the original design have

h
Õi
a = max

v
Wavf

i
v (6)

as an additional set of features. Secondly, as already noted, the input feature vector is not used as a part of
the input to the decoder network. In the original GarNet design, the decoder is expressed as

g
Õk
v =

FLRÿ

i=1

Sÿ

a=1
Wav

!
u

k
iah

i
a + u

Õk
iah

Õi
a

"
+

Finÿ

i=1
w

Õk
i g

i
v + c

k
, (7)

with additional sets of kernel weights u
Õ and w

Õ. Finally, the original design applies a nonlinear (tanh)
activation function to the decoder, while the simplified version uses a linear activation. In the specific case
considered in the next section, these simplifications result in negligible degradation of the network performance.
In the remainder of this paper, this simplified version of the algorithm is referred to as GarNet.
It is worth pointing out that while the GarNet layer uses only linear activation functions for all of the internal
neural networks, it can still learn nonlinear functions through the non-linearity of the potential function Wav.
On the other hand, having no nonlinear activation functions allows a compact FPGA firmware implementation
of the layer, consisting mostly of multiplications and additions. The only substantial computation comes
with the exponential function, whose values can be pre-computed with su�cient granularity and stored.
An FPGA firmware implementation of the GarNet layer using Vivado [30] HLS is integrated into the hls4ml

library. The HLS source code is written in C++ and is provided as a template, from which an HLS function
for a GarNet layer can be instantiated, specifying the configurable parameters such as S, FLR, and Fout. In
the following, we provide some noteworthy details of the implementation.
In the HLS source code of GarNet, all quantities appearing in the computation are expressed as either
integers or fixed-point numbers with fractional precision of at least eight bits. In particular, the distance
parameter dav is represented with three integer bits, eight fractional bits, and one sign bit. During the layer
computation, dav is reinterpreted as a 12-bit unsigned integer, which is used to retrieve the corresponding
pre-computed value of Wav from a table with 4,096 entries.
The processing flow in Eqs. (1) to (5) is compactified in the hls4ml implementation by exploiting the linearity
of the encoder, average aggregation, and the decoder. Equations (1), (3), and (5) can be combined into

g
Õk
v =

Sÿ

a=1
Wav

Q

a
Finÿ

j=1
w̃

k
jaG

j
a + b̃

k
aLa

R

b + c
k
, (8)

6

๏Non-linearity in distance
weighting

https://arxiv.org/abs/2008.03601

GraphNets on FPGAs

22 https://arxiv.org/abs/2008.03601

The classification performance is given in terms of receiver operating characteristic (ROC) curves that trace
the electron identification e�ciency (true positive fraction) and pion rejection e�ciency (true negative fraction)
for di�erent thresholds of the classifiers. The two GarNet-based models perform similarly and better than
the cut-based reference in terms of the electron identification e�ciency for a given pion rejection e�ciency. A
detailed comparison of the four sets of results from the GarNet-based models in the inset reveals that the
continuous model performs slightly better than the quantized model, and that the di�erence between the
Keras and HLS implementations is smaller for the quantized model.
The regression performance is given in terms of the response (Epred/Etrue). Distributions of the response
are summarized in 10 GeV bins of Etrue, separately for the continuous model, quantized model, and the
weight-based reference. In each summary, the horizontal line in the box corresponds to the median of the
distribution, the top and bottom of the box to the upper and lower quartiles, and the upper and lower ends
of the whiskers to the 95th and 5th percentiles. The GarNet-based models exhibit narrower spreads of the
response distributions in most of the bins, with the continuous model again performing slightly better than
the quantized model.

Figure 4: Classification (left) and regression (right) inference performance of the continuous and quantized
GarNet-based models and the reference algorithms. Results from the Keras and HLS implementations are
shown for the GarNet-based models. The classification performance is quantified with a ROC curve of
electron identification e�ciency versus pion rejection e�ciency. The inset in the left graph shows a close-up
view of the e�ciency range 0.90–0.96 for both axes. The regression performance is quantified as the response
(Epred/Etrue) in 10 GeV bins of Etrue. The horizontal line in the box corresponds to the median of the
distribution, the top and bottom of the box to the upper and lower quartiles, and the upper and lower ends
of the whiskers to the 95th and 5th percentiles.

