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Assume:

Tensor Networks (an overview)
A class of  tailored variational ansatz states 

on a lattice many-body quantum system

| many-bodyi =
X

s1,··· ,sN

 s1,··· ,sN |s1, · · · , sN i

 is obtained contracting smaller tensors over auxiliary indexes

| MPSi =
X

{si},{↵i}
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· · ·A(sN )
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· · · A AA
sx�1 sx sx+1
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Tensor networks states are a compressed description of the system  
tunable between mean field and exact 
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Figure 1. Markov dynamics of a quantum spin chain on the level of local tensors. a) shows the relationship between a density matrix ⇢ in
MPO representation (top) and the locally purified tensor network (bottom) with tensors Al, physical dimension d, bond dimension D0 and
Kraus dimension K. b) The action of a local channel T that exclusively acts on lattice site 2 on the level of the MPO and on the level of the
locally purified form. In the latter, the Kraus rank k2 of the quantum channel T is joined together with K. c) Compression schemes for the
bond and Kraus dimension of a local tensor via singular value decompositions (SVD). d) Locally purified evolution of a time step e⌧L for a
2-local Hamiltonian and on-site Lindbladians. Here we show only the 3 rightmost of the 5 Suzuki-Trotter layers from Eq. (4).

neighbouring lattice sites. We describe the variational mixed
state of the system as a tensor network representing the den-
sity matrix ⇢. But instead of expressing ⇢ directly as a MPO
[20, 38] we keep it expressed at every stage of our algorithm
in its locally purified form ⇢ = XX†, where the purification
operator X is a variational MPO:

[X]s1,...,sN
r1,...,rN

=
X

m1,...,mN�1

A[1]s1,r1
m1

A[2]s2,r2
m1,m2

. . . A[N ]sN ,rN
mN�1

. (2)

That is, we represent ⇢ as a locally purified tensor net-
work made of rank four tensors A[l] with physical dimen-
sion d, bond dimension D and Kraus dimension K (shown
in Fig. 1a). Our algorithm is now an extension of the Time
Evolving Block Decimation (TEBD) scheme [39], acting on
the level of the local tensor A[l] that also allows for dissipa-
tive channels, and never requires to contract, even partially,
the two tensor network layers (X and X†) together. Simi-
larly to TEBD, it involves splitting the propagator e⌧L for a
small time-step ⌧ into several Suzuki-Trotter layers of mutu-
ally commuting operations. To this end we consider the evo-
lution from time t to t+ ⌧ in Liouville-space

|⇢t+⌧ ii = e⌧L |⇢tii = e⌧(�iH⌦1+i1⌦H̄+D)
|⇢tii , (3)

where |Mii denotes the Liouville vector representation of a
matrix M and the operator D =

P
j
(Lj ⌦ L̄j � (L†

j
Lj ⌦ 1+

1 ⌦ LT

j
L̄j)/2) contains the dissipative part of the Lindblad

operator L. As usual, we define the operators He and Ho

by splitting the Hamiltonian H =
P

i
hi into two sums, one

containing the even interactions h2l,2l+1 and one containing
the odd interactions h2l+1,2(l+1), respectively. So both He

and Ho are each built on mutually commuting terms. If the
Lindblad generators Lj are now on-site (the case of two-site
Lindbladians is treated later on), we can approximate e⌧L via
a symmetric Suzuki-Trotter decomposition up to second order
in time as

e⌧L = e⌧Ho/2e⌧He/2e⌧De⌧He/2e⌧Ho/2 +O(⌧3) , (4)

partially shown in Fig. 1d, where H⌫ = �iH⌫ ⌦1+ i1⌦ H̄⌫

with ⌫ = o, e. Generalisations to higher orders can be con-
structed from the Baker-Campbell-Hausdorff formula. Note

that the layers He and Ho implement the coherent part of the
evolution and are identical to the usual TEBD layers. In fact,
by having ⇢t expressed as ⇢t = XtX

†

t
we see that by acting

as X 0 = e�i⌧Ho/2Xt we recover exactly |⇢0ii = e⌧Ho/2 |⇢tii
(and likewise for the even coherent layer He). Hence, on
the level of the local tensors A[l] we can just adapt the usual
TEBD algorithm for nearest neighbour Hamiltonians, to effi-
ciently perform the coherent part of the dynamics.

The dissipative layer, however, requires a more careful
treatment and we exploit the fact that since the generators Lj

act only on a single site, we find e⌧D =
N

l
e⌧Dl , with

Dl =
X

jl

✓
Ljl ⌦ L̄jl �

1

2
(L†

jl
Ljl ⌦ 1 + 1 ⌦ LT

jl
L̄jl)

◆
,(5)

where the sum runs over all generators Ljl which act on lattice
site l. Since e⌧Dl is completely positive, Choi’s theorem [40]
guarantees that we can find via diagonalisation a set of Kraus-
operators {Bl,q} satisfying e⌧Dl =

P
k

q=1 Bl,q ⌦ B̄l,q . The
action of e⌧Dl on the level of the local tensors is now given
by a contraction of Bl,q into A[l]

t
, while joining the variational

Kraus dimension K with the Kraus rank k of the quantum
channel, as shown in Fig. 1b (by construction k  d2). The
application of each Suzuki-Trotter layer increases only the di-
mension of a single leg of the local tensors A[l]: The bond
dimension D is increased by the coherent layers, the Kraus
dimension K by the dissipative layers. This allows for im-
mediate compression of the enlarged dimension via standard
tensor network tools (singular value decomposition and trun-
cation of the smallest values, see Fig. 1c), which keeps errors
under control, as discussed in the supplemental material (SM).

The algorithm yields an overall computational costs scal-
ing as O(d5D3K)+O(d5D2K2), by executing a clever con-
traction of the coherent terms. Moreover, the locally purified
tensor network makes good advantage of the tensor network
gauge transformations, e.g. by reducing costs for local mea-
surements. Finally, we were also able to provide an error es-
timator for the approximations included in the algorithm, cal-
culated from the truncated singular values arising from com-
pression (see the SM).

U. Schollwock, RMP (2005) 

➤ State of the art in 1D (poly effort) 

➤ No sign problem 

➤ Extended to open quantum systems 

➤ Machine learning  

➤ Data compression (BIG DATA) 

➤ Extended to lattice gauge theories 

➤ Simulations of low-entangled systems  
of hundreds qubits 

➤ Extended to quantum field theories

A. Cichocki, ECM (2013) I. Glasser, et al.  PRX (2018)

S. Montangero “Introduction to Tensor Network Methods”, Springer (2019)



LATTICE GAUGE THEORIES

McLerran, L. Nucl.Phys.Proc.Suppl. 195 (2009) 275-280

The current wisdom on the phase diagram of nuclear matter.

http://inspirehep.net/author/profile/McLerran%2C%20L.?recid=823172&ln=en
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Figure 7: TTN representations for (a) 1D lattice and (b) 2D square lattice. Green circles indicate the sites of the
lattice connected to the physical indices of the tree, whereas the yellow circles are the tensors making up the TTN.
In (c) we shown our generalization to the 3D cubic lattice that we use for the numerical simulations of the LGT.

The different colours of the bond indices are just for a better visualization of the tree structure.

generalization to 3D lattice. TTNs offer more tractable
computational costs since the complete contraction and
the variational optimization algorithms scale as O(�4),
making it easier to reach high values of the bond dimen-
sion (up to � ⇡ 1000). The price to pay for using the
loopless structure is related to the area law that TTNs
may not explicitly reproduce in dimensions higher than
one [101]. Nevertheless, we use the TTN ansatz in a vari-
ational optimization, so we can improve the precision by
using increasing values of �, providing in this way a care-
ful control over the convergence of our numerical results.

The TTN algorithm for the ground state computation
of our LTG model follows the technical implementation
described in [85] and it takes into account the conserva-
tion of the total charge through the definition of global
U(1) symmetry sectors encoded in the TTN. In this way

we can easily access finite charge-density regimes, with
any imbalance between charges and anticharges.

Our TTN for the 3D lattice is composed entirely of
tensors with three links (this structure is usually called
binary tree). The construction of the TTN starts from
merging the physical indices at the bottom, that repre-
sent two neighboring lattice sites along the x-direction,
into one tensor. Then, these tensors are connected along
the y-direction through new tensors in an upper layer.
The tensors in this layer are then connected along the
z-direction through a new layer of tensors. Thus, this
procedure is iteratively repeated by properly setting the
connections along the three spatial directions in the up-
per layers of the tree. At the beginning of the simula-
tion, we randomly initialize all the tensors in the net-
work and the distribution of the global symmetry sec-

G. Magnifico, T. Felser, P. Silvi, and S. Montangero  
Nat. Comm. (2021)

T. Felser, P. Silvi, M. Collura, 
S. Montangero
PRX (2020)
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Figure 1: Scheme of the three-dimensional LGT with
three electric field levels (spin-1 compact

representation). Fermionic degrees of freedom are
represented by staggered fermions on sites with different
parity: on the even (odd) sites, a full red (blue) circle
corresponds to a particle (antiparticle) with positive
(negative) charge. As an illustrative example, it is

shown a gauge-invariant configuration of matter and
gauge fields with one particle and one antiparticle in the

sector of zero total charge.

effect akin to the Schwinger mechanism. Furthermore,
we address the confinement problem by evaluating the
binding energies of charged particle pairs pinned at spec-
ified distances. Finally, we consider the scenario with a
charge imbalance into the system, i.e. at finite charge
density, and we characterize a regime where charges ac-
cumulate at the surface of our finite sample, analogously
to a classic perfect conductor.

I. THE MODEL

Hereafter, we numerically simulate, at zero tempera-
ture, the Hamiltonian of U(1) quantum electrodynamics
on a finite L⇥L⇥L three-dimensional simple cubic lattice
[16]:

Ĥ = �t
X

x,µ

⇣
 ̂†

x Ûx,µ  ̂x+µ + H.c.
⌘

(1a)

+ m
X

x

(�1)x ̂†
x ̂x +

g2
e

2

X

x,µ

Ê2
x,µ (1b)

�
g2

m

2

X

x

�
⇤µx,µy + ⇤µx,µz + ⇤µy,µz + H.c.

�
(1c)

with x ⌘ (i, j, k) for 0  i, j, k  L � 1
labelling the sites of the lattice and ⇤µ↵,µ� =

Ûx,µ↵Ûx+µ↵,µ� Û†
x+µ� ,µ↵

Û†
x,µ�

. Here we adopted the
Kogut-Susskind formulation [16], representing fermionic
degrees of freedom with a staggered spinless fermion
field { ̂x,  ̂†

x0} = �x,x0 on lattice sites. Their bare mass
mx = (�1)xm is staggered, as tracked by the site parity

(�1)x = (�1)i+j+k, so that fermions on even sites rep-
resent particles with positive electric charge +q, while
holes on odd sites represent anti-particles with negative
charge �q, as shown in Fig. 1. Charge Q̂ conservation is
thus expressed as global fermion number N̂ conservation,
since Q̂ =

P
x

⇣
 ̂†

x ̂x �
1�(�1)x

2

⌘
= N̂ � L3/2.

The links of the 3D lattice are uniquely identified by
the couple of parameters (x, µ) where x is any site, µ is
one of the three positive lattice unit vectors µx ⌘ (1, 0, 0),
µy ⌘ (0, 1, 0), µz ⌘ (0, 0, 1). The gauge fields are defined
on lattice links through the pair of operators Êx,µ (elec-
tric field) and Ûx,µ (unitary comparator) that satisfy the
commutation relation

[Êx,µ, Ûx0,µ0 ] = �x,x0�µ,µ0Ûx,µ. (2)
For comfort of notation, we can extend the definition to
negative lattice unit vectors via Êx+µ,�µ = �Êx,µ and
Ûx+µ,�µ = Û†

x,µ.
The Hamiltonian of Eq. (1) consists of four terms: the

parallel transporter (1a) describes creation and annihi-
lation of a particle-antiparticle pair, shifting the gauge
field in-between to preserve local gauge symmetries. The
staggered mass and the electric energy density (1b) are
completely local. Finally, the plaquette terms (1c) cap-
ture the magnetic energy density, and are related to the
smallest Wilson loops along the closed plaquettes along
the three planes x � y, x � z, y � z of the lattice. In
dimensionless units (~ = c = 1), the couplings in Eq. (1)
are not independent: They can be expressed as t = 1/a,
m = m0, g2

e = g2/a, g2
m = 8/(g2a), where a is the lattice

spacing, g is the coupling constant of QED and m0 is
the bare mass of particles/antiparticles. The numerical
setup allows us to consider the couplings (t, m, ge, gm)
as mutually independent. We then recover the physical
regime of QED by enforcing gegm = 2

p
2t. We also fix

the energy scale by setting t = 1.
The local U(1) gauge symmetry of the theory is en-

coded in Gauss’s law, whose generators

Ĝx =  ̂†
x ̂x �

1 � (�1)x

2
�

X

µ

Êx,µ, (3)

are defined around each lattice site x. The sum in Eq. (3)
involves the six electric field operators on the links iden-
tified by ±µx, ±µy, ±µz. Each Ĝx commutes with the
Hamiltonian Ĥ and the gauge invariant Hilbert space
consists of physical many-body quantum states |�i sat-
isfying Ĝx |�i = 0 at every site x.

As stressed in the standard Wilson’s formulation of
lattice QED [11], faithful representations of the (Ê, Û)
algebra are infinite-dimensional. A truncation to a fi-
nite dimension becomes therefore necessary for numeri-
cal simulations with TN methods, which require a finite
effective Hilbert dimension at each lattice site. We use
the quantum link model (QLM) approach in which the
gauge field algebra is replaced by SU(2) spin algebra, i.e.
Êx,µ ⌘ Ŝz

x,µ and Ûx,µ ⌘ Ŝ+
x,µ/s for a spin-s representa-

tion. This substitution keeps the electric field operator

2

(�1)i+j = + 1 : {
(�1)i+j = � 1 : {

i

j

1 2 3

1

2

3

Matter Field

= q

= � q
= �

= �

Gauge Field

Ex,�x
=

= | � �
= |��
= | � �

(�1)i+j+k = �1

i

j

k

(�1)i+j+k = +1

Figure 1: Scheme of the three-dimensional LGT with
three electric field levels (spin-1 compact

representation). Fermionic degrees of freedom are
represented by staggered fermions on sites with different
parity: on the even (odd) sites, a full red (blue) circle
corresponds to a particle (antiparticle) with positive
(negative) charge. As an illustrative example, it is

shown a gauge-invariant configuration of matter and
gauge fields with one particle and one antiparticle in the

sector of zero total charge.

effect akin to the Schwinger mechanism. Furthermore,
we address the confinement problem by evaluating the
binding energies of charged particle pairs pinned at spec-
ified distances. Finally, we consider the scenario with a
charge imbalance into the system, i.e. at finite charge
density, and we characterize a regime where charges ac-
cumulate at the surface of our finite sample, analogously
to a classic perfect conductor.

I. THE MODEL

Hereafter, we numerically simulate, at zero tempera-
ture, the Hamiltonian of U(1) quantum electrodynamics
on a finite L⇥L⇥L three-dimensional simple cubic lattice
[16]:
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The local U(1) gauge symmetry of the theory is en-

coded in Gauss’s law, whose generators

Ĝx =  ̂†
x ̂x �

1 � (�1)x

2
�

X

µ

Êx,µ, (3)

are defined around each lattice site x. The sum in Eq. (3)
involves the six electric field operators on the links iden-
tified by ±µx, ±µy, ±µz. Each Ĝx commutes with the
Hamiltonian Ĥ and the gauge invariant Hilbert space
consists of physical many-body quantum states |�i sat-
isfying Ĝx |�i = 0 at every site x.

As stressed in the standard Wilson’s formulation of
lattice QED [11], faithful representations of the (Ê, Û)
algebra are infinite-dimensional. A truncation to a fi-
nite dimension becomes therefore necessary for numeri-
cal simulations with TN methods, which require a finite
effective Hilbert dimension at each lattice site. We use
the quantum link model (QLM) approach in which the
gauge field algebra is replaced by SU(2) spin algebra, i.e.
Êx,µ ⌘ Ŝz

x,µ and Ûx,µ ⌘ Ŝ+
x,µ/s for a spin-s representa-

tion. This substitution keeps the electric field operator
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Figure 1: Scheme of the three-dimensional LGT with
three electric field levels (spin-1 compact

representation). Fermionic degrees of freedom are
represented by staggered fermions on sites with different
parity: on the even (odd) sites, a full red (blue) circle
corresponds to a particle (antiparticle) with positive
(negative) charge. As an illustrative example, it is

shown a gauge-invariant configuration of matter and
gauge fields with one particle and one antiparticle in the

sector of zero total charge.

effect akin to the Schwinger mechanism. Furthermore,
we address the confinement problem by evaluating the
binding energies of charged particle pairs pinned at spec-
ified distances. Finally, we consider the scenario with a
charge imbalance into the system, i.e. at finite charge
density, and we characterize a regime where charges ac-
cumulate at the surface of our finite sample, analogously
to a classic perfect conductor.

I. THE MODEL

Hereafter, we numerically simulate, at zero tempera-
ture, the Hamiltonian of U(1) quantum electrodynamics
on a finite L⇥L⇥L three-dimensional simple cubic lattice
[16]:

Ĥ = �t
X

x,µ

⇣
 ̂†

x Ûx,µ  ̂x+µ + H.c.
⌘

(1a)

+ m
X

x

(�1)x ̂†
x ̂x +

g2
e

2

X

x,µ

Ê2
x,µ (1b)

�
g2

m

2

X

x

�
⇤µx,µy + ⇤µx,µz + ⇤µy,µz + H.c.

�
(1c)

with x ⌘ (i, j, k) for 0  i, j, k  L � 1
labelling the sites of the lattice and ⇤µ↵,µ� =

Ûx,µ↵Ûx+µ↵,µ� Û†
x+µ� ,µ↵

Û†
x,µ�

. Here we adopted the
Kogut-Susskind formulation [16], representing fermionic
degrees of freedom with a staggered spinless fermion
field { ̂x,  ̂†

x0} = �x,x0 on lattice sites. Their bare mass
mx = (�1)xm is staggered, as tracked by the site parity

(�1)x = (�1)i+j+k, so that fermions on even sites rep-
resent particles with positive electric charge +q, while
holes on odd sites represent anti-particles with negative
charge �q, as shown in Fig. 1. Charge Q̂ conservation is
thus expressed as global fermion number N̂ conservation,
since Q̂ =

P
x

⇣
 ̂†

x ̂x �
1�(�1)x

2

⌘
= N̂ � L3/2.