The di�erences between the Keras and HLS implementations are due to the numerical precision in the
computation. While the former represents all fractional numbers in 32-bit floating-point numbers, the latter
employs fixed-point numbers with bit widths of at most 18. Consequently, for the quantized model, where
the encoder and decoder of the GarNet layers employ integer weights for inference, the di�erence between
the two implementations are smaller.
For both subtasks, the GarNet-based models generally outperform the reference algorithms. The reference
algorithm has narrower spread of the response in some energy bins for the regression subtask. However, it is
important to note that the weights and biases appearing in Eq. (14) are optimized for a specific pileup profile,
while in a real particle collider environment, pileup flux changes dynamically even on the timescale of a few
hours. In contrast, algorithms based on inference of properties of individual hits, such as the GarNet-based
models presented in this study, are expected to be able to identify hits due to pileup even under di�erent
pileup environments and thus to have a stable inference performance with respect to change in pileup flux.
Since a detailed evaluation of application-specific performance of GarNet is not within the scope of this
work, we leave this and other possible improvements to the model architecture and training to future studies.

11

To verify that GarNet can infer relations between individual vertices without edges E in the input, the
following test is performed. Using the two events shown in Fig. 3, the energy of each hit in the clusters is
increased one at a time by 10%, and the inference with the continuous model is performed for each perturbed
event. If the model has learned to perfectly distinguish the primary particle from pileup at the vertex level, a
small change in the energy of a hit from pileup should result in no change in the predicted particle energy.
In Fig. 3b, each hit in the cluster is colored by the ratio of the change of predicted particle energy and the
amount of perturbation (�Epred/�h). While some hits in Fig. 3a with fprim = 0 appear with �Epred/�h > 0,
a general correspondence between fprim and �Epred/�h is observed. The occurrence of �Epred/�h > 1 is
expected, given the extrapolation required to predict the full particle energy from the energy of the hits
included in the cluster. With this test, we are able to probe how the GarNet-based model is learning the
structure of the graph.

5.4 Model synthesis and performance

The latency, II, and resource usage of the FPGA firmware synthesized from the HLS implementations
are summarized in Table. 1. Vitis Core Development Kit 2019.2 [47] is used for synthesis, with a Xilinx
Kintex UltraScale FPGA (part number xcku115-flvb2104-2-i) as the target device and a clock frequency
of 200 MHz. The reported resource usage numbers reflect the synthesis estimates from Vivado HLS. The
latency and II reported here are the maximum values for samples with full Vmax vertices; the actual HLS
implementation allows early termination of the serial reuse of the vertex-processing logic unit for samples
with fewer vertices. The area under the ROC curve (AUC) and overall response root mean square (RMS) are
used to summarize the performance.

Table 1: Summary of the latency, II, FPGA resource usage metrics, and inference accuracy metrics of the
synthesized firmware. The reported resource usage numbers reflect the synthesis estimates from Vivado
HLS. The target FPGA is a Xilinx Kintex UltraScale FPGA (part number xcku115-flvb2104-2-i), which
has 5,520 DSPs, 663,360 LUTs, 1,326,720 FFs, and 77.8 Mb of BRAM [48]. The utilized percentage of the
targeted FPGA resources are denoted in the square brackets.

Model Vmax Rreuse
Latency Interval DSP (103) LUT (103) FF (103) BRAM (Mb) ROC Response
(cycles) (cycles) AUC RMS

Continuous 128 32 155 55 3.1 [56%] 57 [9%] 39 [2.9%] 1.8 [2.3%] 0.98 0.23
Quantized 128 32 148 50 1.6 [29%] 70 [11%] 41 [3.1%] 1.9 [2.4%] 0.98 0.24
Quantized 64 16 99 34 1.6 [29%] 63 [9%] 38 [2.9%] 1.8 [2.3%] 0.96 0.24
Quantized 32 8 75 26 1.4 [25%] 52 [8%] 33 [2.5%] 1.8 [2.3%] 0.86 0.37
Quantized 16 4 63 22 1.5 [27%] 57 [9%] 37 [2.8%] 1.8 [2.3%] 0.64 0.36

Comparing the continuous and quantized models with Vmax = 128, the former has a longer latency and II and
consumes substantially more DSPs. On the other hand, the quantized model uses more LUTs, mainly for the
multiplications in the GarNet encoders and decoders, as discussed in Section 4. However, it is known that
the expected LUT usage tend to be overestimated in Vivado HLS, while the expected DSP usage tends to be
accurate [8, 2]. The DSP usage of 3.1 ◊ 103 for the continuous model is well within the limit of the target
device, but is more than what is available on a single die slice (2.8 ◊ 103) [48]. The quantized model fits in
one slice in all metrics. Given the small di�erence in the inference performance between the two models, it is
clear that the quantized model is advantageous for this specific case study.
The latency of the synthesized quantized model at 148 clock periods, corresponding to 740 ns, satisfies the
LHC L1T requirement of O(1) µs execution. However, the II of 50 clock periods (250 ns) implies that the
logic must be time-multiplexed tenfold to be able to process a single cluster per LHC beam crossing period of
25 ns. With O(100) or more clusters expected per beam crossing in the collision environment of HL-LHC, the
throughput of the synthesized firmware is therefore inadequate for a reasonably sized L1T calorimeter system
with O(100) FPGAs, and requires down-scoping or implementation improvements.
The simplest down-scoping measure is to reduce the size of the input. This is e�ective because the most
prominent factor driving both the latency and the II of the firmware is Rreuse (see Eq. (10)), which in turn is
determined by Vmax to be able to fit the logic in a single chip. To test how short the II can be made while
retaining a reasonable inference performance, additional models with Vmax = 64, 32, and 16 are trained and
synthesized into FPGA firmware. Clusters with more hits than Vmax are truncated by discarding the lowest
energy hits. The fraction of truncated clusters for the three Vmax values are 27%, 85%, and 99%, respectively.
The results of synthesis of the additional models are given in the last three rows of Table 1. The values of
FPGA resource usage metrics are similar in all quantized models because the ratio Vmax/Rreuse is kept at 4.

12

of hits to consider smaller clusters, as explored later. In fact, 0.2% of the events resulted in clusters with more
than 128 hits, for which the lowest energy hits were discarded from the dataset. Each hit is represented by
four numbers, corresponding to the hit coordinates, given in x, y, and z, and energy. The x and y coordinates
are relative to the seed cell. The dataset consists of 500,000 samples, split evenly and randomly into e≠ and
fi

± events, stored as NumPy [35] arrays in HDF5 format [36]. The dataset together with the ground truth
information is available on the Zenodo platform [37].

Figure 3: Examples of electron (left) and pion (right) events. Values in parentheses in the graph titles are
the respective energy depositions contained in the cluster around the seed hit. Points represent hits in the
detector, with their coordinates at the center of the corresponding detector cells and the size of the markers
proportional to the square root of the hit energy. Opaque points are within the cluster, while the translucent
ones are not. In (a), the point color scale from blue to red corresponds to the primary fraction (see Section 5.1
for definition). In (b), the color scale from blue to green corresponds to �Epred/�h, which is an indication of
the importance the neural network model places to individual hits for energy regression. See Section 5.3 for
details.

5.2 Task and model architecture

The task in this study is to identify the nature of the primary particle and to simultaneously predict its energy,
given the hits in the cluster. The ability to reliably identify the particle type and estimate its energy at the
cluster level in a local calorimeter trigger system greatly enhances the e�cacy of high-level algorithms, such as
particle-flow reconstruction [38–40], downstream in the L1T system. However, because of the distortion of the
energy deposition pattern in the cluster due to pileup, particle identification based on collective properties of
the hits, such as the depth of the energy center of mass, can achieve only modest accuracy. Furthermore, only
half of the pion events have 95% of the energy deposition from the pion contained in the cluster, requiring
substantial extrapolation in the energy prediction. This task is thus both practically relevant and su�ciently
nontrivial as a test bench of a GarNet-based ML model.
The architecture of the model is as follows. First, the input data represented by a two-dimensional array
of Vmax ◊ Fin numbers per cluster are processed by a stack of three GarNet layers. The parameters
(S, FLR, Fout) for the first two layers are (4, 8, 8) and for the last layer are (8, 16, 16). The output of the third

9

https://arxiv.org/abs/2008.03601

Anomaly Detection on FPGA
๏Autoencoders are compression-decompression
algorithms that learn to describe a given
dataset in terms of points in a lower-dimension
latent space

๏Can be used for anomaly detection: compression
less effective when anomalous events are given

๏In principle, same compression techniques apply

๏In practice, special considerations apply

๏Figure of merit for anomaly detection might
be different than loss -> QAT might run in
trouble

๏Variational autoencoders require sampling
from random numbers (possible, but with some
resource utilisation)

๏Might need custom layers to evaluate custom
AD figures of merit

7

-,͍2 -,͍1 -,͍0 -,͍/ -,͍. -,͍- -,,
B]hoa�Lkoepera�N]pa

-,͍2

-,͍1

-,͍0

-,͍/

-,͍.