The links of the 3D lattice are uniquely identified by
the couple of parameters (x, µ) where x is any site, µ is
one of the three positive lattice unit vectors µx ⌘ (1, 0, 0),
µy ⌘ (0, 1, 0), µz ⌘ (0, 0, 1). The gauge fields are defined
on lattice links through the pair of operators Êx,µ (elec-
tric field) and Ûx,µ (unitary comparator) that satisfy the
commutation relation

[Êx,µ, Ûx0,µ0 ] = �x,x0�µ,µ0Ûx,µ. (2)
For comfort of notation, we can extend the definition to
negative lattice unit vectors via Êx+µ,�µ = �Êx,µ and
Ûx+µ,�µ = Û†

x,µ.
The Hamiltonian of Eq. (1) consists of four terms: the

parallel transporter (1a) describes creation and annihi-
lation of a particle-antiparticle pair, shifting the gauge
field in-between to preserve local gauge symmetries. The
staggered mass and the electric energy density (1b) are
completely local. Finally, the plaquette terms (1c) cap-
ture the magnetic energy density, and are related to the
smallest Wilson loops along the closed plaquettes along
the three planes x � y, x � z, y � z of the lattice. In
dimensionless units (~ = c = 1), the couplings in Eq. (1)
are not independent: They can be expressed as t = 1/a,
m = m0, g2

e = g2/a, g2
m = 8/(g2a), where a is the lattice

spacing, g is the coupling constant of QED and m0 is
the bare mass of particles/antiparticles. The numerical
setup allows us to consider the couplings (t, m, ge, gm)
as mutually independent. We then recover the physical
regime of QED by enforcing gegm = 2

p
2t. We also fix

the energy scale by setting t = 1.
The local U(1) gauge symmetry of the theory is en-

coded in Gauss’s law, whose generators

Ĝx =  ̂†
x ̂x �

1 � (�1)x

2
�

X

µ

Êx,µ, (3)

are defined around each lattice site x. The sum in Eq. (3)
involves the six electric field operators on the links iden-
tified by ±µx, ±µy, ±µz. Each Ĝx commutes with the
Hamiltonian Ĥ and the gauge invariant Hilbert space
consists of physical many-body quantum states |�i sat-
isfying Ĝx |�i = 0 at every site x.

As stressed in the standard Wilson’s formulation of
lattice QED [11], faithful representations of the (Ê, Û)
algebra are infinite-dimensional. A truncation to a fi-
nite dimension becomes therefore necessary for numeri-
cal simulations with TN methods, which require a finite
effective Hilbert dimension at each lattice site. We use
the quantum link model (QLM) approach in which the
gauge field algebra is replaced by SU(2) spin algebra, i.e.
Êx,µ ⌘ Ŝz

x,µ and Ûx,µ ⌘ Ŝ+
x,µ/s for a spin-s representa-

tion. This substitution keeps the electric field operator
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Figure 6: (a) Representation of the gauge field in terms
of two species of Dirac modes in the sector with a total
number of fermions equal to two. b) Generic state of
the local site composed by the the matter degrees of

freedom and six half-links along the three spatial
directions. On each half-link the coefficients

kj 2 {0, 1, 2} define the fermionic modes. (c) Examples
of gauge-invariant configurations for even and odd sites.

Due to the use of staggered-fermions, the
presence/absence of a fermion in an even/odd site
represents the presence of a charge/anti-charge.

Ĝx =  ̂†
x ̂x �

1 � (�1)x

2
�

X

µ

�
1 � n̂a

x,µ � n̂b
x,µ

�
.(A8)

Taking into account this property, it is possible to con-
struct the gauge-invariant basis for the local site x, that
is composed by the lattice site and the six half-links along
the directions ±µx, ±µy, ±µz (see Fig. 6):

������

k5

k1 � k4

k2

+k6

k3

= (�1)�k1,2+�k2,2+�k3,2
|�ix (A9)

⇥ |k1ix,�µx
|k2ix,�µy

|k3ix,�µz

⇥ |k4ix,µx
|k5ix,µy

|k6ix,µz

where |�ix = ( ̂†
x)�

|0i with � = 0, 1 describes the pres-
ence or the absence of the matter/antimatter particles.
The indices kj run over {0,1,2} selecting a configura-
tion of the 3-hardcore modes for each respective half-link.
The presence of the factor (�1)�k1,2+�k2,2+�k3,2 allows us
to satisfy the anticommutation relations of the fermionic
representation recovering the correct signs of Eq. (A5).
The occupation numbers � and kj are not independent
due to the constraint imposed by the Gauss’s law

Ĝx

������

k5

k1 � k4

k2

+k6

k3

= 0. (A10)

This equation, in the new language of matter fermions
and rishons, reads

�+
6X

j=1

kj = 6 +
1 � (�1)x

2
. (A11)

where the factor 6 is indeed the coordination number
of the cubic lattice. Thus, the gauge invariant configu-
rations of the local basis are obtained by applying this
constraint, effectively reducing the ‘dressed-site’ (matter
and 6 rishon modes) dimension from 2 · 36 = 1458 to
merely 267. We encode these states as building blocks of
our computational representation for the TN algorithms.
In Fig. 6 we show some examples of gauge-invariant con-
figurations for even and odd sites.

The construction of the gauge-invariant local sites is
particularly advantageous for our numerical purposes: in
fact, it is now possible to express all the terms in the
Hamiltonian of Eq. (1) of the main text as product
of completely local operators that commute on different
sites. Let us consider the kinetic term of the Hamiltonian
and apply the representation of the gauge field in terms
of the 3-hardcore fermionic modes:

 ̂†
xÛx,µ ̂x+µ =  ̂†

x⌘̂x,µ⌘̂
†
x+µ,�µ ̂x+µ

=
⇣
⌘̂†x,µ ̂x

⌘† ⇣
⌘̂†x+µ,�µ ̂x+µ

⌘

= M (↵)†
x M↵0

x+µ (A12)

where the indices ↵ and ↵0 select the right operators de-
pending on the different directions in which the hopping
process takes place. The operators M↵

x,µ are genuinely lo-
cal (i.e. they commute with operators acting elsewhere)
as they are always quadratic in the fermionic operators
( and/or ⌘). The same argument applies to the mag-
netic (plaquette) terms in the Hamiltonian

⇤µx,µy = Ux,x+µxUx+µx,µyU †
x+µy,µx

U †
x,µy

=

= ⌘x,µx⌘
†
x+µx,�µx

⌘x+µx,µy⌘
†
x+µx+µy,�µy

⇥

⇣
⌘x+µy,µx⌘

†
x+µx+µy,�µx

⌘† ⇣
⌘x,µy⌘

†
x+µy,�µy

⌘†

= �

⇣
⌘†x,µy

⌘x,µx

⌘ ⇣
⌘†x+µx,�µx

⌘x+µx,µy

⌘

⇥

⇣
⌘†x+µx+µy,�µy

⌘x+µx+µy,�µx

⌘ ⇣
⌘†x+µy,µx

⌘x+µy,�µy

⌘

⌘ �C(↵)
x C(↵0)

x+µx
C(↵00)

x+µx+µy
C(↵000)

x+µy
, (A13)

where the indices ↵, ↵0, ↵00, ↵000 depend on the plane of
the plaquette (in this case x � y) and the links involved
into the loop. The operators C↵

x are genuinely local and
act on the four sites at the corners of the plaquette. The
decomposition is the same for the other plaquettes in the
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Figure 8: (a) Driven optimization (in three steps: linear, quadratic, constant) of the penalty coefficient ⌫ (red) and
behavior of the energy (blue) as a function of the iterations for an exemplifying simulation. The energy is reported

as the difference with the lowest final energy that we reach. (b) Driven optimization of the penalty coefficient ⌫
(red) and global error �L (green) with respect to the link symmetry during the optimization steps. (c) Scaling of the

energy density as a function of the inverse of the bond dimension 1/�. The bond dimension � is in the range
[100, 450].

tors. During the variational optimization stage, in order
to improve the convergence, we perform the single-tensor
optimization with subspace-expansion technique, i.e., al-
lowing a dynamical increase of the local bond dimension
and adapting the symmetry sectors [85]. This scheme
has a global computational cost of the order O(�4). The
single tensor optimization is implemented in three steps:
(i) the effective Hamiltonian Heff for the tensor is ob-
tained by contracting the complete Hamiltonian of the
system with all the remaining tensors of the tree; (ii) the
local eigenvalue problem for Heff is solved by using the
Arnoldi method of the ARPACK library; (iii) the ten-
sor is updated by the eigenvector of Heff corresponding
to the lowest eigenvalue. This procedure is iterated by
sweeping through the TTN from the lowest to the highest
layers, gradually reducing the energy expectation value.
After completing the whole sweep, the procedure is it-
erated again and again, until the desidered convergence
in the energy is reached. The precision of the Arnoldi
algorithm is increased in each sweep, for gaining more
accuracy in solving the local eigenvalue problems as we
approach the final convergence.

TTN computations presented in this work are ex-
tremely challenging due to the complexity of LGTs in
the three-dimensional scenario. They were performed on
different HPC-clusters (CloudVeneto, CINECA, BwUni-
Cluster and ATOS Bull): a single simulation for the max-
imum size that we reached, a 8 ⇥ 8 ⇥ 8 lattice, can last
up to five weeks until final convergence, depending on the
different regimes of the model and the control parameters
of the algorithms.

Appendix C: Numerical Convergence

With our numerical simulations we characterize the
properties of the ground state of the system as a function
of the parameters in the Hamiltonian of Eq. (1) of the

main text. We fix the energy scale by setting the hopping
coefficient t = 1 and we access several regimes of the mass
m, the electric ge and the magnetic coupling gm. We
consider simple cubic lattices L ⇥ L ⇥ L with the linear
size L being a binary power; in particular, we simulate
the case with L = 2, 4, 8, that is, up to 512 lattice sites.

As explained in Appendix A, in order to obtain the
right representation of the electric field operators, we
have to enforce the extra link symmetry constraint
L̂x,µ = 2 at every pair of neighboring sites. For this
reason, we include in the Hamiltonian additional terms
that energetically penalise all the states with a number
of hardcore fermions per link different from two, namely:

Hpen = ⌫
X

x,µ

⇣
1 � �2,L̂x,µ

⌘
(C1)

where ⌫ > 0 is the penalty coefficient and �2,L̂x,µ
are

the projectors on the states that satisfy the extra link
constraint. In this way, the penalty terms vanish when
the link symmetry is satisfied and raise the energy of the
states violating the constraint. In principle, the link sym-
metry is rigorously satisfied for ⌫ ! 1. At numerical
level, this limit translates into choosing ⌫ much larger
than the other simulation parameters of the Hamilto-
nian, i.e., ⌫ � max {|t|, |m|, |gel|, |gm|}. However, set-
ting ⌫ too large in the first optimisation steps could lead
to local minima or non-physical states, since the varia-
tional algorithm would focus only on the penalty terms
more than the physical ones. In order to avoid this prob-
lem and reach the convergence, we adopt a driven op-
timization, by varying the penalty coefficient ⌫ in three
steps: (i) starting from a very small value of ⌫ and from
a random state of the TTN, that in general does not re-
spect the extra link symmetry, we drive the penalty term
with a linear growth of ⌫ during the first optimization
sweeps. In this stage, the optimization will focus mainly
on the physical quantities, until we notice a slight rise of
the energy: this effect signals that the global optmiza-
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Figure 1: Scheme of the three-dimensional LGT with
three electric field levels (spin-1 compact

representation). Fermionic degrees of freedom are
represented by staggered fermions on sites with different
parity: on the even (odd) sites, a full red (blue) circle
corresponds to a particle (antiparticle) with positive
(negative) charge. As an illustrative example, it is

shown a gauge-invariant configuration of matter and
gauge fields with one particle and one antiparticle in the

sector of zero total charge.

effect akin to the Schwinger mechanism. Furthermore,
we address the confinement problem by evaluating the
binding energies of charged particle pairs pinned at spec-
ified distances. Finally, we consider the scenario with a
charge imbalance into the system, i.e. at finite charge
density, and we characterize a regime where charges ac-
cumulate at the surface of our finite sample, analogously
to a classic perfect conductor.

I. THE MODEL

Hereafter, we numerically simulate, at zero tempera-
ture, the Hamiltonian of U(1) quantum electrodynamics
on a finite L⇥L⇥L three-dimensional simple cubic lattice
[16]:

Ĥ = �t
X

x,µ

⇣
 ̂†

x Ûx,µ  ̂x+µ + H.c.
⌘

(1a)

+ m
X

x

(�1)x ̂†
x ̂x +

g2
e

2

X

x,µ

Ê2
x,µ (1b)

�
g2

m

2

X

x

�
⇤µx,µy + ⇤µx,µz + ⇤µy,µz + H.c.

�
(1c)

with x ⌘ (i, j, k) for 0  i, j, k  L � 1
labelling the sites of the lattice and ⇤µ↵,µ� =

Ûx,µ↵Ûx+µ↵,µ� Û†
x+µ� ,µ↵

Û†
x,µ�

. Here we adopted the
Kogut-Susskind formulation [16], representing fermionic
degrees of freedom with a staggered spinless fermion
field { ̂x,  ̂†

x0} = �x,x0 on lattice sites. Their bare mass
mx = (�1)xm is staggered, as tracked by the site parity

(�1)x = (�1)i+j+k, so that fermions on even sites rep-
resent particles with positive electric charge +q, while
holes on odd sites represent anti-particles with negative
charge �q, as shown in Fig. 1. Charge Q̂ conservation is
thus expressed as global fermion number N̂ conservation,
since Q̂ =

P
x

⇣
 ̂†

x ̂x �
1�(�1)x

2

⌘
= N̂ � L3/2.

The links of the 3D lattice are uniquely identified by
the couple of parameters (x, µ) where x is any site, µ is
one of the three positive lattice unit vectors µx ⌘ (1, 0, 0),
µy ⌘ (0, 1, 0), µz ⌘ (0, 0, 1). The gauge fields are defined
on lattice links through the pair of operators Êx,µ (elec-
tric field) and Ûx,µ (unitary comparator) that satisfy the
commutation relation

[Êx,µ, Ûx0,µ0 ] = �x,x0�µ,µ0Ûx,µ. (2)
For comfort of notation, we can extend the definition to
negative lattice unit vectors via Êx+µ,�µ = �Êx,µ and
Ûx+µ,�µ = Û†

x,µ.
The Hamiltonian of Eq. (1) consists of four terms: the

parallel transporter (1a) describes creation and annihi-
lation of a particle-antiparticle pair, shifting the gauge
field in-between to preserve local gauge symmetries. The
staggered mass and the electric energy density (1b) are
completely local. Finally, the plaquette terms (1c) cap-
ture the magnetic energy density, and are related to the
smallest Wilson loops along the closed plaquettes along
the three planes x � y, x � z, y � z of the lattice. In
dimensionless units (~ = c = 1), the couplings in Eq. (1)
are not independent: They can be expressed as t = 1/a,
m = m0, g2

e = g2/a, g2
m = 8/(g2a), where a is the lattice

spacing, g is the coupling constant of QED and m0 is
the bare mass of particles/antiparticles. The numerical
setup allows us to consider the couplings (t, m, ge, gm)
as mutually independent. We then recover the physical
regime of QED by enforcing gegm = 2

p
2t. We also fix

the energy scale by setting t = 1.
The local U(1) gauge symmetry of the theory is en-

coded in Gauss’s law, whose generators

Ĝx =  ̂†
x ̂x �

1 � (�1)x

2
�

X

µ

Êx,µ, (3)

are defined around each lattice site x. The sum in Eq. (3)
involves the six electric field operators on the links iden-
tified by ±µx, ±µy, ±µz. Each Ĝx commutes with the
Hamiltonian Ĥ and the gauge invariant Hilbert space
consists of physical many-body quantum states |�i sat-
isfying Ĝx |�i = 0 at every site x.

As stressed in the standard Wilson’s formulation of
lattice QED [11], faithful representations of the (Ê, Û)
algebra are infinite-dimensional. A truncation to a fi-
nite dimension becomes therefore necessary for numeri-
cal simulations with TN methods, which require a finite
effective Hilbert dimension at each lattice site. We use
the quantum link model (QLM) approach in which the
gauge field algebra is replaced by SU(2) spin algebra, i.e.
Êx,µ ⌘ Ŝz

x,µ and Ûx,µ ⌘ Ŝ+
x,µ/s for a spin-s representa-

tion. This substitution keeps the electric field operator
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Figure 1: Scheme of the three-dimensional LGT with
three electric field levels (spin-1 compact

representation). Fermionic degrees of freedom are
represented by staggered fermions on sites with different
parity: on the even (odd) sites, a full red (blue) circle
corresponds to a particle (antiparticle) with positive
(negative) charge. As an illustrative example, it is

shown a gauge-invariant configuration of matter and
gauge fields with one particle and one antiparticle in the

sector of zero total charge.

effect akin to the Schwinger mechanism. Furthermore,
we address the confinement problem by evaluating the
binding energies of charged particle pairs pinned at spec-
ified distances. Finally, we consider the scenario with a
charge imbalance into the system, i.e. at finite charge
density, and we characterize a regime where charges ac-
cumulate at the surface of our finite sample, analogously
to a classic perfect conductor.

I. THE MODEL

Hereafter, we numerically simulate, at zero tempera-
ture, the Hamiltonian of U(1) quantum electrodynamics
on a finite L⇥L⇥L three-dimensional simple cubic lattice
[16]:

Ĥ = �t
X
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with x ⌘ (i, j, k) for 0  i, j, k  L � 1
labelling the sites of the lattice and ⇤µ↵,µ� =

Ûx,µ↵Ûx+µ↵,µ� Û†
x+µ� ,µ↵

Û†
x,µ�

. Here we adopted the
Kogut-Susskind formulation [16], representing fermionic
degrees of freedom with a staggered spinless fermion
field { ̂x,  ̂†

x0} = �x,x0 on lattice sites. Their bare mass
mx = (�1)xm is staggered, as tracked by the site parity

(�1)x = (�1)i+j+k, so that fermions on even sites rep-
resent particles with positive electric charge +q, while
holes on odd sites represent anti-particles with negative
charge �q, as shown in Fig. 1. Charge Q̂ conservation is
thus expressed as global fermion number N̂ conservation,
since Q̂ =

P
x

⇣
 ̂†

x ̂x �
1�(�1)x

2

⌘
= N̂ � L3/2.