-,͍-

-,,

Pn
qa
�L
ko
epe
ra
�N
]p
a

?JJ�NK?�d�͉ǋǄ
EK�R=A�$=Q?�9�51!%
R=A�@GH�$=Q?�9�42!%
R=A�Nv�$=Q?�9�42!%
EK�=A�$=Q?�9�52!%

-,͍2 -,͍1 -,͍0 -,͍/ -,͍. -,͍- -,,
B]hoa�Lkoepera�N]pa

-,͍2

-,͍1

-,͍0

-,͍/

-,͍.

-,͍-

-,,

Pn
qa
�L
ko
epe
ra
�N
]p
a

@JJ�NK?�d�͉ǋǄ
EK�R=A�$=Q?�9�51!%
R=A�@GH�$=Q?�9�50!%
R=A�Nv�$=Q?�9�44!%
EK�=A�$=Q?�9�52!%

-,͍2 -,͍1 -,͍0 -,͍/ -,͍. -,͍- -,,
B]hoa�Lkoepera�N]pa

-,͍2

-,͍1

-,͍0

-,͍/

-,͍.

-,͍-

-,,

Pn
qa
�L
ko
epe
ra
�N
]p
a

?JJ�NK?�d,͉ǋǋ
EK�R=A�$=Q?�9�41!%
R=A�@GH�$=Q?�9�3-!%
R=A�Nv�$=Q?�9�3-!%
EK�=A�$=Q?�9�41!%

-,͍2 -,͍1 -,͍0 -,͍/ -,͍. -,͍- -,,
B]hoa�Lkoepera�N]pa

-,͍2

-,͍1

-,͍0

-,͍/

-,͍.

-,͍-

-,,

Pn
qa
�L
ko
epe
ra
�N
]p
a

@JJ�NK?�d,͉ǋǋ
EK�R=A�$=Q?�9�41!%
R=A�@GH�$=Q?�9�4-!%
R=A�Nv�$=Q?�9�32!%
EK�=A�$=Q?�9�43!%

FIG. III. ROC curves of four AD scores (IO AD for AE and VAE models, Rz and DKL ADs for the VAE models) for the CNN
(left) and DNN (right) models, obtained from two new physics benchmark models: h± ! ⌧⌫ (top) and h0 ! ⌧⌧ (bottom).

the case of AE computes the loss function between the
input and network output and for VAE computes the
DKL term of the loss.

A summary of the accuracy, resource consumption, and
latency for the QAT DNN and CNN BP AE models, and
the PTQ DNN and CNN BP VAE models is shown in
Table III. Resource utilization is quoted as a fraction of
the total available resources on the FPGA. We find the
resources are less than about 12% of the available FPGA
resources, except for the CNN AE, which uses up to 47%
of the look-up tables (LUTs). Moreover, the latency is
less than about 365 ns for all models except the CNN AE,
which has a latency of 1480 ns. The II for all models is
within the required 115 ns, again except the CNN AE.
Based on these, both types of architectures with both
types of autoencoders are suitable for application at the
LHC L1T, except for the CNN AE, which consumes too
much of the resources.

Since the performance of all the models under study are
of a similar level, we choose the “best” model based on
the smallest resource consumption, which turns out to be
DNN VAE. This model was integrated into the emp-fwk
infrastructure firmware for LHC trigger boards [61], tar-
geting a Xilinx VCU118 development kit, with the same
VU9P FPGA as previously discussed. Data were loaded
into onboard bu↵ers mimicking the manner in which data
arrives from optical fibres in the L1T system. The de-
sign was operated at 240MHz, and the model predictions
observed at the output were consistent with those cap-
tured from the HLS C Simulation. For this model we
also provide resource and latency estimates for a Xilinx
Virtex 7 690 FPGA, which is the FPGA most widely used
in the current CMS trigger. The estimates are given in
Table IV.

Anomaly Detection on FPGA

24

8

TABLE I. Performance assessment of the CNN and DNN models, for di↵erent AD scores and di↵erent new physics benchmark
scenarios.

Model AD score
TPR @ FPR 10�5[%] AUC[%]

LQ ! b⌧ A ! 4` h± ! ⌧⌫ h0 ! ⌧⌧ LQ ! b⌧ A ! 4` h± ! ⌧⌫ h0 ! ⌧⌧

CNN VAE
IO 0.06 3.28 0.10 0.09 92 94 95 85

CNN VAE DKL 0.05 2.85 0.07 0.14 84 85 86 71
Rz 0.05 2.53 0.06 0.12 84 85 86 71

CNN AE IO 0.09 6.29 0.10 0.13 95 94 96 85

DNN VAE
IO 0.07 5.23 0.08 0.11 93 95 95 85

DNN VAE DKL 0.07 5.27 0.08 0.11 92 94 94 81
Rz 0.06 4.05 0.07 0.10 86 93 88 76

DNN AE IO 0.05 3.56 0.06 0.09 95 96 96 87

FIG. IV. TPR ratios versus model bit width for the AE CNN (left) and DNN (right) models tested on four new physics
benchmark models, using mean squared error as figure of merit for PTQ (top) and QAT (bottom) strategies.

VIII. CONCLUSIONS

We discussed how to extend new physics detection
strategies at the LHC with autoencoders deployed in the
L1T infrastructure of the experiments. In particular,
we show how one could deploy a deep neural network
(DNN) or convolutional neural network (CNN) AE on a
field-programmable gate array (FPGA) using the hls4ml
library, within a O(1)µs latency and with small resource
utilization once the model is quantized and pruned. We
show that one can retain accuracy by compressing the
model at training time. Moreover, we discuss di↵erent

strategies to identify potential anomalies. We show that
one could perform the anomaly detection (AD) with a
variational AE (VAE) using the projected representation
of a given input in the latent space, which has several
advantages for an FPGA implementation: (1) no need
to sample Gaussian-distributed pseudorandom numbers
(preserving the deterministic outcome of the trigger deci-
sion) and (2) no need to run the decoder in the trigger,
resulting in a significant resource saving.

As can be seen from Table III, the latency when using
only the encoder as opposed to full VAE is reduced by a
factor of two, while the performance is of a similar level
(see Table II). The DNN (V)AE models use less than 5% of

9

FIG. V. TPR ratios versus model bit width for the VAE CNN (left) and DNN (right) models tested on four new physics
benchmark models, using DKL as figure of merit for PTQ (top) and QAT (bottom) strategies.

TABLE II. Performance assessment of the quantized and pruned CNN and DNN models, for di↵erent AD scores and di↵erent
new physics benchmark scenarios.

Model AD score
TPR @ FPR 10�5[%] AUC[%]

LQ ! b⌧ A ! 4` h± ! ⌧⌫ h0 ! ⌧⌧ LQ ! b⌧ A ! 4` h± ! ⌧⌫ h0 ! ⌧⌧

CNN AE QAT 4 bits IO 0.09 5.96 0.10 0.13 94 96 96 88
CNN VAE PTQ 8 bits DKL 0.05 2.56 0.06 0.12 84 84 85 71

DNN AE QAT 8 bits IO 0.08 5.48 0.09 0.11 95 96 96 88
DNN VAE PTQ 8 bits DKL 0.08 3.41 0.09 0.08 92 94 94 81

the Xilinx VU9P resources and the corresponding latency
is within 130 ns, while the CNN VAE uses less than 12%
and the corresponding latency is 365 ns. All three models
have the initiation interval within the strict limit imposed
by the frequency of bunch crossing at the LHC. Between
the two architectures under study, the DNN requires a
few times less resources in the trigger, however both DNN
and CNN fit the strict latency requirement and therefore
both architectures can potentially be used at the LHC
trigger. The CNN AE model is found to require more
resources than are available.

With this work, we have identified and finalized the
necessary ingredients to deploy (V)AEs in the L1T of the
LHC experiments for Run 3 to accelerate the search for
unexpected signatures of new physics.

IX. CODE AVAILABILITY

The QKeras library is available under github.com/
google/qkeras, where the work presented here is us-
ing QKeras version 0.9.0. The hls4ml library with cus-
tom layers used in the paper are under AE L1 paper
branch and is available at https://github.com/
fastmachinelearning/hls4ml/tree/AE_L1_paper.

X. DATA AVAILABILITY

The data used in this study are openly available at
Zenodo at Ref. [47–50, 52].