The links of the 3D lattice are uniquely identified by
the couple of parameters (x, µ) where x is any site, µ is
one of the three positive lattice unit vectors µx ⌘ (1, 0, 0),
µy ⌘ (0, 1, 0), µz ⌘ (0, 0, 1). The gauge fields are defined
on lattice links through the pair of operators Êx,µ (elec-
tric field) and Ûx,µ (unitary comparator) that satisfy the
commutation relation

[Êx,µ, Ûx0,µ0 ] = �x,x0�µ,µ0Ûx,µ. (2)
For comfort of notation, we can extend the definition to
negative lattice unit vectors via Êx+µ,�µ = �Êx,µ and
Ûx+µ,�µ = Û†

x,µ.
The Hamiltonian of Eq. (1) consists of four terms: the

parallel transporter (1a) describes creation and annihi-
lation of a particle-antiparticle pair, shifting the gauge
field in-between to preserve local gauge symmetries. The
staggered mass and the electric energy density (1b) are
completely local. Finally, the plaquette terms (1c) cap-
ture the magnetic energy density, and are related to the
smallest Wilson loops along the closed plaquettes along
the three planes x � y, x � z, y � z of the lattice. In
dimensionless units (~ = c = 1), the couplings in Eq. (1)
are not independent: They can be expressed as t = 1/a,
m = m0, g2

e = g2/a, g2
m = 8/(g2a), where a is the lattice

spacing, g is the coupling constant of QED and m0 is
the bare mass of particles/antiparticles. The numerical
setup allows us to consider the couplings (t, m, ge, gm)
as mutually independent. We then recover the physical
regime of QED by enforcing gegm = 2

p
2t. We also fix

the energy scale by setting t = 1.
The local U(1) gauge symmetry of the theory is en-

coded in Gauss’s law, whose generators

Ĝx =  ̂†
x ̂x �

1 � (�1)x

2
�

X

µ

Êx,µ, (3)

are defined around each lattice site x. The sum in Eq. (3)
involves the six electric field operators on the links iden-
tified by ±µx, ±µy, ±µz. Each Ĝx commutes with the
Hamiltonian Ĥ and the gauge invariant Hilbert space
consists of physical many-body quantum states |�i sat-
isfying Ĝx |�i = 0 at every site x.

As stressed in the standard Wilson’s formulation of
lattice QED [11], faithful representations of the (Ê, Û)
algebra are infinite-dimensional. A truncation to a fi-
nite dimension becomes therefore necessary for numeri-
cal simulations with TN methods, which require a finite
effective Hilbert dimension at each lattice site. We use
the quantum link model (QLM) approach in which the
gauge field algebra is replaced by SU(2) spin algebra, i.e.
Êx,µ ⌘ Ŝz

x,µ and Ûx,µ ⌘ Ŝ+
x,µ/s for a spin-s representa-

tion. This substitution keeps the electric field operator
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Figure 1: Scheme of the three-dimensional LGT with
three electric field levels (spin-1 compact

representation). Fermionic degrees of freedom are
represented by staggered fermions on sites with different
parity: on the even (odd) sites, a full red (blue) circle
corresponds to a particle (antiparticle) with positive
(negative) charge. As an illustrative example, it is

shown a gauge-invariant configuration of matter and
gauge fields with one particle and one antiparticle in the

sector of zero total charge.

effect akin to the Schwinger mechanism. Furthermore,
we address the confinement problem by evaluating the
binding energies of charged particle pairs pinned at spec-
ified distances. Finally, we consider the scenario with a
charge imbalance into the system, i.e. at finite charge
density, and we characterize a regime where charges ac-
cumulate at the surface of our finite sample, analogously
to a classic perfect conductor.

I. THE MODEL

Hereafter, we numerically simulate, at zero tempera-
ture, the Hamiltonian of U(1) quantum electrodynamics
on a finite L⇥L⇥L three-dimensional simple cubic lattice
[16]:
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⌘
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⇤µx,µy + ⇤µx,µz + ⇤µy,µz + H.c.

�
(1c)

with x ⌘ (i, j, k) for 0  i, j, k  L � 1
labelling the sites of the lattice and ⇤µ↵,µ� =

Ûx,µ↵Ûx+µ↵,µ� Û†
x+µ� ,µ↵

Û†
x,µ�

. Here we adopted the
Kogut-Susskind formulation [16], representing fermionic
degrees of freedom with a staggered spinless fermion
field { ̂x,  ̂†

x0} = �x,x0 on lattice sites. Their bare mass
mx = (�1)xm is staggered, as tracked by the site parity

(�1)x = (�1)i+j+k, so that fermions on even sites rep-
resent particles with positive electric charge +q, while
holes on odd sites represent anti-particles with negative
charge �q, as shown in Fig. 1. Charge Q̂ conservation is
thus expressed as global fermion number N̂ conservation,
since Q̂ =

P
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⇣
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x ̂x �
1�(�1)x

2

⌘
= N̂ � L3/2.

The links of the 3D lattice are uniquely identified by
the couple of parameters (x, µ) where x is any site, µ is
one of the three positive lattice unit vectors µx ⌘ (1, 0, 0),
µy ⌘ (0, 1, 0), µz ⌘ (0, 0, 1). The gauge fields are defined
on lattice links through the pair of operators Êx,µ (elec-
tric field) and Ûx,µ (unitary comparator) that satisfy the
commutation relation

[Êx,µ, Ûx0,µ0 ] = �x,x0�µ,µ0Ûx,µ. (2)
For comfort of notation, we can extend the definition to
negative lattice unit vectors via Êx+µ,�µ = �Êx,µ and
Ûx+µ,�µ = Û†

x,µ.
The Hamiltonian of Eq. (1) consists of four terms: the

parallel transporter (1a) describes creation and annihi-
lation of a particle-antiparticle pair, shifting the gauge
field in-between to preserve local gauge symmetries. The
staggered mass and the electric energy density (1b) are
completely local. Finally, the plaquette terms (1c) cap-
ture the magnetic energy density, and are related to the
smallest Wilson loops along the closed plaquettes along
the three planes x � y, x � z, y � z of the lattice. In
dimensionless units (~ = c = 1), the couplings in Eq. (1)
are not independent: They can be expressed as t = 1/a,
m = m0, g2

e = g2/a, g2
m = 8/(g2a), where a is the lattice

spacing, g is the coupling constant of QED and m0 is
the bare mass of particles/antiparticles. The numerical
setup allows us to consider the couplings (t, m, ge, gm)
as mutually independent. We then recover the physical
regime of QED by enforcing gegm = 2

p
2t. We also fix

the energy scale by setting t = 1.
The local U(1) gauge symmetry of the theory is en-

coded in Gauss’s law, whose generators

Ĝx =  ̂†
x ̂x �

1 � (�1)x

2
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X

µ

Êx,µ, (3)

are defined around each lattice site x. The sum in Eq. (3)
involves the six electric field operators on the links iden-
tified by ±µx, ±µy, ±µz. Each Ĝx commutes with the
Hamiltonian Ĥ and the gauge invariant Hilbert space
consists of physical many-body quantum states |�i sat-
isfying Ĝx |�i = 0 at every site x.

As stressed in the standard Wilson’s formulation of
lattice QED [11], faithful representations of the (Ê, Û)
algebra are infinite-dimensional. A truncation to a fi-
nite dimension becomes therefore necessary for numeri-
cal simulations with TN methods, which require a finite
effective Hilbert dimension at each lattice site. We use
the quantum link model (QLM) approach in which the
gauge field algebra is replaced by SU(2) spin algebra, i.e.
Êx,µ ⌘ Ŝz

x,µ and Ûx,µ ⌘ Ŝ+
x,µ/s for a spin-s representa-

tion. This substitution keeps the electric field operator
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Figure 6: (a) Representation of the gauge field in terms
of two species of Dirac modes in the sector with a total
number of fermions equal to two. b) Generic state of
the local site composed by the the matter degrees of

freedom and six half-links along the three spatial
directions. On each half-link the coefficients

kj 2 {0, 1, 2} define the fermionic modes. (c) Examples
of gauge-invariant configurations for even and odd sites.

Due to the use of staggered-fermions, the
presence/absence of a fermion in an even/odd site
represents the presence of a charge/anti-charge.

Ĝx =  ̂†
x ̂x �

1 � (�1)x

2
�

X

µ

�
1 � n̂a

x,µ � n̂b
x,µ

�
.(A8)

Taking into account this property, it is possible to con-
struct the gauge-invariant basis for the local site x, that
is composed by the lattice site and the six half-links along
the directions ±µx, ±µy, ±µz (see Fig. 6):

������

k5

k1 � k4

k2

+k6

k3

= (�1)�k1,2+�k2,2+�k3,2
|�ix (A9)

⇥ |k1ix,�µx
|k2ix,�µy

|k3ix,�µz

⇥ |k4ix,µx
|k5ix,µy

|k6ix,µz

where |�ix = ( ̂†
x)�

|0i with � = 0, 1 describes the pres-
ence or the absence of the matter/antimatter particles.
The indices kj run over {0,1,2} selecting a configura-
tion of the 3-hardcore modes for each respective half-link.
The presence of the factor (�1)�k1,2+�k2,2+�k3,2 allows us
to satisfy the anticommutation relations of the fermionic
representation recovering the correct signs of Eq. (A5).
The occupation numbers � and kj are not independent
due to the constraint imposed by the Gauss’s law

Ĝx

������

k5

k1 � k4

k2

+k6

k3

= 0. (A10)

This equation, in the new language of matter fermions
and rishons, reads

�+
6X

j=1

kj = 6 +
1 � (�1)x

2
. (A11)

where the factor 6 is indeed the coordination number
of the cubic lattice. Thus, the gauge invariant configu-
rations of the local basis are obtained by applying this
constraint, effectively reducing the ‘dressed-site’ (matter
and 6 rishon modes) dimension from 2 · 36 = 1458 to
merely 267. We encode these states as building blocks of
our computational representation for the TN algorithms.
In Fig. 6 we show some examples of gauge-invariant con-
figurations for even and odd sites.

The construction of the gauge-invariant local sites is
particularly advantageous for our numerical purposes: in
fact, it is now possible to express all the terms in the
Hamiltonian of Eq. (1) of the main text as product
of completely local operators that commute on different
sites. Let us consider the kinetic term of the Hamiltonian
and apply the representation of the gauge field in terms
of the 3-hardcore fermionic modes:

 ̂†
xÛx,µ ̂x+µ =  ̂†

x⌘̂x,µ⌘̂
†
x+µ,�µ ̂x+µ

=
⇣
⌘̂†x,µ ̂x

⌘† ⇣
⌘̂†x+µ,�µ ̂x+µ

⌘

= M (↵)†
x M↵0

x+µ (A12)

where the indices ↵ and ↵0 select the right operators de-
pending on the different directions in which the hopping
process takes place. The operators M↵

x,µ are genuinely lo-
cal (i.e. they commute with operators acting elsewhere)
as they are always quadratic in the fermionic operators
( and/or ⌘). The same argument applies to the mag-
netic (plaquette) terms in the Hamiltonian

⇤µx,µy = Ux,x+µxUx+µx,µyU †
x+µy,µx

U †
x,µy

=

= ⌘x,µx⌘
†
x+µx,�µx

⌘x+µx,µy⌘
†
x+µx+µy,�µy

⇥

⇣
⌘x+µy,µx⌘

†
x+µx+µy,�µx

⌘† ⇣
⌘x,µy⌘

†
x+µy,�µy

⌘†

= �

⇣
⌘†x,µy

⌘x,µx

⌘ ⇣
⌘†x+µx,�µx

⌘x+µx,µy

⌘

⇥

⇣
⌘†x+µx+µy,�µy

⌘x+µx+µy,�µx

⌘ ⇣
⌘†x+µy,µx

⌘x+µy,�µy

⌘

⌘ �C(↵)
x C(↵0)

x+µx
C(↵00)

x+µx+µy
C(↵000)

x+µy
, (A13)

where the indices ↵, ↵0, ↵00, ↵000 depend on the plane of
the plaquette (in this case x � y) and the links involved
into the loop. The operators C↵

x are genuinely local and
act on the four sites at the corners of the plaquette. The
decomposition is the same for the other plaquettes in the
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Figure 8: (a) Driven optimization (in three steps: linear, quadratic, constant) of the penalty coefficient ⌫ (red) and
behavior of the energy (blue) as a function of the iterations for an exemplifying simulation. The energy is reported

as the difference with the lowest final energy that we reach. (b) Driven optimization of the penalty coefficient ⌫
(red) and global error �L (green) with respect to the link symmetry during the optimization steps. (c) Scaling of the

energy density as a function of the inverse of the bond dimension 1/�. The bond dimension � is in the range
[100, 450].

tors. During the variational optimization stage, in order
to improve the convergence, we perform the single-tensor
optimization with subspace-expansion technique, i.e., al-
lowing a dynamical increase of the local bond dimension
and adapting the symmetry sectors [85]. This scheme
has a global computational cost of the order O(�4). The
single tensor optimization is implemented in three steps:
(i) the effective Hamiltonian Heff for the tensor is ob-
tained by contracting the complete Hamiltonian of the
system with all the remaining tensors of the tree; (ii) the
local eigenvalue problem for Heff is solved by using the
Arnoldi method of the ARPACK library; (iii) the ten-
sor is updated by the eigenvector of Heff corresponding
to the lowest eigenvalue. This procedure is iterated by
sweeping through the TTN from the lowest to the highest
layers, gradually reducing the energy expectation value.
After completing the whole sweep, the procedure is it-
erated again and again, until the desidered convergence
in the energy is reached. The precision of the Arnoldi
algorithm is increased in each sweep, for gaining more
accuracy in solving the local eigenvalue problems as we
approach the final convergence.

TTN computations presented in this work are ex-
tremely challenging due to the complexity of LGTs in
the three-dimensional scenario. They were performed on
different HPC-clusters (CloudVeneto, CINECA, BwUni-
Cluster and ATOS Bull): a single simulation for the max-
imum size that we reached, a 8 ⇥ 8 ⇥ 8 lattice, can last
up to five weeks until final convergence, depending on the
different regimes of the model and the control parameters
of the algorithms.

Appendix C: Numerical Convergence

With our numerical simulations we characterize the
properties of the ground state of the system as a function
of the parameters in the Hamiltonian of Eq. (1) of the

main text. We fix the energy scale by setting the hopping
coefficient t = 1 and we access several regimes of the mass
m, the electric ge and the magnetic coupling gm. We
consider simple cubic lattices L ⇥ L ⇥ L with the linear
size L being a binary power; in particular, we simulate
the case with L = 2, 4, 8, that is, up to 512 lattice sites.

As explained in Appendix A, in order to obtain the
right representation of the electric field operators, we
have to enforce the extra link symmetry constraint
L̂x,µ = 2 at every pair of neighboring sites. For this
reason, we include in the Hamiltonian additional terms
that energetically penalise all the states with a number
of hardcore fermions per link different from two, namely:

Hpen = ⌫
X

x,µ

⇣
1 � �2,L̂x,µ

⌘
(C1)

where ⌫ > 0 is the penalty coefficient and �2,L̂x,µ
are

the projectors on the states that satisfy the extra link
constraint. In this way, the penalty terms vanish when
the link symmetry is satisfied and raise the energy of the
states violating the constraint. In principle, the link sym-
metry is rigorously satisfied for ⌫ ! 1. At numerical
level, this limit translates into choosing ⌫ much larger
than the other simulation parameters of the Hamilto-
nian, i.e., ⌫ � max {|t|, |m|, |gel|, |gm|}. However, set-
ting ⌫ too large in the first optimisation steps could lead
to local minima or non-physical states, since the varia-
tional algorithm would focus only on the penalty terms
more than the physical ones. In order to avoid this prob-
lem and reach the convergence, we adopt a driven op-
timization, by varying the penalty coefficient ⌫ in three
steps: (i) starting from a very small value of ⌫ and from
a random state of the TTN, that in general does not re-
spect the extra link symmetry, we drive the penalty term
with a linear growth of ⌫ during the first optimization
sweeps. In this stage, the optimization will focus mainly
on the physical quantities, until we notice a slight rise of
the energy: this effect signals that the global optmiza-

Local dimension 267, up to 12288 Hamiltonian operators 
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Figure 1: Scheme of the three-dimensional LGT with
three electric field levels (spin-1 compact

representation). Fermionic degrees of freedom are
represented by staggered fermions on sites with different
parity: on the even (odd) sites, a full red (blue) circle
corresponds to a particle (antiparticle) with positive
(negative) charge. As an illustrative example, it is

shown a gauge-invariant configuration of matter and
gauge fields with one particle and one antiparticle in the

sector of zero total charge.

effect akin to the Schwinger mechanism. Furthermore,
we address the confinement problem by evaluating the
binding energies of charged particle pairs pinned at spec-
ified distances. Finally, we consider the scenario with a
charge imbalance into the system, i.e. at finite charge
density, and we characterize a regime where charges ac-
cumulate at the surface of our finite sample, analogously
to a classic perfect conductor.

I. THE MODEL

Hereafter, we numerically simulate, at zero tempera-
ture, the Hamiltonian of U(1) quantum electrodynamics
on a finite L⇥L⇥L three-dimensional simple cubic lattice
[16]:

Ĥ = �t
X

x,µ

⇣
 ̂†

x Ûx,µ  ̂x+µ + H.c.
⌘

(1a)

+ m
X

x

(�1)x ̂†
x ̂x +

g2
e

2

X

x,µ

Ê2
x,µ (1b)

�
g2

m

2

X

x

�
⇤µx,µy + ⇤µx,µz + ⇤µy,µz + H.c.