10

TABLE III. Resource utilization and latency for the quantized and pruned DNN and CNN (V)AE models. Resources are based
on the Vivado estimates from Vivado HLS 2020.1 for a clock period of 5 ns on Xilinx VU9P.

Model DSP [%] LUT [%] FF [%] BRAM [%] Latency [ns] II [ns]
DNN AE QAT 8 bits 2 5 1 0.5 130 5
CNN AE QAT 4 bits 8 47 5 6 1480 895

DNN VAE PTQ 8 bits 1 3 0.5 0.3 80 5
CNN VAE PTQ 8 bits 10 12 4 2 365 115

TABLE IV. Resource utilization and latency for the quantized and pruned DNN AE model. Resources are based on the Vivado
estimates from Vivado HLS 2020.1 for a clock period of 5 ns on Xilinx V7-690.

Model DSP [%] LUT [%] FF [%] BRAM [%] Latency [ns] II [ns]
DNN VAE PTQ 8 bits 3 9 3 0.4 205 5

XI. AUTHOR INFORMATION

Correspondence and material requests can be e-mailed
to E. Govorkova (katya.govorkova@cern.ch).

ACKNOWLEDGEMENTS

This work is supported by the European Research
Council (ERC) under the European Union’s Horizon
2020 research and innovation program (Grant Agreement
No. 772369) and the ERC-POC programme (grant No.
996696).

[1] LHC Machine. JINST 3, S08001 (2008).
[2] Aad, G. et al. The ATLAS Experiment at the CERN

Large Hadron Collider. JINST 3, S08003 (2008).
[3] Chatrchyan, S. et al. The CMS Experiment at the CERN

LHC. JINST 3, S08004 (2008).
[4] Sirunyan, A. M. et al. Performance of the CMS Level-1

trigger in proton-proton collisions at
p
s = 13 TeV. J.

Instrum. 15, P10017 (2020). 2006.10165.
[5] The Phase-2 upgrade of the CMS Level-1 trigger. CMS

Technical Design Report CERN-LHCC-2020-004. CMS-
TDR-021 (2020). URL https://cds.cern.ch/record/

2714892.
[6] Aad, G. et al. Operation of the ATLAS trigger system in

Run 2. J. Instrum. 15, P10004 (2020). 2007.12539.
[7] Technical Design Report for the Phase-II Upgrade of the

ATLAS TDAQ System. ATLAS Technical Design Report
CERN-LHCC-2017-020. ATLAS-TDR-029 (2017). URL
https://cds.cern.ch/record/2285584.

[8] Aad, G. et al. Observation of a new particle in the
search for the standard model Higgs boson with the AT-
LAS detector at the LHC. Phys. Lett. B 716, 1 (2012).
1207.7214.

[9] Chatrchyan, S. et al. Observation of a new boson at a
mass of 125 GeV with the CMS experiment at the LHC.
Phys. Lett. B 716, 30 (2012). 1207.7235.

[10] Aarrestad, T. et al. The dark machines anomaly score chal-
lenge: Benchmark data and model independent event clas-
sification for the large hadron collider (2021). 2105.14027.

[11] Kasieczka, G. et al. The lhc olympics 2020: A community
challenge for anomaly detection in high energy physics
(2021). 2101.08320.

[12] Cerri, O. et al. Variational Autoencoders for New Physics
Mining at the Large Hadron Collider. JHEP 05, 036
(2019). 1811.10276.

[13] Knapp, O. et al. Adversarially Learned Anomaly Detec-
tion on CMS Open Data: re-discovering the top quark.
Eur. Phys. J. Plus 136, 236 (2021). 2005.01598.

[14] CMS Exotica hotline leads hunt for ex-
otic particles (2010). URL https://www.

symmetrymagazine.org/breaking/2010/06/24/

cms-exotica-hotline-leads-hunt-for-exotic-particles.
[15] Poppi, F. Is the bell ringing?. Exotica : à l’a↵ût des

événements exotiques 14 (2010). URL http://cds.cern.

ch/record/1306501.
[16] Duarte, J. et al. Fast inference of deep neural networks

in FPGAs for particle physics. JINST 13, P07027 (2018).
1804.06913.

[17] Ngadiuba, J. et al. Compressing deep neural networks
on FPGAs to binary and ternary precision with hls4ml.
Mach. Learn.: Sci. Technol. (2020). 2003.06308.

[18] Iiyama, Y. et al. Distance-Weighted Graph Neural Net-
works on FPGAs for Real-Time Particle Reconstruction
in High Energy Physics. Front. Big Data 3, 598927 (2020).
2008.03601.

[19] Aarrestad, T. et al. Fast convolutional neural networks
on fpgas with hls4ml. Mach. Learn.: Sci. Technol. 2,
045015 (2021). 2101.05108.

[20] Heintz, A. et al. Accelerated Charged Particle Tracking
with Graph Neural Networks on FPGAs. In 34th Confer-
ence on Neural Information Processing Systems (2020).
2012.01563.

[21] Summers, S. et al. Fast inference of Boosted Decision
Trees in FPGAs for particle physics. JINST 15, P05026
(2020). 2002.02534.

[22] Coelho, C. Qkeras (2019). URL https://github.com/

google/qkeras.
[23] Coelho, C. N. et al. Automatic heterogeneous quantization

of deep neural networks for low-latency inference on the
edge for particle detectors. Nat. Mach. Intell. (2021).

๏Sometimes the model is too big to be deployed

๏Still, a network is a function that can be approximated by … a neural network
(the student model)

๏Every problem is turned into a regression

๏Easier to compress than unsupervised models

๏Does not require resource-consuming output activation for classifications

Knowledge Distillation

25ML @ L1T - Sioni Summers29/4/2022

Knowledge Distillation
• Another promising technique from the ML world

• In a system like L1T the training and deployment of the model are decoupled (for now ")

- Train on some GPU for some hours/days, deploy on an FPGA with some 100ns latency,
effectively running forever

• Train a big, complicated model - the teacher - without concern for inference cost

• Create a transfer dataset from the teach model predictions

• Train a small, efficient model - the student - using the transfer set instead of the real data

- Try to learn what the teacher learned - “soft” labels rather than “hard” labels

12

16

KNOWLEDGE DIST ILL AT ION FOR ANOMALY DETECT ION

 model_input = Input(shape=image_shape)
 x = Flatten()(input_encoder)
 x = Dense(57)(x)
 x = ReLU()(x)
 out = Dense(1)(x)
 model = Model(inputs=model_input, outputs=out)

 3,364 parameters

Train Student on the loss calculated with the Teachers output

๏Sometimes the model is too
big to be deployed

๏Still, a network is a
function that can be
approximated by … a neural
network (the student model)

๏Every problem is turned
into a regression

๏Easier to compress than
unsupervised models

๏Does not require
resource-consuming output
activation for
classifications

Knowledge Distillation

26

15

KNOWLEDGE DIST ILL AT ION FOR ANOMALY DETECT ION

Can we use KD to transfer AD from a big autoencoder to a smaller model?
First simple approach to try is to teach the loss to a small Dense model, let’s try..

 3,364 parameters

ARTICLES NATURE MACHINE INTELLIGENCEARTICLES NATURE MACHINE INTELLIGENCE

Extended Data Fig. 1 | Network architectures. Network architecture for the DNN AE (top) and CNN AE (bottom) models. The corresponding VAE models
are derived introducing the Gaussian sampling in the latent space, for the same encoder and decoder architectures (see text).

NATURE MACHINE INTELLIGENCE | www.nature.com/natmachintell

 7,530 parameters

Loss

Evaluate on pre-trained
Teacher

Train to reproduce

 model_input = Input(shape=image_shape)
 x = Flatten()(input_encoder)
 x = Dense(57)(x)
 x = ReLU()(x)
 out = Dense(1)(x)
 model = Model(inputs=model_input, outputs=out)

https://github.com/hls-fpga-machine-learning/hls4ml
https://hls-fpga-machine-learning.github.io/hls4ml/

ML @ L1T - Sioni Summers29/4/2022

• Conifer is like hls4ml, but for Boosted Decision Trees

• BDTs are ensembles of Decision Trees

- Take the sum, or average, or max of individual Trees

- Basic quantity is the Decision Tree

• Tree traversal is usually like: if variable ≤ threshold then go left,
else go right

• In conifer we evaluate all comparisons first, and pick the right
path with boolean logic

• Comparison with 6b QKeras on same dataset:

15

Root node

Left child Right child

x� t�

�

¬

& &

x�

�

& &

t�x�

�

¬

cat

t�

¬

mux

s� s� s� s�

score

a

a

b c d

b c d

%VU9P Accuracy Latency DSP LUT

QKeras
6b

+ hls4ml

75.6% 40 ns 22 (~0%) 1%

sklearn
+ conifer 74.9% 5 ns - 0.5%

https://github.com/thesps/conifer

Full list of papers here

hls4ml: An Open-Source Codesign Workflow to Empower
Scientific Low-Power Machine Learning Devices

Farah Fahim∗

Benjamin Hawks
Christian Herwig
James Hirschauer
Sergo Jindariani
Nhan Tran∗

Fermilab
Batavia, IL, USA

Luca P. Carloni
Giuseppe Di Guglielmo

Columbia University
New York, NY, USA

Philip Harris
Je!rey Krupa
Dylan Rankin

MIT
Cambridge, MA, USA

Manuel Blanco Valentin
Josiah Hester
Yingyi Luo
John Mamish

Seda Orgrenci-Memik
Northwestern University

Evanston, IL, USA

Thea Aarrestad
Hamza Javed

Vladimir Loncar
Maurizio Pierini
Adrian Alan Pol
Sioni Summers

European Organization for Nuclear
Research (CERN)

Geneva, Switzerland

Javier Duarte
UC San Diego

La Jolla, CA, USA
jduarte@ucsd.edu

Scott Hauck
Shih-Chieh Hsu

University of Washington
Seattle, WA, USA

Jennifer Ngadiuba
Caltech

Pasadena, CA, USA

Mia Liu
Purdue University

West Lafayette, IN, USA

Duc Hoang
Rhodes College

Memphis, TN, USA

Edward Kreinar
HawkEye360

Herndon, VA, USA

Zhenbin Wu
University of Illinois at Chicago

Chicago, IL, USA

ABSTRACT
Accessible machine learning algorithms, software, and diagnos-
tic tools for energy-e"cient devices and systems are extremely
valuable across a broad range of application domains. In scienti#c
domains, real-time near-sensor processing can drastically improve
experimental design and accelerate scienti#c discoveries. To sup-
port domain scientists, we have developed hls4ml, an open-source
software-hardware codesign work$ow to interpret and translate
machine learning algorithms for implementation with both FPGA
and ASIC technologies. In this paper, we describe the essential
features of the hls4ml work$ow including network optimization

∗Also a"liated with Northwestern University

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro#t or commercial advantage and that copies bear this notice and the full citation
on the #rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
TinyML Research Symposium’21, March 2021, San Jose, CA
© 2021 Copyright held by the owner/author(s).

techniques—such as pruning and quantization-aware training—
which can be incorporated naturally into the device implemen-
tations. We expand on previous hls4ml work by extending capa-
bilities and techniques towards low-power implementations and
increased usability: new Python APIs, quantization-aware prun-
ing, end-to-end FPGA work$ows, long pipeline kernels for low
power, and new device backends include an ASIC work$ow. Taken
together, these and continued e!orts in hls4ml will arm a new gen-
eration of domain scientists with accessible, e"cient, and powerful
tools for machine-learning-accelerated discovery.

KEYWORDS
hls4ml, machine learning, neural networks, tinyML, FPGA, ASIC,
low-power, low-latency
ACM Reference Format:
Farah Fahim, Benjamin Hawks, Christian Herwig, James Hirschauer, Sergo
Jindariani, Nhan Tran, Luca P. Carloni, Giuseppe Di Guglielmo, Philip Harris,
Je!rey Krupa, Dylan Rankin, Manuel Blanco Valentin, Josiah Hester, Yingyi
Luo, John Mamish, Seda Orgrenci-Memik, Thea Aarrestad, Hamza Javed,
Vladimir Loncar, Maurizio Pierini, Adrian Alan Pol, Sioni Summers, Javier
Duarte, Scott Hauck, Shih-Chieh Hsu, Jennifer Ngadiuba, Mia Liu, Duc

DU
;
LY
��
��
��
��
��
�Y
��
�>F
V�/

*
@��
��
�0

DU
��
��
�

FERMILAB-CONF-21-080-SCD

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of
Science, Office of High Energy Physics.

https://github.com/hls-fpga-machine-learning/hls4ml
https://hls-fpga-machine-learning.github.io/hls4ml/
https://github.com/thesps/conifer
https://inspirehep.net/literature?sort=mostrecent&size=25&page=1&q=hls4ml%20pierini&ui-citation-summary=true&ui-exclude-self-citations=true