�
(1c)

with x ⌘ (i, j, k) for 0  i, j, k  L � 1
labelling the sites of the lattice and ⇤µ↵,µ� =

Ûx,µ↵Ûx+µ↵,µ� Û†
x+µ� ,µ↵

Û†
x,µ�

. Here we adopted the
Kogut-Susskind formulation [16], representing fermionic
degrees of freedom with a staggered spinless fermion
field { ̂x,  ̂†

x0} = �x,x0 on lattice sites. Their bare mass
mx = (�1)xm is staggered, as tracked by the site parity

(�1)x = (�1)i+j+k, so that fermions on even sites rep-
resent particles with positive electric charge +q, while
holes on odd sites represent anti-particles with negative
charge �q, as shown in Fig. 1. Charge Q̂ conservation is
thus expressed as global fermion number N̂ conservation,
since Q̂ =

P
x

⇣
 ̂†

x ̂x �
1�(�1)x

2

⌘
= N̂ � L3/2.

The links of the 3D lattice are uniquely identified by
the couple of parameters (x, µ) where x is any site, µ is
one of the three positive lattice unit vectors µx ⌘ (1, 0, 0),
µy ⌘ (0, 1, 0), µz ⌘ (0, 0, 1). The gauge fields are defined
on lattice links through the pair of operators Êx,µ (elec-
tric field) and Ûx,µ (unitary comparator) that satisfy the
commutation relation

[Êx,µ, Ûx0,µ0 ] = �x,x0�µ,µ0Ûx,µ. (2)
For comfort of notation, we can extend the definition to
negative lattice unit vectors via Êx+µ,�µ = �Êx,µ and
Ûx+µ,�µ = Û†

x,µ.
The Hamiltonian of Eq. (1) consists of four terms: the

parallel transporter (1a) describes creation and annihi-
lation of a particle-antiparticle pair, shifting the gauge
field in-between to preserve local gauge symmetries. The
staggered mass and the electric energy density (1b) are
completely local. Finally, the plaquette terms (1c) cap-
ture the magnetic energy density, and are related to the
smallest Wilson loops along the closed plaquettes along
the three planes x � y, x � z, y � z of the lattice. In
dimensionless units (~ = c = 1), the couplings in Eq. (1)
are not independent: They can be expressed as t = 1/a,
m = m0, g2

e = g2/a, g2
m = 8/(g2a), where a is the lattice

spacing, g is the coupling constant of QED and m0 is
the bare mass of particles/antiparticles. The numerical
setup allows us to consider the couplings (t, m, ge, gm)
as mutually independent. We then recover the physical
regime of QED by enforcing gegm = 2

p
2t. We also fix

the energy scale by setting t = 1.
The local U(1) gauge symmetry of the theory is en-

coded in Gauss’s law, whose generators

Ĝx =  ̂†
x ̂x �

1 � (�1)x

2
�

X

µ

Êx,µ, (3)

are defined around each lattice site x. The sum in Eq. (3)
involves the six electric field operators on the links iden-
tified by ±µx, ±µy, ±µz. Each Ĝx commutes with the
Hamiltonian Ĥ and the gauge invariant Hilbert space
consists of physical many-body quantum states |�i sat-
isfying Ĝx |�i = 0 at every site x.

As stressed in the standard Wilson’s formulation of
lattice QED [11], faithful representations of the (Ê, Û)
algebra are infinite-dimensional. A truncation to a fi-
nite dimension becomes therefore necessary for numeri-
cal simulations with TN methods, which require a finite
effective Hilbert dimension at each lattice site. We use
the quantum link model (QLM) approach in which the
gauge field algebra is replaced by SU(2) spin algebra, i.e.
Êx,µ ⌘ Ŝz

x,µ and Ûx,µ ⌘ Ŝ+
x,µ/s for a spin-s representa-

tion. This substitution keeps the electric field operator
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Figure 1: Scheme of the three-dimensional LGT with
three electric field levels (spin-1 compact

representation). Fermionic degrees of freedom are
represented by staggered fermions on sites with different
parity: on the even (odd) sites, a full red (blue) circle
corresponds to a particle (antiparticle) with positive
(negative) charge. As an illustrative example, it is

shown a gauge-invariant configuration of matter and
gauge fields with one particle and one antiparticle in the

sector of zero total charge.

effect akin to the Schwinger mechanism. Furthermore,
we address the confinement problem by evaluating the
binding energies of charged particle pairs pinned at spec-
ified distances. Finally, we consider the scenario with a
charge imbalance into the system, i.e. at finite charge
density, and we characterize a regime where charges ac-
cumulate at the surface of our finite sample, analogously
to a classic perfect conductor.

I. THE MODEL

Hereafter, we numerically simulate, at zero tempera-
ture, the Hamiltonian of U(1) quantum electrodynamics
on a finite L⇥L⇥L three-dimensional simple cubic lattice
[16]:

Ĥ = �t
X

x,µ

⇣
 ̂†

x Ûx,µ  ̂x+µ + H.c.
⌘

(1a)

+ m
X

x

(�1)x ̂†
x ̂x +

g2
e

2

X

x,µ

Ê2
x,µ (1b)

�
g2

m

2

X

x

�
⇤µx,µy + ⇤µx,µz + ⇤µy,µz + H.c.

�
(1c)

with x ⌘ (i, j, k) for 0  i, j, k  L � 1
labelling the sites of the lattice and ⇤µ↵,µ� =

Ûx,µ↵Ûx+µ↵,µ� Û†
x+µ� ,µ↵

Û†
x,µ�

. Here we adopted the
Kogut-Susskind formulation [16], representing fermionic
degrees of freedom with a staggered spinless fermion
field { ̂x,  ̂†

x0} = �x,x0 on lattice sites. Their bare mass
mx = (�1)xm is staggered, as tracked by the site parity

(�1)x = (�1)i+j+k, so that fermions on even sites rep-
resent particles with positive electric charge +q, while
holes on odd sites represent anti-particles with negative
charge �q, as shown in Fig. 1. Charge Q̂ conservation is
thus expressed as global fermion number N̂ conservation,
since Q̂ =

P
x

⇣
 ̂†

x ̂x �
1�(�1)x

2

⌘
= N̂ � L3/2.

The links of the 3D lattice are uniquely identified by
the couple of parameters (x, µ) where x is any site, µ is
one of the three positive lattice unit vectors µx ⌘ (1, 0, 0),
µy ⌘ (0, 1, 0), µz ⌘ (0, 0, 1). The gauge fields are defined
on lattice links through the pair of operators Êx,µ (elec-
tric field) and Ûx,µ (unitary comparator) that satisfy the
commutation relation

[Êx,µ, Ûx0,µ0 ] = �x,x0�µ,µ0Ûx,µ. (2)
For comfort of notation, we can extend the definition to
negative lattice unit vectors via Êx+µ,�µ = �Êx,µ and
Ûx+µ,�µ = Û†

x,µ.
The Hamiltonian of Eq. (1) consists of four terms: the

parallel transporter (1a) describes creation and annihi-
lation of a particle-antiparticle pair, shifting the gauge
field in-between to preserve local gauge symmetries. The
staggered mass and the electric energy density (1b) are
completely local. Finally, the plaquette terms (1c) cap-
ture the magnetic energy density, and are related to the
smallest Wilson loops along the closed plaquettes along
the three planes x � y, x � z, y � z of the lattice. In
dimensionless units (~ = c = 1), the couplings in Eq. (1)
are not independent: They can be expressed as t = 1/a,
m = m0, g2

e = g2/a, g2
m = 8/(g2a), where a is the lattice

spacing, g is the coupling constant of QED and m0 is
the bare mass of particles/antiparticles. The numerical
setup allows us to consider the couplings (t, m, ge, gm)
as mutually independent. We then recover the physical
regime of QED by enforcing gegm = 2

p
2t. We also fix

the energy scale by setting t = 1.
The local U(1) gauge symmetry of the theory is en-

coded in Gauss’s law, whose generators

Ĝx =  ̂†
x ̂x �

1 � (�1)x

2
�

X

µ

Êx,µ, (3)

are defined around each lattice site x. The sum in Eq. (3)
involves the six electric field operators on the links iden-
tified by ±µx, ±µy, ±µz. Each Ĝx commutes with the
Hamiltonian Ĥ and the gauge invariant Hilbert space
consists of physical many-body quantum states |�i sat-
isfying Ĝx |�i = 0 at every site x.

As stressed in the standard Wilson’s formulation of
lattice QED [11], faithful representations of the (Ê, Û)
algebra are infinite-dimensional. A truncation to a fi-
nite dimension becomes therefore necessary for numeri-
cal simulations with TN methods, which require a finite
effective Hilbert dimension at each lattice site. We use
the quantum link model (QLM) approach in which the
gauge field algebra is replaced by SU(2) spin algebra, i.e.
Êx,µ ⌘ Ŝz

x,µ and Ûx,µ ⌘ Ŝ+
x,µ/s for a spin-s representa-

tion. This substitution keeps the electric field operator

2

(�1)i+j = + 1 : {
(�1)i+j = � 1 : {

i

j

1 2 3

1

2

3

Matter Field

= q

= � q
= �

= �

Gauge Field

Ex,�x
=

= | � �
= |��
= | � �

(�1)i+j+k = �1

i

j

k

(�1)i+j+k = +1

Figure 1: Scheme of the three-dimensional LGT with
three electric field levels (spin-1 compact
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shown a gauge-invariant configuration of matter and
gauge fields with one particle and one antiparticle in the

sector of zero total charge.

effect akin to the Schwinger mechanism. Furthermore,
we address the confinement problem by evaluating the
binding energies of charged particle pairs pinned at spec-
ified distances. Finally, we consider the scenario with a
charge imbalance into the system, i.e. at finite charge
density, and we characterize a regime where charges ac-
cumulate at the surface of our finite sample, analogously
to a classic perfect conductor.

I. THE MODEL

Hereafter, we numerically simulate, at zero tempera-
ture, the Hamiltonian of U(1) quantum electrodynamics
on a finite L⇥L⇥L three-dimensional simple cubic lattice
[16]:
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Ê2
x,µ (1b)

�
g2

m

2

X

x

�
⇤µx,µy + ⇤µx,µz + ⇤µy,µz + H.c.

�
(1c)

with x ⌘ (i, j, k) for 0  i, j, k  L � 1
labelling the sites of the lattice and ⇤µ↵,µ� =

Ûx,µ↵Ûx+µ↵,µ� Û†
x+µ� ,µ↵

Û†
x,µ�

. Here we adopted the
Kogut-Susskind formulation [16], representing fermionic
degrees of freedom with a staggered spinless fermion
field { ̂x,  ̂†

x0} = �x,x0 on lattice sites. Their bare mass
mx = (�1)xm is staggered, as tracked by the site parity

(�1)x = (�1)i+j+k, so that fermions on even sites rep-
resent particles with positive electric charge +q, while
holes on odd sites represent anti-particles with negative
charge �q, as shown in Fig. 1. Charge Q̂ conservation is
thus expressed as global fermion number N̂ conservation,
since Q̂ =

P
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The links of the 3D lattice are uniquely identified by
the couple of parameters (x, µ) where x is any site, µ is
one of the three positive lattice unit vectors µx ⌘ (1, 0, 0),
µy ⌘ (0, 1, 0), µz ⌘ (0, 0, 1). The gauge fields are defined
on lattice links through the pair of operators Êx,µ (elec-
tric field) and Ûx,µ (unitary comparator) that satisfy the
commutation relation

[Êx,µ, Ûx0,µ0 ] = �x,x0�µ,µ0Ûx,µ. (2)
For comfort of notation, we can extend the definition to
negative lattice unit vectors via Êx+µ,�µ = �Êx,µ and
Ûx+µ,�µ = Û†

x,µ.
The Hamiltonian of Eq. (1) consists of four terms: the

parallel transporter (1a) describes creation and annihi-
lation of a particle-antiparticle pair, shifting the gauge
field in-between to preserve local gauge symmetries. The
staggered mass and the electric energy density (1b) are
completely local. Finally, the plaquette terms (1c) cap-
ture the magnetic energy density, and are related to the
smallest Wilson loops along the closed plaquettes along
the three planes x � y, x � z, y � z of the lattice. In
dimensionless units (~ = c = 1), the couplings in Eq. (1)
are not independent: They can be expressed as t = 1/a,
m = m0, g2

e = g2/a, g2
m = 8/(g2a), where a is the lattice

spacing, g is the coupling constant of QED and m0 is
the bare mass of particles/antiparticles. The numerical
setup allows us to consider the couplings (t, m, ge, gm)
as mutually independent. We then recover the physical
regime of QED by enforcing gegm = 2

p
2t. We also fix

the energy scale by setting t = 1.
The local U(1) gauge symmetry of the theory is en-

coded in Gauss’s law, whose generators

Ĝx =  ̂†
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1 � (�1)x
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are defined around each lattice site x. The sum in Eq. (3)
involves the six electric field operators on the links iden-
tified by ±µx, ±µy, ±µz. Each Ĝx commutes with the
Hamiltonian Ĥ and the gauge invariant Hilbert space
consists of physical many-body quantum states |�i sat-
isfying Ĝx |�i = 0 at every site x.

As stressed in the standard Wilson’s formulation of
lattice QED [11], faithful representations of the (Ê, Û)
algebra are infinite-dimensional. A truncation to a fi-
nite dimension becomes therefore necessary for numeri-
cal simulations with TN methods, which require a finite
effective Hilbert dimension at each lattice site. We use
the quantum link model (QLM) approach in which the
gauge field algebra is replaced by SU(2) spin algebra, i.e.
Êx,µ ⌘ Ŝz

x,µ and Ûx,µ ⌘ Ŝ+
x,µ/s for a spin-s representa-

tion. This substitution keeps the electric field operator
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Figure 6: (a) Representation of the gauge field in terms
of two species of Dirac modes in the sector with a total
number of fermions equal to two. b) Generic state of
the local site composed by the the matter degrees of

freedom and six half-links along the three spatial
directions. On each half-link the coefficients

kj 2 {0, 1, 2} define the fermionic modes. (c) Examples
of gauge-invariant configurations for even and odd sites.

Due to the use of staggered-fermions, the
presence/absence of a fermion in an even/odd site
represents the presence of a charge/anti-charge.

Ĝx =  ̂†
x ̂x �

1 � (�1)x

2
�

X

µ

�
1 � n̂a

x,µ � n̂b
x,µ

�
.(A8)

Taking into account this property, it is possible to con-
struct the gauge-invariant basis for the local site x, that
is composed by the lattice site and the six half-links along
the directions ±µx, ±µy, ±µz (see Fig. 6):

������

k5

k1 � k4

k2

+k6

k3

= (�1)�k1,2+�k2,2+�k3,2
|�ix (A9)

⇥ |k1ix,�µx
|k2ix,�µy

|k3ix,�µz

⇥ |k4ix,µx
|k5ix,µy

|k6ix,µz

where |�ix = ( ̂†
x)�

|0i with � = 0, 1 describes the pres-
ence or the absence of the matter/antimatter particles.
The indices kj run over {0,1,2} selecting a configura-
tion of the 3-hardcore modes for each respective half-link.
The presence of the factor (�1)�k1,2+�k2,2+�k3,2 allows us
to satisfy the anticommutation relations of the fermionic
representation recovering the correct signs of Eq. (A5).
The occupation numbers � and kj are not independent
due to the constraint imposed by the Gauss’s law

Ĝx

������

k5

k1 � k4

k2

+k6

k3

= 0. (A10)

This equation, in the new language of matter fermions
and rishons, reads

�+
6X

j=1

kj = 6 +
1 � (�1)x

2
. (A11)

where the factor 6 is indeed the coordination number
of the cubic lattice. Thus, the gauge invariant configu-
rations of the local basis are obtained by applying this
constraint, effectively reducing the ‘dressed-site’ (matter
and 6 rishon modes) dimension from 2 · 36 = 1458 to
merely 267. We encode these states as building blocks of
our computational representation for the TN algorithms.
In Fig. 6 we show some examples of gauge-invariant con-
figurations for even and odd sites.

The construction of the gauge-invariant local sites is
particularly advantageous for our numerical purposes: in
fact, it is now possible to express all the terms in the
Hamiltonian of Eq. (1) of the main text as product
of completely local operators that commute on different
sites. Let us consider the kinetic term of the Hamiltonian
and apply the representation of the gauge field in terms
of the 3-hardcore fermionic modes:

 ̂†
xÛx,µ ̂x+µ =  ̂†

x⌘̂x,µ⌘̂
†
x+µ,�µ ̂x+µ

=
⇣
⌘̂†x,µ ̂x

⌘† ⇣
⌘̂†x+µ,�µ ̂x+µ

⌘

= M (↵)†
x M↵0

x+µ (A12)

where the indices ↵ and ↵0 select the right operators de-
pending on the different directions in which the hopping
process takes place. The operators M↵

x,µ are genuinely lo-
cal (i.e. they commute with operators acting elsewhere)
as they are always quadratic in the fermionic operators
( and/or ⌘). The same argument applies to the mag-
netic (plaquette) terms in the Hamiltonian

⇤µx,µy = Ux,x+µxUx+µx,µyU †
x+µy,µx

U †
x,µy

=

= ⌘x,µx⌘
†
x+µx,�µx

⌘x+µx,µy⌘
†
x+µx+µy,�µy

⇥

⇣
⌘x+µy,µx⌘

†
x+µx+µy,�µx

⌘† ⇣
⌘x,µy⌘

†
x+µy,�µy

⌘†

= �

⇣
⌘†x,µy

⌘x,µx

⌘ ⇣
⌘†x+µx,�µx

⌘x+µx,µy

⌘

⇥

⇣
⌘†x+µx+µy,�µy

⌘x+µx+µy,�µx

⌘ ⇣
⌘†x+µy,µx

⌘x+µy,�µy

⌘

⌘ �C(↵)
x C(↵0)

x+µx
C(↵00)

x+µx+µy
C(↵000)

x+µy
, (A13)

where the indices ↵, ↵0, ↵00, ↵000 depend on the plane of
the plaquette (in this case x � y) and the links involved
into the loop. The operators C↵

x are genuinely local and
act on the four sites at the corners of the plaquette. The
decomposition is the same for the other plaquettes in the
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Figure 8: (a) Driven optimization (in three steps: linear, quadratic, constant) of the penalty coefficient ⌫ (red) and
behavior of the energy (blue) as a function of the iterations for an exemplifying simulation. The energy is reported

as the difference with the lowest final energy that we reach. (b) Driven optimization of the penalty coefficient ⌫
(red) and global error �L (green) with respect to the link symmetry during the optimization steps. (c) Scaling of the

energy density as a function of the inverse of the bond dimension 1/�. The bond dimension � is in the range
[100, 450].

tors. During the variational optimization stage, in order
to improve the convergence, we perform the single-tensor
optimization with subspace-expansion technique, i.e., al-
lowing a dynamical increase of the local bond dimension
and adapting the symmetry sectors [85]. This scheme
has a global computational cost of the order O(�4). The
single tensor optimization is implemented in three steps:
(i) the effective Hamiltonian Heff for the tensor is ob-
tained by contracting the complete Hamiltonian of the
system with all the remaining tensors of the tree; (ii) the
local eigenvalue problem for Heff is solved by using the
Arnoldi method of the ARPACK library; (iii) the ten-
sor is updated by the eigenvector of Heff corresponding
to the lowest eigenvalue. This procedure is iterated by
sweeping through the TTN from the lowest to the highest
layers, gradually reducing the energy expectation value.
After completing the whole sweep, the procedure is it-
erated again and again, until the desidered convergence
in the energy is reached. The precision of the Arnoldi
algorithm is increased in each sweep, for gaining more
accuracy in solving the local eigenvalue problems as we
approach the final convergence.

TTN computations presented in this work are ex-
tremely challenging due to the complexity of LGTs in
the three-dimensional scenario. They were performed on
different HPC-clusters (CloudVeneto, CINECA, BwUni-
Cluster and ATOS Bull): a single simulation for the max-
imum size that we reached, a 8 ⇥ 8 ⇥ 8 lattice, can last
up to five weeks until final convergence, depending on the
different regimes of the model and the control parameters
of the algorithms.

Appendix C: Numerical Convergence

With our numerical simulations we characterize the
properties of the ground state of the system as a function
of the parameters in the Hamiltonian of Eq. (1) of the

main text. We fix the energy scale by setting the hopping
coefficient t = 1 and we access several regimes of the mass
m, the electric ge and the magnetic coupling gm. We
consider simple cubic lattices L ⇥ L ⇥ L with the linear
size L being a binary power; in particular, we simulate
the case with L = 2, 4, 8, that is, up to 512 lattice sites.

As explained in Appendix A, in order to obtain the
right representation of the electric field operators, we
have to enforce the extra link symmetry constraint
L̂x,µ = 2 at every pair of neighboring sites. For this
reason, we include in the Hamiltonian additional terms
that energetically penalise all the states with a number
of hardcore fermions per link different from two, namely:

Hpen = ⌫
X

x,µ

⇣
1 � �2,L̂x,µ

⌘
(C1)

where ⌫ > 0 is the penalty coefficient and �2,L̂x,µ
are

the projectors on the states that satisfy the extra link
constraint. In this way, the penalty terms vanish when
the link symmetry is satisfied and raise the energy of the
states violating the constraint. In principle, the link sym-
metry is rigorously satisfied for ⌫ ! 1. At numerical
level, this limit translates into choosing ⌫ much larger
than the other simulation parameters of the Hamilto-
nian, i.e., ⌫ � max {|t|, |m|, |gel|, |gm|}. However, set-
ting ⌫ too large in the first optimisation steps could lead
to local minima or non-physical states, since the varia-
tional algorithm would focus only on the penalty terms
more than the physical ones. In order to avoid this prob-
lem and reach the convergence, we adopt a driven op-
timization, by varying the penalty coefficient ⌫ in three
steps: (i) starting from a very small value of ⌫ and from
a random state of the TTN, that in general does not re-
spect the extra link symmetry, we drive the penalty term
with a linear growth of ⌫ during the first optimization
sweeps. In this stage, the optimization will focus mainly
on the physical quantities, until we notice a slight rise of
the energy: this effect signals that the global optmiza-

Up to 5 weeks x 64 cores of computational time

Local dimension 267, up to 12288 Hamiltonian operators 
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effect akin to the Schwinger mechanism. Furthermore,
we address the confinement problem by evaluating the
binding energies of charged particle pairs pinned at spec-
ified distances. Finally, we consider the scenario with a
charge imbalance into the system, i.e. at finite charge
density, and we characterize a regime where charges ac-
cumulate at the surface of our finite sample, analogously
to a classic perfect conductor.

I. THE MODEL

Hereafter, we numerically simulate, at zero tempera-
ture, the Hamiltonian of U(1) quantum electrodynamics
on a finite L⇥L⇥L three-dimensional simple cubic lattice
[16]:

Ĥ = �t
X

x,µ

⇣
 ̂†

x Ûx,µ  ̂x+µ + H.c.
⌘

(1a)

+ m
X

x

(�1)x ̂†
x ̂x +

g2
e

2

X

x,µ

Ê2
x,µ (1b)

�
g2

m

2

X

x

�
⇤µx,µy + ⇤µx,µz + ⇤µy,µz + H.c.

�
(1c)

with x ⌘ (i, j, k) for 0  i, j, k  L � 1
labelling the sites of the lattice and ⇤µ↵,µ� =

Ûx,µ↵Ûx+µ↵,µ� Û†
x+µ� ,µ↵

Û†
x,µ�

. Here we adopted the
Kogut-Susskind formulation [16], representing fermionic
degrees of freedom with a staggered spinless fermion
field { ̂x,  ̂†

x0} = �x,x0 on lattice sites. Their bare mass
mx = (�1)xm is staggered, as tracked by the site parity

(�1)x = (�1)i+j+k, so that fermions on even sites rep-
resent particles with positive electric charge +q, while
holes on odd sites represent anti-particles with negative
charge �q, as shown in Fig. 1. Charge Q̂ conservation is
thus expressed as global fermion number N̂ conservation,
since Q̂ =

P
x

⇣
 ̂†

x ̂x �
1�(�1)x

2

⌘
= N̂ � L3/2.

The links of the 3D lattice are uniquely identified by
the couple of parameters (x, µ) where x is any site, µ is
one of the three positive lattice unit vectors µx ⌘ (1, 0, 0),
µy ⌘ (0, 1, 0), µz ⌘ (0, 0, 1). The gauge fields are defined
on lattice links through the pair of operators Êx,µ (elec-
tric field) and Ûx,µ (unitary comparator) that satisfy the
commutation relation

[Êx,µ, Ûx0,µ0 ] = �x,x0�µ,µ0Ûx,µ. (2)
For comfort of notation, we can extend the definition to
negative lattice unit vectors via Êx+µ,�µ = �Êx,µ and
Ûx+µ,�µ = Û†

x,µ.
The Hamiltonian of Eq. (1) consists of four terms: the

parallel transporter (1a) describes creation and annihi-
lation of a particle-antiparticle pair, shifting the gauge
field in-between to preserve local gauge symmetries. The
staggered mass and the electric energy density (1b) are
completely local. Finally, the plaquette terms (1c) cap-
ture the magnetic energy density, and are related to the
smallest Wilson loops along the closed plaquettes along
the three planes x � y, x � z, y � z of the lattice. In
dimensionless units (~ = c = 1), the couplings in Eq. (1)
are not independent: They can be expressed as t = 1/a,
m = m0, g2

e = g2/a, g2
m = 8/(g2a), where a is the lattice

spacing, g is the coupling constant of QED and m0 is
the bare mass of particles/antiparticles. The numerical
setup allows us to consider the couplings (t, m, ge, gm)
as mutually independent. We then recover the physical
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involves the six electric field operators on the links iden-
tified by ±µx, ±µy, ±µz. Each Ĝx commutes with the
Hamiltonian Ĥ and the gauge invariant Hilbert space
consists of physical many-body quantum states |�i sat-
isfying Ĝx |�i = 0 at every site x.

As stressed in the standard Wilson’s formulation of
lattice QED [11], faithful representations of the (Ê, Û)
algebra are infinite-dimensional. A truncation to a fi-
nite dimension becomes therefore necessary for numeri-
cal simulations with TN methods, which require a finite
effective Hilbert dimension at each lattice site. We use
the quantum link model (QLM) approach in which the
gauge field algebra is replaced by SU(2) spin algebra, i.e.
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effect akin to the Schwinger mechanism. Furthermore,
we address the confinement problem by evaluating the
binding energies of charged particle pairs pinned at spec-
ified distances. Finally, we consider the scenario with a
charge imbalance into the system, i.e. at finite charge
density, and we characterize a regime where charges ac-
cumulate at the surface of our finite sample, analogously
to a classic perfect conductor.
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on a finite L⇥L⇥L three-dimensional simple cubic lattice
[16]:
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Ûx+µ,�µ = Û†
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tified by ±µx, ±µy, ±µz. Each Ĝx commutes with the
Hamiltonian Ĥ and the gauge invariant Hilbert space
consists of physical many-body quantum states |�i sat-
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Figure 6: (a) Representation of the gauge field in terms
of two species of Dirac modes in the sector with a total
number of fermions equal to two. b) Generic state of
the local site composed by the the matter degrees of

freedom and six half-links along the three spatial
directions. On each half-link the coefficients

kj 2 {0, 1, 2} define the fermionic modes. (c) Examples
of gauge-invariant configurations for even and odd sites.

Due to the use of staggered-fermions, the
presence/absence of a fermion in an even/odd site
represents the presence of a charge/anti-charge.

Ĝx =  ̂†
x ̂x �

1 � (�1)x

2
�

X

µ

�
1 � n̂a

x,µ � n̂b
x,µ

�
.(A8)

Taking into account this property, it is possible to con-
struct the gauge-invariant basis for the local site x, that
is composed by the lattice site and the six half-links along
the directions ±µx, ±µy, ±µz (see Fig. 6):

������

k5

k1 � k4

k2

+k6

k3

= (�1)�k1,2+�k2,2+�k3,2
|�ix (A9)

⇥ |k1ix,�µx
|k2ix,�µy

|k3ix,�µz

⇥ |k4ix,µx
|k5ix,µy

|k6ix,µz

where |�ix = ( ̂†
x)�

|0i with � = 0, 1 describes the pres-
ence or the absence of the matter/antimatter particles.
The indices kj run over {0,1,2} selecting a configura-
tion of the 3-hardcore modes for each respective half-link.
The presence of the factor (�1)�k1,2+�k2,2+�k3,2 allows us
to satisfy the anticommutation relations of the fermionic
representation recovering the correct signs of Eq. (A5).
The occupation numbers � and kj are not independent
due to the constraint imposed by the Gauss’s law

Ĝx

������

k5

k1 � k4

k2

+k6

k3

= 0. (A10)

This equation, in the new language of matter fermions
and rishons, reads

�+
6X

j=1

kj = 6 +
1 � (�1)x

2
. (A11)

where the factor 6 is indeed the coordination number
of the cubic lattice. Thus, the gauge invariant configu-
rations of the local basis are obtained by applying this
constraint, effectively reducing the ‘dressed-site’ (matter
and 6 rishon modes) dimension from 2 · 36 = 1458 to
merely 267. We encode these states as building blocks of
our computational representation for the TN algorithms.
In Fig. 6 we show some examples of gauge-invariant con-
figurations for even and odd sites.

The construction of the gauge-invariant local sites is
particularly advantageous for our numerical purposes: in
fact, it is now possible to express all the terms in the
Hamiltonian of Eq. (1) of the main text as product
of completely local operators that commute on different
sites. Let us consider the kinetic term of the Hamiltonian
and apply the representation of the gauge field in terms
of the 3-hardcore fermionic modes:

 ̂†
xÛx,µ ̂x+µ =  ̂†

x⌘̂x,µ⌘̂
†
x+µ,�µ ̂x+µ

=
⇣
⌘̂†x,µ ̂x

⌘† ⇣
⌘̂†x+µ,�µ ̂x+µ

⌘

= M (↵)†
x M↵0

x+µ (A12)

where the indices ↵ and ↵0 select the right operators de-
pending on the different directions in which the hopping
process takes place. The operators M↵

x,µ are genuinely lo-
cal (i.e. they commute with operators acting elsewhere)
as they are always quadratic in the fermionic operators
( and/or ⌘). The same argument applies to the mag-
netic (plaquette) terms in the Hamiltonian

⇤µx,µy = Ux,x+µxUx+µx,µyU †
x+µy,µx

U †
x,µy

=

= ⌘x,µx⌘
†
x+µx,�µx

⌘x+µx,µy⌘
†
x+µx+µy,�µy

⇥

⇣
⌘x+µy,µx⌘

†
x+µx+µy,�µx

⌘† ⇣
⌘x,µy⌘

†
x+µy,�µy

⌘†

= �

⇣
⌘†x,µy

⌘x,µx

⌘ ⇣
⌘†x+µx,�µx

⌘x+µx,µy

⌘

⇥

⇣
⌘†x+µx+µy,�µy

⌘x+µx+µy,�µx

⌘ ⇣
⌘†x+µy,µx

⌘x+µy,�µy

⌘

⌘ �C(↵)
x C(↵0)

x+µx
C(↵00)

x+µx+µy
C(↵000)

x+µy
, (A13)

where the indices ↵, ↵0, ↵00, ↵000 depend on the plane of
the plaquette (in this case x � y) and the links involved
into the loop. The operators C↵

x are genuinely local and
act on the four sites at the corners of the plaquette. The
decomposition is the same for the other plaquettes in the
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Figure 8: (a) Driven optimization (in three steps: linear, quadratic, constant) of the penalty coefficient ⌫ (red) and
behavior of the energy (blue) as a function of the iterations for an exemplifying simulation. The energy is reported

as the difference with the lowest final energy that we reach. (b) Driven optimization of the penalty coefficient ⌫
(red) and global error �L (green) with respect to the link symmetry during the optimization steps. (c) Scaling of the

energy density as a function of the inverse of the bond dimension 1/�. The bond dimension � is in the range
[100, 450].

tors. During the variational optimization stage, in order
to improve the convergence, we perform the single-tensor
optimization with subspace-expansion technique, i.e., al-
lowing a dynamical increase of the local bond dimension
and adapting the symmetry sectors [85]. This scheme
has a global computational cost of the order O(�4). The
single tensor optimization is implemented in three steps:
(i) the effective Hamiltonian Heff for the tensor is ob-
tained by contracting the complete Hamiltonian of the
system with all the remaining tensors of the tree; (ii) the
local eigenvalue problem for Heff is solved by using the
Arnoldi method of the ARPACK library; (iii) the ten-
sor is updated by the eigenvector of Heff corresponding
to the lowest eigenvalue. This procedure is iterated by
sweeping through the TTN from the lowest to the highest
layers, gradually reducing the energy expectation value.
After completing the whole sweep, the procedure is it-
erated again and again, until the desidered convergence
in the energy is reached. The precision of the Arnoldi
algorithm is increased in each sweep, for gaining more
accuracy in solving the local eigenvalue problems as we
approach the final convergence.

TTN computations presented in this work are ex-
tremely challenging due to the complexity of LGTs in
the three-dimensional scenario. They were performed on
different HPC-clusters (CloudVeneto, CINECA, BwUni-
Cluster and ATOS Bull): a single simulation for the max-
imum size that we reached, a 8 ⇥ 8 ⇥ 8 lattice, can last
up to five weeks until final convergence, depending on the
different regimes of the model and the control parameters
of the algorithms.

Appendix C: Numerical Convergence

With our numerical simulations we characterize the
properties of the ground state of the system as a function
of the parameters in the Hamiltonian of Eq. (1) of the

main text. We fix the energy scale by setting the hopping
coefficient t = 1 and we access several regimes of the mass
m, the electric ge and the magnetic coupling gm. We
consider simple cubic lattices L ⇥ L ⇥ L with the linear
size L being a binary power; in particular, we simulate
the case with L = 2, 4, 8, that is, up to 512 lattice sites.

As explained in Appendix A, in order to obtain the
right representation of the electric field operators, we
have to enforce the extra link symmetry constraint
L̂x,µ = 2 at every pair of neighboring sites. For this
reason, we include in the Hamiltonian additional terms
that energetically penalise all the states with a number
of hardcore fermions per link different from two, namely:

Hpen = ⌫
X

x,µ

⇣
1 � �2,L̂x,µ

⌘
(C1)

where ⌫ > 0 is the penalty coefficient and �2,L̂x,µ
are

the projectors on the states that satisfy the extra link
constraint. In this way, the penalty terms vanish when
the link symmetry is satisfied and raise the energy of the
states violating the constraint. In principle, the link sym-
metry is rigorously satisfied for ⌫ ! 1. At numerical
level, this limit translates into choosing ⌫ much larger
than the other simulation parameters of the Hamilto-
nian, i.e., ⌫ � max {|t|, |m|, |gel|, |gm|}. However, set-
ting ⌫ too large in the first optimisation steps could lead
to local minima or non-physical states, since the varia-
tional algorithm would focus only on the penalty terms
more than the physical ones. In order to avoid this prob-
lem and reach the convergence, we adopt a driven op-
timization, by varying the penalty coefficient ⌫ in three
steps: (i) starting from a very small value of ⌫ and from
a random state of the TTN, that in general does not re-
spect the extra link symmetry, we drive the penalty term
with a linear growth of ⌫ during the first optimization
sweeps. In this stage, the optimization will focus mainly
on the physical quantities, until we notice a slight rise of
the energy: this effect signals that the global optmiza-
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tors. During the variational optimization stage, in order
to improve the convergence, we perform the single-tensor
optimization with subspace-expansion technique, i.e., al-
lowing a dynamical increase of the local bond dimension
and adapting the symmetry sectors [85]. This scheme
has a global computational cost of the order O(�4). The
single tensor optimization is implemented in three steps:
(i) the effective Hamiltonian Heff for the tensor is ob-
tained by contracting the complete Hamiltonian of the
system with all the remaining tensors of the tree; (ii) the
local eigenvalue problem for Heff is solved by using the
Arnoldi method of the ARPACK library; (iii) the ten-
sor is updated by the eigenvector of Heff corresponding
to the lowest eigenvalue. This procedure is iterated by
sweeping through the TTN from the lowest to the highest
layers, gradually reducing the energy expectation value.
After completing the whole sweep, the procedure is it-
erated again and again, until the desidered convergence
in the energy is reached. The precision of the Arnoldi
algorithm is increased in each sweep, for gaining more
accuracy in solving the local eigenvalue problems as we
approach the final convergence.

TTN computations presented in this work are ex-
tremely challenging due to the complexity of LGTs in
the three-dimensional scenario. They were performed on
different HPC-clusters (CloudVeneto, CINECA, BwUni-
Cluster and ATOS Bull): a single simulation for the max-
imum size that we reached, a 8 ⇥ 8 ⇥ 8 lattice, can last
up to five weeks until final convergence, depending on the
different regimes of the model and the control parameters
of the algorithms.

Appendix C: Numerical Convergence

With our numerical simulations we characterize the
properties of the ground state of the system as a function
of the parameters in the Hamiltonian of Eq. (1) of the

main text. We fix the energy scale by setting the hopping
coefficient t = 1 and we access several regimes of the mass
m, the electric ge and the magnetic coupling gm. We
consider simple cubic lattices L ⇥ L ⇥ L with the linear
size L being a binary power; in particular, we simulate
the case with L = 2, 4, 8, that is, up to 512 lattice sites.

As explained in Appendix A, in order to obtain the
right representation of the electric field operators, we
have to enforce the extra link symmetry constraint
L̂x,µ = 2 at every pair of neighboring sites. For this
reason, we include in the Hamiltonian additional terms
that energetically penalise all the states with a number
of hardcore fermions per link different from two, namely:

Hpen = ⌫
X

x,µ

⇣
1 � �2,L̂x,µ

⌘
(C1)

where ⌫ > 0 is the penalty coefficient and �2,L̂x,µ
are

the projectors on the states that satisfy the extra link
constraint. In this way, the penalty terms vanish when
the link symmetry is satisfied and raise the energy of the
states violating the constraint. In principle, the link sym-
metry is rigorously satisfied for ⌫ ! 1. At numerical
level, this limit translates into choosing ⌫ much larger
than the other simulation parameters of the Hamilto-
nian, i.e., ⌫ � max {|t|, |m|, |gel|, |gm|}. However, set-
ting ⌫ too large in the first optimisation steps could lead
to local minima or non-physical states, since the varia-
tional algorithm would focus only on the penalty terms
more than the physical ones. In order to avoid this prob-
lem and reach the convergence, we adopt a driven op-
timization, by varying the penalty coefficient ⌫ in three
steps: (i) starting from a very small value of ⌫ and from
a random state of the TTN, that in general does not re-
spect the extra link symmetry, we drive the penalty term
with a linear growth of ⌫ during the first optimization
sweeps. In this stage, the optimization will focus mainly
on the physical quantities, until we notice a slight rise of
the energy: this effect signals that the global optmiza-

Up to 5 weeks x 64 cores of computational time

Local dimension 267, up to 12288 Hamiltonian operators 
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Figure 2: Ground state charge occupation and electric field on links for m = �3.0 (a) and m = 3.0 (c) and g2
m = 0.

(b) Particle density as a function of m, for different system size L and g2
m = 0. Ground state charge occupation and

electric field on links for m = �3.0 (d) and m = 3.0 (f) in the presence of magnetic interactions with g2
m = 8/g2

e = 4.
(e) Particle density as a function of m, for different system size L and g2

m = 8/g2
e = 4.

hermitian and preserves Eq. (2), but Û is no longer uni-
tary. Throughout this work, we will select s = 1, the
smallest representation ensuring a nontrivial contribution
of all the terms in the Hamiltonian (see also Fig. 1). This
truncation introduces a local energy cutoff based on g2

e ,
which in turn requires larger spin s to accurately repre-
sent weaker coupling regimes, still potentially accessible
via TNs [24].

II. TRANSITION AT ZERO CHARGE

We focus on the zero charge sector, i.e.
P

x  
†
x x = L3

2 ,
and Periodic Boundary Conditions (PBC). As shown in
Fig. 2 (upper panel), for g2

m = 0 the system under-
goes a transition between two regimes, analogously to
the (1+1)D and (2+1)D cases [22, 25, 32]: for large pos-
itive masses, the system approaches the bare vacuum,
while for large negative masses, the system is arranged
into a crystal of charges, a highly degenerate state in the
semiclassical limit (t ! 0) due to the exponential num-
ber of electric field configurations allowed. We track this
transition by monitoring the average matter density ⇢ =
1

L3

P
x hGS| n̂x |GSi where n̂x = 1+(�1)x

2 � (�1)x †
x x

is the matter occupation operator and the many-body
ground state |GSi has been computed by TTN algorithm

(see Appendices A, B, C for details). Fig. 2(b) displays
the result for different sizes L (and g2

e/2 = t = 1), por-
traying the transition. Panels (a) and (c) display local
configurations of matter hn̂xi and gauge sites hÊx,µi for
m = �3.0 and m = +3.0 respectively. In the former
regime, the algorithm seems to favor a single allowed con-
figuration of gauge fields rather than a superposition of
many configuations: This is due to the fact that, when
g2

m = 0, the matrix element that rearranges the configu-
rations occurs at very high perturbative order in |t/m|,
and is numerically neglected. A finite-size scaling analy-
sis of the transition (see Appendix D) yields results com-
patible with a II-order phase transition, with the critical
point occurying at negative bare masses m.

The same transition appears to be more interesting
when we ‘activate’ the magnetic coupling, by setting
g2

m = 8t2/g2
e = 4 (physical line). The phase at large

negative m now appears to be a genuine superposition
of many configurations of the electric field, as they are
coupled by matrix elements of the order ⇠ g2

m, kept as
numerically relevant by the algorithm. Moreover, the
transition is still compatible with a II-order phase tran-
sition, and the critical point is shifted to larger m values.
This can lead to a critical bare mass mc that is positive
(as we observed mc ⇡ +0.22 for the case g2

e/2 = t = 1),
ultimately making the transition physically relevant.
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hermitian and preserves Eq. (2), but Û is no longer uni-
tary. Throughout this work, we will select s = 1, the
smallest representation ensuring a nontrivial contribution
of all the terms in the Hamiltonian (see also Fig. 1). This
truncation introduces a local energy cutoff based on g2

e ,
which in turn requires larger spin s to accurately repre-
sent weaker coupling regimes, still potentially accessible
via TNs [24].

II. TRANSITION AT ZERO CHARGE

We focus on the zero charge sector, i.e.
P
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x x = L3

2 ,
and Periodic Boundary Conditions (PBC). As shown in
Fig. 2 (upper panel), for g2

m = 0 the system under-
goes a transition between two regimes, analogously to
the (1+1)D and (2+1)D cases [22, 25, 32]: for large pos-
itive masses, the system approaches the bare vacuum,
while for large negative masses, the system is arranged
into a crystal of charges, a highly degenerate state in the
semiclassical limit (t ! 0) due to the exponential num-
ber of electric field configurations allowed. We track this
transition by monitoring the average matter density ⇢ =
1

L3

P
x hGS| n̂x |GSi where n̂x = 1+(�1)x

2 � (�1)x †
x x

is the matter occupation operator and the many-body
ground state |GSi has been computed by TTN algorithm

(see Appendices A, B, C for details). Fig. 2(b) displays
the result for different sizes L (and g2

e/2 = t = 1), por-
traying the transition. Panels (a) and (c) display local
configurations of matter hn̂xi and gauge sites hÊx,µi for
m = �3.0 and m = +3.0 respectively. In the former
regime, the algorithm seems to favor a single allowed con-
figuration of gauge fields rather than a superposition of
many configuations: This is due to the fact that, when
g2

m = 0, the matrix element that rearranges the configu-
rations occurs at very high perturbative order in |t/m|,
and is numerically neglected. A finite-size scaling analy-
sis of the transition (see Appendix D) yields results com-
patible with a II-order phase transition, with the critical
point occurying at negative bare masses m.

The same transition appears to be more interesting
when we ‘activate’ the magnetic coupling, by setting
g2

m = 8t2/g2
e = 4 (physical line). The phase at large

negative m now appears to be a genuine superposition
of many configurations of the electric field, as they are
coupled by matrix elements of the order ⇠ g2

m, kept as
numerically relevant by the algorithm. Moreover, the
transition is still compatible with a II-order phase tran-
sition, and the critical point is shifted to larger m values.
This can lead to a critical bare mass mc that is positive
(as we observed mc ⇡ +0.22 for the case g2

e/2 = t = 1),
ultimately making the transition physically relevant.
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(b) Particle density as a function of m, for different system size L and g2
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hermitian and preserves Eq. (2), but Û is no longer uni-
tary. Throughout this work, we will select s = 1, the
smallest representation ensuring a nontrivial contribution
of all the terms in the Hamiltonian (see also Fig. 1). This
truncation introduces a local energy cutoff based on g2

e ,
which in turn requires larger spin s to accurately repre-
sent weaker coupling regimes, still potentially accessible
via TNs [24].

II. TRANSITION AT ZERO CHARGE

We focus on the zero charge sector, i.e.
P

x  
†
x x = L3

2 ,
and Periodic Boundary Conditions (PBC). As shown in
Fig. 2 (upper panel), for g2

m = 0 the system under-
goes a transition between two regimes, analogously to
the (1+1)D and (2+1)D cases [22, 25, 32]: for large pos-
itive masses, the system approaches the bare vacuum,
while for large negative masses, the system is arranged
into a crystal of charges, a highly degenerate state in the
semiclassical limit (t ! 0) due to the exponential num-
ber of electric field configurations allowed. We track this
transition by monitoring the average matter density ⇢ =
1

L3

P
x hGS| n̂x |GSi where n̂x = 1+(�1)x

2 � (�1)x †
x x

is the matter occupation operator and the many-body
ground state |GSi has been computed by TTN algorithm

(see Appendices A, B, C for details). Fig. 2(b) displays
the result for different sizes L (and g2

e/2 = t = 1), por-
traying the transition. Panels (a) and (c) display local
configurations of matter hn̂xi and gauge sites hÊx,µi for
m = �3.0 and m = +3.0 respectively. In the former
regime, the algorithm seems to favor a single allowed con-
figuration of gauge fields rather than a superposition of
many configuations: This is due to the fact that, when
g2

m = 0, the matrix element that rearranges the configu-
rations occurs at very high perturbative order in |t/m|,
and is numerically neglected. A finite-size scaling analy-
sis of the transition (see Appendix D) yields results com-
patible with a II-order phase transition, with the critical
point occurying at negative bare masses m.

The same transition appears to be more interesting
when we ‘activate’ the magnetic coupling, by setting
g2

m = 8t2/g2
e = 4 (physical line). The phase at large

negative m now appears to be a genuine superposition
of many configurations of the electric field, as they are
coupled by matrix elements of the order ⇠ g2

m, kept as
numerically relevant by the algorithm. Moreover, the
transition is still compatible with a II-order phase tran-
sition, and the critical point is shifted to larger m values.
This can lead to a critical bare mass mc that is positive
(as we observed mc ⇡ +0.22 for the case g2

e/2 = t = 1),
ultimately making the transition physically relevant.
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hermitian and preserves Eq. (2), but Û is no longer uni-
tary. Throughout this work, we will select s = 1, the
smallest representation ensuring a nontrivial contribution
of all the terms in the Hamiltonian (see also Fig. 1). This
truncation introduces a local energy cutoff based on g2

e ,
which in turn requires larger spin s to accurately repre-
sent weaker coupling regimes, still potentially accessible
via TNs [24].

II. TRANSITION AT ZERO CHARGE

We focus on the zero charge sector, i.e.
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x x = L3

2 ,
and Periodic Boundary Conditions (PBC). As shown in
Fig. 2 (upper panel), for g2

m = 0 the system under-
goes a transition between two regimes, analogously to
the (1+1)D and (2+1)D cases [22, 25, 32]: for large pos-
itive masses, the system approaches the bare vacuum,
while for large negative masses, the system is arranged
into a crystal of charges, a highly degenerate state in the
semiclassical limit (t ! 0) due to the exponential num-
ber of electric field configurations allowed. We track this
transition by monitoring the average matter density ⇢ =
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x hGS| n̂x |GSi where n̂x = 1+(�1)x

2 � (�1)x †
x x

is the matter occupation operator and the many-body
ground state |GSi has been computed by TTN algorithm

(see Appendices A, B, C for details). Fig. 2(b) displays
the result for different sizes L (and g2

e/2 = t = 1), por-
traying the transition. Panels (a) and (c) display local
configurations of matter hn̂xi and gauge sites hÊx,µi for
m = �3.0 and m = +3.0 respectively. In the former
regime, the algorithm seems to favor a single allowed con-
figuration of gauge fields rather than a superposition of
many configuations: This is due to the fact that, when
g2

m = 0, the matrix element that rearranges the configu-
rations occurs at very high perturbative order in |t/m|,
and is numerically neglected. A finite-size scaling analy-
sis of the transition (see Appendix D) yields results com-
patible with a II-order phase transition, with the critical
point occurying at negative bare masses m.

The same transition appears to be more interesting
when we ‘activate’ the magnetic coupling, by setting
g2

m = 8t2/g2
e = 4 (physical line). The phase at large

negative m now appears to be a genuine superposition
of many configurations of the electric field, as they are
coupled by matrix elements of the order ⇠ g2

m, kept as
numerically relevant by the algorithm. Moreover, the
transition is still compatible with a II-order phase tran-
sition, and the critical point is shifted to larger m values.
This can lead to a critical bare mass mc that is positive
(as we observed mc ⇡ +0.22 for the case g2
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ultimately making the transition physically relevant.
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smallest representation ensuring a nontrivial contribution
of all the terms in the Hamiltonian (see also Fig. 1). This
truncation introduces a local energy cutoff based on g2
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which in turn requires larger spin s to accurately repre-
sent weaker coupling regimes, still potentially accessible
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goes a transition between two regimes, analogously to
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into a crystal of charges, a highly degenerate state in the
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x x
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ground state |GSi has been computed by TTN algorithm

(see Appendices A, B, C for details). Fig. 2(b) displays
the result for different sizes L (and g2

e/2 = t = 1), por-
traying the transition. Panels (a) and (c) display local
configurations of matter hn̂xi and gauge sites hÊx,µi for
m = �3.0 and m = +3.0 respectively. In the former
regime, the algorithm seems to favor a single allowed con-
figuration of gauge fields rather than a superposition of
many configuations: This is due to the fact that, when
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m = 0, the matrix element that rearranges the configu-
rations occurs at very high perturbative order in |t/m|,
and is numerically neglected. A finite-size scaling analy-
sis of the transition (see Appendix D) yields results com-
patible with a II-order phase transition, with the critical
point occurying at negative bare masses m.

The same transition appears to be more interesting
when we ‘activate’ the magnetic coupling, by setting
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m = 8t2/g2
e = 4 (physical line). The phase at large

negative m now appears to be a genuine superposition
of many configurations of the electric field, as they are
coupled by matrix elements of the order ⇠ g2

m, kept as
numerically relevant by the algorithm. Moreover, the
transition is still compatible with a II-order phase tran-
sition, and the critical point is shifted to larger m values.
This can lead to a critical bare mass mc that is positive
(as we observed mc ⇡ +0.22 for the case g2
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Figure 2: Ground state charge occupation and electric field on links for m = �3.0 (a) and m = 3.0 (c) and g2
m = 0.

(b) Particle density as a function of m, for different system size L and g2
m = 0. Ground state charge occupation and

electric field on links for m = �3.0 (d) and m = 3.0 (f) in the presence of magnetic interactions with g2
m = 8/g2

e = 4.
(e) Particle density as a function of m, for different system size L and g2

m = 8/g2
e = 4.

hermitian and preserves Eq. (2), but Û is no longer uni-
tary. Throughout this work, we will select s = 1, the
smallest representation ensuring a nontrivial contribution
of all the terms in the Hamiltonian (see also Fig. 1). This
truncation introduces a local energy cutoff based on g2

e ,
which in turn requires larger spin s to accurately repre-
sent weaker coupling regimes, still potentially accessible
via TNs [24].

II. TRANSITION AT ZERO CHARGE

We focus on the zero charge sector, i.e.
P

x  
†
x x = L3

2 ,
and Periodic Boundary Conditions (PBC). As shown in
Fig. 2 (upper panel), for g2

m = 0 the system under-
goes a transition between two regimes, analogously to
the (1+1)D and (2+1)D cases [22, 25, 32]: for large pos-
itive masses, the system approaches the bare vacuum,
while for large negative masses, the system is arranged
into a crystal of charges, a highly degenerate state in the
semiclassical limit (t ! 0) due to the exponential num-
ber of electric field configurations allowed. We track this
transition by monitoring the average matter density ⇢ =
1

L3

P
x hGS| n̂x |GSi where n̂x = 1+(�1)x

2 � (�1)x †
x x

is the matter occupation operator and the many-body
ground state |GSi has been computed by TTN algorithm

(see Appendices A, B, C for details). Fig. 2(b) displays
the result for different sizes L (and g2

e/2 = t = 1), por-
traying the transition. Panels (a) and (c) display local
configurations of matter hn̂xi and gauge sites hÊx,µi for
m = �3.0 and m = +3.0 respectively. In the former
regime, the algorithm seems to favor a single allowed con-
figuration of gauge fields rather than a superposition of
many configuations: This is due to the fact that, when
g2

m = 0, the matrix element that rearranges the configu-
rations occurs at very high perturbative order in |t/m|,
and is numerically neglected. A finite-size scaling analy-
sis of the transition (see Appendix D) yields results com-
patible with a II-order phase transition, with the critical
point occurying at negative bare masses m.

The same transition appears to be more interesting
when we ‘activate’ the magnetic coupling, by setting
g2

m = 8t2/g2
e = 4 (physical line). The phase at large

negative m now appears to be a genuine superposition
of many configurations of the electric field, as they are
coupled by matrix elements of the order ⇠ g2

m, kept as
numerically relevant by the algorithm. Moreover, the
transition is still compatible with a II-order phase tran-
sition, and the critical point is shifted to larger m values.
This can lead to a critical bare mass mc that is positive
(as we observed mc ⇡ +0.22 for the case g2

e/2 = t = 1),
ultimately making the transition physically relevant.
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[48]. When the gauge field is coupled to dynamical mat-
ter (t 6= 0 and finite m), new possible scenarios emerge,
such as the string-breaking mechanism. Nevertheless, the
transition between confined and deconfined phases is still
expected to occur [49].

We can investigate this specific scenario with our TN
method: we consider a 16 ⇥ 4 ⇥ 4 lattice and pin two
opposite charges via large local chemical potentials at
distance r along direction µx. The energy E(r) =
V (r)�V (1)+2✏1+E0 of this ground state comprises: the
work V (r) � V (1) needed to bring two charges from in-
finity to distance r, plus twice the excitation energy ✏1 of
an isolated pinned charge, on top of the dressed-vacuum
energy E0. Therefore we can estimate the interaction
potential as V (r) = E(r) � E0 + ⇠ where the additive
constant ⇠ does not scale with the volume (while E(r)
and E0 separately do).

The presence of dynamical matter heavily impacts the
strong-coupling picture (g2

m ⇠ 0), as it can be extrapo-
lated in the semiclassical limit (t ⇠ 0). Here, a particle-
antiparticle pair at distance r with, a field-string between
them, has an energy

E(r) � E0 = 2m +
g2

2
r. (4)

that scales linearly with r. On the contrary, two mesons
(neighboring particle-antiparticle pairs) have a flat en-
ergy profile

Epairs � E0 = 4m + g2. (5)

Thus, for any mass m, there is critical distance r0 above
which the string is broken, and formation of two mesons
is energetically favorable.

We observe this transition at finite t, as shown in Fig.
4 (bottom panel, g2 = 4). The crossover from the short-
range to long-range behavior is still relatively sharp, and
the distance rc at which it occurs strongly depends on the
bare mass m. This is in contrast to the weak-coupling
regime (top panel, g2 = 1/4), where the potential profile
V (r) (i) is smoothly increasing with r, (ii) it is roughly
independent from m, and (iii) its slope at short distances
disagrees with the string tension ansatz rg2/2 + const..
Thus our simulations highlight visibly different features
between confined and deconfined regimes, even with dy-
namical matter.

V. FINITE DENSITY

One of the most important features of our numerical
approach is the possibility to tackle finite charge-density
regimes. In fact, by exploiting the global U(1) fermion-
number symmetry, implemented in our TTN algorithms,
we can inject any desired charge imbalance into the sys-
tem, while working under OBC. Fig. 5 shows the results
for charge density ⇢ = Q/L3 = 1/4. In the vacuum phase
(m � g2

e/2 ⇡ t), we obtain configurations as displayed in
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Figure 4: Interaction potential V (r) between two
charges of opposite sign as a function of their distance r
in the (upper panel) weak coupling regime g ⌧ 1 and

(lower panel) strong coupling regime g � 1.

panel (a), where the charges are expelled from the bulk,
and stick to the boundaries to minimize the electric field
energy of the outcoming fields. To quantify this effect,
which can also be interpreted as a field-screening phe-
nomenon, we introduce the surface charge density

�(l) =
1

A(l)

X

x2A(l)

⌦
 †

x x

↵
(6)

where A(l) contains only sites sitting at lattice dis-
tance l from the closest boundary. The deeper we are
in the vacuum phase, the faster the surface charge de-
cays to zero away from the boundary (l = 1). By con-
trast, close to the transition, the spontaneous creation of
charge-anticharge pairs determines a finite charge den-
sity of the bulk. Finally, for large negative m, the charge
distribution is roughly uniform.

VI. OUTLOOK

We have shown that TN methods can simulate LGT
in three spatial dimensions, in the presence of matter
and charge imbalance, ultimately exploring those regimes
where other known numerical strategies struggle. We
have investigated collective phenomena of lattice QED
which stand at the forefront of the current research ef-
forts, including quantum phase diagrams, confinement is-
sues, and the string breaking mechanism at equilibrium.
We envision the possibility of including more sophisti-
cated diagnostic tools, such as the ’t Hooft operators [50]
which nicely fit TNs designs, to provide more quantita-
tively precise answers to the aforementioned open prob-
lems.
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that scales linearly with r. On the contrary, two mesons
(neighboring particle-antiparticle pairs) have a flat en-
ergy profile
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Thus, for any mass m, there is critical distance r0 above
which the string is broken, and formation of two mesons
is energetically favorable.

We observe this transition at finite t, as shown in Fig.
4 (bottom panel, g2 = 4). The crossover from the short-
range to long-range behavior is still relatively sharp, and
the distance rc at which it occurs strongly depends on the
bare mass m. This is in contrast to the weak-coupling
regime (top panel, g2 = 1/4), where the potential profile
V (r) is smoothly increasing with r, and its slope at short
distances disagrees with the string tension ansatz rg2/2+
const.. Thus our simulations highlight visibly different
features between confined and deconfined regimes, even
with dynamical matter.

V. FINITE DENSITY

One of the most important features of our numerical
approach is the possibility to tackle finite charge-density
regimes. In fact, by exploiting the global U(1) fermion-
number symmetry, implemented in our TTN algorithms,
we can inject any desired charge imbalance into the sys-
tem, while working under OBC. Fig. 5 shows the results
for charge density ⇢ = Q/L3 = 1/4. In the vacuum phase
(m � g2

e/2 ⇡ t), we obtain configurations as displayed in
panel (a), where the charges are expelled from the bulk,
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which can also be interpreted as a field-screening phe-
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where A(l) contains only sites sitting at lattice dis-
tance l from the closest boundary. The deeper we are
in the vacuum phase, the faster the surface charge de-
cays to zero away from the boundary (l = 1). By con-
trast, close to the transition, the spontaneous creation of
charge-anticharge pairs determines a finite charge den-
sity of the bulk. Finally, for large negative m, the charge
distribution is roughly uniform.
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We have shown that TN methods can simulate LGT
in three spatial dimensions, in the presence of matter
and charge imbalance, ultimately exploring those regimes
where other known numerical strategies struggle. We
have investigated collective phenomena of lattice QED
which stand at the forefront of the current research ef-
forts, including quantum phase diagrams, confinement is-
sues, and the string breaking mechanism at equilibrium.
We envision the possibility of including more sophisti-
cated diagnostic tools, such as the ’t Hooft operators [50]
which nicely fit TNs designs, to provide more quantita-
tively precise answers to the aforementioned open prob-
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Thus, for any mass m, there is critical distance r0 above
which the string is broken, and formation of two mesons
is energetically favorable.

We observe this transition at finite t, as shown in Fig.
4 (bottom panel, g2 = 4). The crossover from the short-
range to long-range behavior is still relatively sharp, and
the distance rc at which it occurs strongly depends on the
bare mass m. This is in contrast to the weak-coupling
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const.. Thus our simulations highlight visibly different
features between confined and deconfined regimes, even
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where A(l) contains only sites sitting at lattice dis-
tance l from the closest boundary. The deeper we are
in the vacuum phase, the faster the surface charge de-
cays to zero away from the boundary (l = 1). By con-
trast, close to the transition, the spontaneous creation of
charge-anticharge pairs determines a finite charge den-
sity of the bulk. Finally, for large negative m, the charge
distribution is roughly uniform.
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where other known numerical strategies struggle. We
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forts, including quantum phase diagrams, confinement is-
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cated diagnostic tools, such as the ’t Hooft operators [50]
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tively precise answers to the aforementioned open prob-
lems.

2

(�1)i+j = + 1 : {
(�1)i+j = � 1 : {

i

j

1 2 3

1

2

3

Matter Field

= q

= � q
= �

= �

Gauge Field

Ex,�x
=

= | � �
= |��
= | � �

(�1)i+j+k = �1

i

j

k

(�1)i+j+k = +1

Figure 1: Scheme of the three-dimensional LGT with
three electric field levels (spin-1 compact

representation). Fermionic degrees of freedom are
represented by staggered fermions on sites with different
parity: on the even (odd) sites, a full red (blue) circle
corresponds to a particle (antiparticle) with positive
(negative) charge. As an illustrative example, it is

shown a gauge-invariant configuration of matter and
gauge fields with one particle and one antiparticle in the

sector of zero total charge.

we address the confinement problem by evaluating the
binding energies of charged particle pairs pinned at spec-
ified distances. Finally, we consider the scenario with a
charge imbalance into the system, i.e. at finite charge
density, and we characterize a regime where charges ac-
cumulate at the surface of our finite sample, analogously
to a classic perfect conductor.

I. THE MODEL

Hereafter, we numerically simulate, at zero tempera-
ture, the Hamiltonian of U(1) quantum electrodynamics
on a finite L⇥L⇥L three-dimensional simple cubic lattice
[16]:

Ĥ = �t
X

x,µ

⇣
 ̂†

x Ûx,µ  ̂x+µ + H.c.
⌘

(1a)

+ m
X

x

(�1)x ̂†
x ̂x +

g2
e

2

X

x,µ

Ê2
x,µ (1b)

�
g2

m

2

X

x

�
⇤µx,µy + ⇤µx,µz + ⇤µy,µz + H.c.

�
(1c)

with x ⌘ (i, j, k) for 0  i, j, k  L � 1
labelling the sites of the lattice and ⇤µ↵,µ� =

Ûx,µ↵Ûx+µ↵,µ� Û†
x+µ� ,µ↵

Û†
x,µ�

. Here we adopted the
Kogut-Susskind formulation [16], representing fermionic
degrees of freedom with a staggered spinless fermion
field { ̂x,  ̂†

x0} = �x,x0 on lattice sites. Their bare mass
mx = (�1)xm is staggered, as tracked by the site parity
(�1)x = (�1)i+j+k, so that fermions on even sites rep-
resent particles with positive electric charge +q, while

holes on odd sites represent anti-particles with negative
charge �q, as shown in Fig. 1. Charge Q̂ conservation is
thus expressed as global fermion number N̂ conservation,
since Q̂ =

P
x

⇣
 ̂†

x ̂x �
1�(�1)x

2

⌘
= N̂ � L3/2.

The links of the 3D lattice are uniquely identified by
the couple of parameters (x, µ) where x is any site, µ is
one of the three positive lattice unit vectors µx ⌘ (1, 0, 0),
µy ⌘ (0, 1, 0), µz ⌘ (0, 0, 1). The gauge fields are defined
on lattice links through the pair of operators Êx,µ (elec-
tric field) and Ûx,µ (unitary comparator) that satisfy the
commutation relation

[Êx,µ, Ûx0,µ0 ] = �x,x0�µ,µ0Ûx,µ. (2)

For comfort of notation, we can extend the definition to
negative lattice unit vectors via Êx+µ,�µ = �Êx,µ and
Ûx+µ,�µ = Û†

x,µ.
The Hamiltonian of Eq. (1) consists of four terms: the

parallel transporter (1a) describes creation and annihi-
lation of a particle-antiparticle pair, shifting the gauge
field in-between to preserve local gauge symmetries. The
staggered mass and the electric energy density (1b) are
completely local. Finally, the plaquette terms (1c) cap-
ture the magnetic energy density, and are related to the
smallest Wilson loops along the closed plaquettes along
the three planes x � y, x � z, y � z of the lattice. In
dimensionless units (~ = c = 1), the couplings in Eq. (1)
are not independent: They can be expressed as t = 1/a,
m = m0, g2

e = g2/a, g2
m = 8/(g2a), where a is the lattice

spacing, g is the coupling constant of QED and m0 is
the bare mass of particles/antiparticles. The numerical
setup allows us to consider the couplings (t, m, ge, gm)
as mutually independent. We then recover the physical
regime of QED by enforcing gegm = 2

p
2t. We also fix

the energy scale by setting t = 1.
The local U(1) gauge symmetry of the theory is en-

coded in Gauss’s law, whose generators

Ĝx =  ̂†
x ̂x �

1 � (�1)x

2
�

X

µ

Êx,µ, (3)

are defined around each lattice site x. The sum in Eq. (3)
involves the six electric field operators on the links iden-
tified by ±µx, ±µy, ±µz. Each Ĝx commutes with the
Hamiltonian Ĥ and the gauge invariant Hilbert space
consists of physical many-body quantum states |�i sat-
isfying Ĝx |�i = 0 at every site x.

As stressed in the standard Wilson’s formulation of
lattice QED [11], faithful representations of the (Ê, Û)
algebra are infinite-dimensional. A truncation to a fi-
nite dimension becomes therefore necessary for numeri-
cal simulations with TN methods, which require a finite
effective Hilbert dimension at each lattice site. We use
the quantum link model (QLM) approach in which the
gauge field algebra is replaced by SU(2) spin algebra, i.e.
Êx,µ ⌘ Ŝz

x,µ and Ûx,µ ⌘ Ŝ+
x,µ/s for a spin-s representa-

tion. This substitution keeps the electric field operator
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(dashed lines), we see that the entanglement entropy for
the vacuum stays close to zero as the large mass and
electric coupling strongly suppress the particle-pair cre-
ation which triggered the strong growth of the entropy
in the previous case. Also in the middle of the string
the entanglement entropy is drastically a↵ected: the blue
dashed line initially behaves as the full one in the mass-
less case, reflecting the same mass excitation by pair cre-
ation. However, the violet dashed line always remains
close to zero as further evolution into the string broken
state is energetically forbidden: the state evolves back
into the string and the correlations between the even-odd
sites cannot be created. The system is then oscillating
between two almost degenerate states, the initial string
state and the state made out of pairs, resulting in the os-
cillating behavior of the entanglement entropy between
zero and one. Finally, the third case with m = 0.25 and
g = 1.25 (dot-dashed lines) lies between the two previous
limiting cases: here the string breaks, but does not evolve
into an anti-string. In the vacuum, the entanglement evo-
lution is very similar to the first case as the entropy grows
almost linearly after a transient, however the slope is re-
duced by the nonzero mass. The correlation in center of
the string initially evolves as for the massless case, but
after the first two hopping processes the oscillation turns
into a vacuum-like growth. This is a strong indication
for non periodic string breaking, represented by the two
hopping processes followed by the evolution of a lattice
without an electric field: the dynamics although being
unitary, resemble a dissipative process where the electric
field energy irreversibly disperses into the vacuum. This
behavior directly resembles what we observe in the elec-
tric field dynamics, where no string-breaking is observed
in this parameter regime, and the electric field does not
display any clear periodic signature.When we have an
evolution without an electric field, then we defi-
nitely have string breaking or do I misunderstand
the last sentence?

B. Entanglement propagation and wavefront

Even more remarkably, the real-space particle cre-
ations and the entanglement dynamics are quantitatively
tied. We concentrate on the signatures of the wavefront
of the string imprinted on the evolution of the entangle-
ment entropy. We consider the case m = g = 0 as it is
characterized by the most pronounced wavefront, where
the string with its slow entanglement growth is embed-
ded in the fast growing vacuum (see Fig. 3, panel C1).
To characterize the entanglement spreading due to the
wavefront, we exploit the fact that the entanglement en-
tropy in the vacuum is constant in space even though it
evolves in time. Therefore, far enough from both sides
of the string there is a plateau of constant entropy much
higher than the entropy in the middle of the string. Thus,
to define the wavefront of entanglement spreading due
to the string, one can look for the lattice site at which
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FIG. 12: Scattering of two dynamical mesons using the system
parameters m = 0, g = 8. The plot illustrate the time evolu-
tion of the electric field E(x) as a function of the position x.
After the scattering has taken place, two clear wave-fronts are
clearly visible. Lower panel: number of charges N� =

P
x nx

in the system during the evolution (blue: � = 1 . . . 32), num-
ber of particles present in the center (purple: � = 16), number
of charges on either side of the center (coinciding lines red:
� = 1 . . . 15 and orange: � = 17 . . . 32).

the entropy plateau starts to decrease. We identify this
point computing the di↵erence of entropy between near-
est neighbor bipartitions: tracking when this quantity
become bigger than a given threshold allows to charac-
terize the entanglement wavefront spreading.
In Fig. 11 we show the estimated spreading velocity for

di↵erent values of the threshold: the limit for the thresh-
old value going to zero gives an estimate of the spreading
velocity. A power law fit results in a spreading velocity of
vS = 2.0± 0.2 in very good agreement with the analytic
estimate of vT ' 2 and the result from the electric field of
vE = 1.96± 0.02 demonstrating the intimate connection
between entanglement and electric field spreading.

V. SCATTERING

Finally, in this last Section we explore a completely dif-
ferent process that we think might be highly interesting
to study using either our numerical methods and possi-
bly in quantum simulations, that is real-time scattering
processes. We then define composite particles as a pair of
charge and anti-charge divided only by one link, namely
a meson, and give them some momentum such that they
collide. The new exciting feature that we enable with
our approach, is that during the scattering process, we
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FIG. 13: Scattering of two dynamical mesons. Main panel:
Entanglement entropy S(x) using a bipartition between sites
x and x+1 as a function to time. After the scattering, the en-
tropy significantly increases in the system: this is a direct sig-
nature of enhanced quantum correlations. Right panel: S(x)
at di↵erent times (see color bar), showing a clear plateau af-
ter the collision, which enlarges as a function of time. The
empty circles show the current position of the maxima of the
electric-field which follow approximately the mesons center of
mass. The dashed line represents S(x) generated by a single
meson, while the green bar highlights the di↵erence �S to
the entropy of the colliding mesons (di↵erence between full
and dashed line at ⌧ = 120, xi = 17).

the electric field dynamics after the collision. Then, we
present results for the entanglement dynamics during and
after the collisions showing that the meson collision is ac-
companied by the creation of entanglement between the
two mesons. Indeed, as we will show, the entanglement is
bounded by the propagation wavefronts of the particles
after collision, and is characterized by a constant plateau
of the entanglement entropy within the region.

A. Electric field patterns during meson collisions

In order to produce the scattering process, we shall
start with two particles, each of them composed by a
pair of charge and anti-charge divided only by one link,
namely a meson, with opposite momentum such that
they collide. For the two-meson problem, there is a sim-
ple picture from the Schwinger model in the strong cou-
pling limit: the massless theory is a free massive boson
(meson) theory that is expected to become weakly inter-
acting once a small mass term is included. Hence, in the
strong coupling region, a possible two-meson bound state
is loosely bound, while in the weak coupling region it is
tightly bound.

We start the numerical simulation with the state repre-
sented in the cartoon (D) in Fig. 1: two mesons separated
by a vacuum state of ten sites, which can be straightfor-
wardly be written in a simple, separable matrix product

state with t = 0. We provide momentum to the mesons
by adiabatically moving them from the boundaries to-
ward the center of the system: this is done by introducing
a deep box-shaped potential which decouples the mesons
from the rest of the system leaving it only the possibility
to oscillate between its position and a neighboring site.
The box-potential is removed at time ⌧i = 17.4 when
the meson is exactly at half oscillation: from that point
on the mesons evolve freely with an e↵ective momentum
mostly in one direction, one towards the other and even-
tually colliding [85]. In order to avoid vacuum fluctua-
tions during the process, we choose a large value of g = 8.
Fig. 12 shows an example of such a scattering process.
In particular, it shows the absolute value of the electric
field of two mesons approaching each other, colliding in
the center and the parting again. While before the col-
lision the meson are tightly bound, after the scattering
process the electric field di↵uses, and the corresponding
wavefront has a significantly attenuated signal. In the
lower panel of Fig. 12, we monitor the time-evolution of
the total particle number (blue), clearly indicating that
this quantity is approximately conserved over the entire
time-evolution, due to the large electric field strength,
which suppresses particle-antiparticle creation.

B. Post-collision entanglement generation

A classical-like picture of the scattering process pre-
sented above, reads that two particles move against each
other and then bounce back as there is not enough energy
available to generate a more complex inelastic scattering.
However, this picture is oversimplified, as this is a fully
quantum process and indeed one can, once more, monitor
the quantum correlations generated during the scattering
process. This is done in Fig. 13, where we show the evo-
lution of the bipartite entanglement entropy: one sees
that entanglement is created and that it is mostly car-
ried by the two mesons - in this parameter regime, the
vacuum does not generate entanglement due to the very
large value of g2. Studying the bipartite entanglement
entropy for di↵erent bipartitions and times, one clearly
sees that there are two regimes: before the scattering
occurs, the entanglement is present only in the biparti-
tion that cuts the mesons wave packets, indicating two
electron-positron wave packets internally correlated, but
not sharing any quantum correlations among them. On
the contrary, after the scattering, the two wave packets
become highly correlated even when their two centers of
mass are clearly separated (see Fig. 12 for times ⌧ > 100).
The values of the entanglement entropy indicate that

one ebit of quantum information has been created dur-
ing the scattering process. In the right panel of Fig.
13, we present various cuts of the entanglement entropy
profile taken at di↵erent times, together with a compar-
ison with the entanglement generated by a single meson
moving through the lattice (dashed line). The di↵er-
ence of �S ⇡ 1 between the two cases (highlighted in
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link in between, followed by an empty matter site. Rishons not entangled with matter tend to form a
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entanglement of short-range RBM follows an area law.
The main advantage of short-range RBM over EPS is that,
because of the exponential scaling of EPS with the size of
the plaquettes, larger plaquettes can be used in short-range
RBM than in EPS. Since, in practice, for finite systems
it is possible to work directly with fully connected RBM,
we argue that EPS or fully connected RBM should be
preferred to short-range RBM for numerical purposes.

C. Fully connected RBM are SBS

Fully connected RBM, on the other hand, do not always
satisfy an area law [72] and hence cannot always be
approximated by local tensor networks. Nevertheless,
one can express the RBM wave function as (here, we also
omit the bias aj)
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are diagonal matrices of bond dimension 2. This shows that
RBM are string-bond states, as the wave function can be
written as a product of MPS over strings, where each
hidden unit corresponds to one string. The only difference
between the SBS as depicted in Fig. 1(d) and the RBM is
the geometry of the strings. In a fully connected RBM, each
string goes over the full lattice, while SBS have tradition-
ally been used with smaller strings and with, at most, a few
strings overlapping at each lattice site.

D. Generalizing RBM to nonlocal SBS

In the SBS language, RBM consists of many strings
overlapping on the full lattice. The matrices in each string
in the RBM are diagonal and hence commute, so they can
be moved in the string up to a reordering of the spins.
This means that each string does not have a fixed geometry
and can adapt to stronger correlations in different parts
of the lattice, even over long distances. This motivates us
to generalize RBM to SBS with diagonal matrices in which
each string covers the full lattice [Fig. 3(b)]. In the
following, we denote these states as nonlocal dSBS.

This amounts to relaxing the constraints on the RBM
parameters to the most general diagonal matrix and
enlarging the bond dimension of the matrices. For example,
taking the matrices

Asj
i;j ¼

0

BB@

asji;j 0 0

0 bsji;j 0

0 0 csji;j

1

CCA; ð26Þ

with different parameters asji;j for each string, lattice site, and
spin direction, leads to the wave function (here, D ¼ 3)

ψwðsÞ ¼
Y

i

!Y

j

asji;j þ
Y

j

bsji;j þ
Y

j

csji;j

"
: ð27Þ

Note that even for 2 × 2 matrices, the nonlocal dSBS is
more general than a RBM since the coefficients in each of
the twomatrices corresponding to one spin are independent
from each other, which is not the case in the RBM.
Generalizing such a wave function to larger spins than

spin-1=2 is straightforward since the spin si is just indexing
the parameters. This provides a way of defining a natural
generalization of RBM that can handle systems with larger
physical dimension. For instance, this can be applied to
spin-1 systems, while a naive construction for a RBM with
spin-1 visible and hidden units leads to additional con-
straints, as well as to approximate bosonic systems by
truncating the local Hilbert space of the bosons.
A further way to extend this class of states is to include

noncommuting matrices. This fixes the geometry of each
string by defining an order and also enables us to represent
more complicated interactions. In the following, we refer to
SBS in such a geometry as nonlocal SBS. The advantage
of this approach is that it can capture more complex
correlations within each string while introducing additional
geometric information about the problem at hand.
However, it comes at a greater numerical cost than nonlocal
dSBS or RBM because of the additional number of
parameters. In practice, one can use an already-optimized
RBM or dSBS as a way of initializing a nonlocal SBS.
In some cases, the SBS representation is more compact

than the RBM/dSBS representation. Let us consider again
the ground state of the Majumdar-Gosh Hamiltonian,
which we previously wrote as a RBM with M ¼ N=2
hidden units. The ground state of the Majumdar-Gosh
Hamiltonian can also be written as a simple MPS with
bond dimension 3 and periodic boundary conditions, with
matrices [24]

Asn¼−1
n ¼

0

BB@

0 1 0

0 0 − 1ffiffi
2

p

0 0 0

1

CCA; Asn¼1
n ¼

0

BB@

0 0 0
1ffiffi
2

p 0 0

0 1 0

1

CCA;

ð28Þ
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machines are types of generative stochastic artificial neural
networks that can learn a distribution over the set of their
inputs. In quantum many-body physics, the inputs are spin
configurations, and the wave function is interpreted as a
(complex) probability distribution that the networks try
to approximate. Boltzmann machines consist of two sets
of binary units (classical spins): the visible units vi,
i ∈ f1;…; Ng, corresponding to the configurations of
the original spins in a chosen basis, and hidden units hj,
j ∈ f1;…;Mg, which introduce correlations between the
visible units. The whole system interacts through an Ising
interaction, which defines a joint probability distribution
over the visible and hidden units as the Boltzmann weight
of this Hamiltonian:

Pðv;hÞ ¼ 1

Z
eHðv;hÞ; ð10Þ

where the Hamiltonian H is defined as

H ¼
X

j

ajvj þ
X

i

bihi þ
X

i<j

cijvivj

þ
X

i;j

wijhivj þ
X

i<j

dijhihj;

and Z is the partition function. The marginal probability of
a visible configuration is then given by summing over all
possible hidden configurations:

PðvÞ ¼
X

h

1

Z
eHðv;hÞ; ð11Þ

and we take this quantity as the Ansatz for the wave
function: ψwðsÞ ¼ PðsÞ. The variational parameters are
the complex parameters of the Ising Hamiltonian. In the
case where there are interactions between the hidden
units [Fig. 2(a)], the Boltzmann machine is called a
deep Boltzmann machine. It has been shown that deep

Boltzmann machines can efficiently represent ground
states of many-body Hamiltonians with polynomial-size
gaps, local tensor-network states, and quantum states
generated by any polynomial-size quantum circuits
[19,20,37]. On the other hand, computing the wave
function ψwðsÞ of such a deep Boltzmann machine in
the general case is intractable because of the exponential
sum over the hidden variables, so the VMCmethod cannot
be applied to deep Boltzmann machines without approx-
imations. We therefore turn to the investigation of
restricted Boltzmann machines (RBM), which only
include interactions between the visible and hidden units
(as well as the one-body interaction terms that correspond
to biases). In this case, the sum over the hidden units can
be performed analytically, and the resulting wave function
can be written as (here we take the hidden units to have
values %1):

ψwðsÞ ¼ e
P

j
ajsj
Y

i

cosh
!
bi þ

X

j

wijsj

"
: ð12Þ

RBM can represent many quantum states of interest, such
as the toric code [36], any graph state, cluster states, and
coherent thermal states [19]; however, the possibility of
efficiently computing ψwðsÞ prevents it from approximating
all PEPS and ground states of local Hamiltonians [19].
On the other hand, since computing ψwðsÞ and its derivative
is very efficient, RBM can be optimized numerically via the
VMC method.

III. RELATIONSHIP BETWEEN
TENSOR-NETWORK AND

NEURAL-NETWORK STATES

While the machine-learning perspective that leads to the
application of Boltzmann machines to quantum many-body
systems seems quite different from the information-theoretic
approach to the structure of tensor-network states,we see that
they are in fact intimately related. It was recently shown that,
while fully connected RBM can exhibit volume-law entan-
glement, contrary to local tensor networks, all short-range
RBM satisfy an area law [72]. Moreover, short-range and
sufficiently sparse RBM can be written as a MPS [37],
but doing so for a fully connected RBM would require an
exponential scaling of the bond dimension with the size of
the system. In this section, we show that there is a tighter
connection between RBM and the previously introduced
tensor networks in arbitrary dimensions.

A. Jastrow wave functions, RBM, and
the Majumdar-Gosh model

Before turning to tensor networks, let us first consider
the simple case of the Jastrow wave function [Eq. (4)].
Boltzmann machines that include only interactions between
the visible units lead to a wave function

(a) (b)

FIG. 2. (a) Boltzmann machines approximate a probability
distribution by the Boltzmann weights of an Ising Hamiltonian on
a graph including visible units (corresponding to the spins sj) and
hidden units hi, which are summed over. (b) Restricted Boltz-
mann machines (here in 2D) only include interactions between
the visible and the hidden units.
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spanned by js1;…; sNi, where si are the projections of the
spins on the z axis, as

jψi ¼
X

s1;…;sN

ψðs1;…; sNÞjs1;…; sNi: ð1Þ

Finding the ground state amounts to finding the exponen-
tially many parameters ψðs1;…; sNÞ minimizing the
energy, which can only be done exactly for small sizes.
Instead of searching for the ground state in the full
Hilbert space, one may restrict the search to an Ansatz
class specified by a particular form for the function
ψwðs1;…; sNÞ depending on polynomially many varia-
tional parameters w. The VMC method [59,60] provides
a general algorithm for optimizing the energy of such a
wave function. One can compute the energy by expressing
it as

Ew ¼ hψ jHjψi
hψ jψi

¼
X

s

pðsÞElocðsÞ; ð2Þ

where s ¼ s1;…; sN is a spin configuration, pðsÞ ¼
½jψwðsÞj2=ð

P
sjψwðsÞj2Þ% is a classical probability distribu-

tion, and the local energy ElocðsÞ ¼
P

s0 hsjHjs0ifψwðs0Þ=
½ψwðsÞ%g can be evaluated efficiently for Hamiltonians
involving few-body interactions. The energy is therefore
an expectation value with respect to a probability
distribution p that can be evaluated using Markov chain
Monte Carlo sampling techniques such as the Metropolis-
Hastings algorithm [61,62]. The second ingredient required
to minimize the energy with respect to the parameters w
is the gradient of the energy, which can be expressed in a
similar form since

∂Ew

∂wi
¼ 2
X

s

pðsÞΔwi
ðsÞ&(ElocðsÞ − Ew); ð3Þ

where we have defined Δwi
ðsÞ ¼ f1=½ψwðsÞ%gf½∂ψwðsÞ%=

∂wig as the log-derivative of the wave function with respect
to some parameter wi. This is also an expectation value
with respect to the same probability distribution p and
can therefore be sampled at the same time, which allows
for the use of gradient-based optimization methods. At each
iteration, the energy and its gradient are computed with
Monte Carlo, the parameters w are updated by small
steps in the direction of the negative energy derivative
(wi ← wi − α½∂Ew=ð∂wiÞ%), and the process is repeated until
convergence of the energy. The VMCmethod, in its simplest
form, only requires the efficient computation of f½ψwðs0Þ%=
ψwðsÞg for two spin configurations s and s0, as well as the
log-derivative of the wave function ΔwðsÞ. More efficient
optimization methods can be used, such as conjugate-
gradient descent, stochastic reconfiguration [63,64], the
Newton method [65], or the linear method [66–68].
At this point, one has to choose a special form for the

wave function ψw. One of the traditional variational wave

functions for a many-body quantum system is a Jastrow
wave function [59,69], which consists, in its most general
form, of a product of wave functions for all pairs of spins:

ψwðsÞ ¼
Y

i<j

fijðsi; sjÞ; ð4Þ

where each fij is fully specified by its four values fijðsi; sjÞ,
si, sj ∈ f−1; 1g. Such an Ansatz does not presuppose a
particular local geometry of the many-body quantum state:
In general, this Ansatz can be nonlocal because of the
correlations between all pairs of spins [Fig. 1(a)]. A local
structure can be introduced by choosing a form for fij that
decays with the distance between positions i and j.

B. Variational Monte Carlo method
with tensor networks

In condensed-matter physics, important assets to sim-
plify the problem are the geometric structure and locality
of physical Hamiltonians. In 1D, it has been proven
that ground states of gapped local Hamiltonians have an
entanglement entropy of a subsystem that grows only like
the boundary of the subsystem [21]. States satisfying such
an area law can be efficiently approximated by MPS [22].
Matrix product states are one-dimensional tensor-network
states whose wave function for a spin configuration reads

ψwðsÞ ¼ Tr
!YN

j¼1

Asj
j

"
: ð5Þ

(a) (b)

(c) (d)

FIG. 1. Geometry of Ansatz wave functions: (a) Jastrow wave
functions include correlations within all pairs of spins. (b) MPS in
2D cover the lattice with one snake. (c) EPS include all spin
correlations within each plaquette (2 × 2 on the figure) and
mediate correlations between distant spins through overlapping
plaquettes. (d) SBS cover the lattice with many 1D strings on
which the interactions within spins are captured by a MPS.

NEURAL NETWORKS QUANTUM STATES, STRING-BOND … PHYS. REV. X 8, 011006 (2018)

011006-3

COMPARISON WITH MACHINE LEARNING



COMPARISON WITH MACHINE LEARNING

M. Collura et al., SciPost Phys. Core (2021)

4
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FIG. 3: Relative error in the ground-state energy estimate
as a function of the transverse field �. The data for RBM at
� = 1 has been taken from [12].

the ground state from a ferromagnetic region (� < 1) to
a paramagnetic region (� > 1) across a quantum critical
point.

Exploiting the coMPS mapping of the uRBM, we are
able to optimize the many-body wave function very ef-
ficiently. We consider a chain with periodic boundary
conditions and focus on the one layer case (` = 1), thus
reducing the number of variational parameters to 3. Due
to the coMPS representation of the variational wave func-
tion in Eq. (7) we are able to evaluate the Hamilto-
nian expectation value exactly. Thus, we improve the
accuracy and the computational time compared to what
has been recently found for the ground state energy in
Ref. [29] via Monte Carlo methods.

In Fig. 3 we report the relative error of the best es-
timate of the ground-state energy with respect to the
exact value, namely �E = |(hHIi � Eex)/Eex|, for a sys-
tem of size N = 80 and varying the transverse field
� 2 [0.5, 1.5]. We compare the results of the uRBM
with ` = 1 against the data obtained from imaginary
time evolution via TEBD algorithm [30] on a traditional
MPS with the same auxiliary dimension � = 4. At the
critical point, we also report the result obtained in Ref.
[12] with the RBM variational ansatz and the same num-
ber of hidden variables (i.e. ↵ = 1). We confirm that
appropriate physical insights about the model under in-
vestigation not only reduce the computational e↵ort of
the algorithm (from 2N+1 parameters in the RBM, to 3
parameters in the uRBM), but give much better results.
However, we notice that results based on the canonical
MPS representation are order of magnitudes more accu-

RBM(�=1)
uRBM(�=1)
MPS(�=4)

1 5 10

0.2

0.4

0.6

0.8
1.0

j

��
1z
�
j+
1

z
� c

N = 80, � = 1

FIG. 4: Two-point connected correlation function in log-
log scale at the critical point for di↵erent variational ansatz.
Black full line is the exact analytical result. The data for
RBM has been obtained by using the optimised wave function
in Ref. [12].

rate than those based on the corresponding uRBM rep-
resentation. We checked that this remains true when
adding additional hidden variables, thus confirming that
ERBM (↵) > EuRBM (`) > EMPS(�), when ↵ = ` and
� = 2`+1.

Even though very di↵erent variational ansatz may give
reasonable estimate of the ground-state energy, it is
worth investigating the large-distance behaviour of corre-
lation functions. Indeed, at the critical point, we expect
a power-law decay of the two-point connected correla-
tion function h�z

1�
z

j+1ic = h�z

1�
z

j+1i � h�z

1ih�z

j+1i, as far
as j ⌧ N . However, the MPS structure of the vari-
ational ansatz introduces an unavoidable fictitious cor-
relation length. Moreover, the fact that the uRBM en-
ergy estimate is much better than the RBM estimate (see
Ref. [12, 29] for a comparison), implies that the uRBM
may give a better estimate also at the level of the correla-
tion functions. With this respect, in Fig. 4, we compare
the connected two-point function h�z

1�
z

j+1ic evaluated in
the optimised uRBM with ` = 1 against the same two-
point function evaluated in the unconstrained MPS with
auxiliary dimension � = 4. We also report RBM correla-
tions with ↵ = 1 which have been obtained by sampling
the optimised wave function in Ref. [12] over 106 con-
figurations. We focus our analysis to the critical point,
where a larger deviation from the exact data is expected.
Now it is clear that, canonical MPS are largely better
than neural-network representations. In a way, the RBM
su↵ers from a sort of over-estimation of the long-range

G. Carleo, M. Troyer Science (2017)



TAKE HOME MESSAGES

➤ Tensor network algorithms can be used to benchmark, verify, 
support and guide quantum simulations/computations 

➤ High-dimensional tensor network simulations are becoming 
available 

➤ Scalability to HPC is necessary to produce relevant results 

➤ Interaction with HEP is becoming more and more relevant  

➤ Interesting developments also in other directions (classical 
optimisers/annealers) 

➤ Tensor network machine learning is competitive with DNN
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