

Ottocento anni di libertà e futuro

TENSOR NETWORK MACHINE LEARNING

Simone Montangero University of Padova

Università degli Studi di Padova

 $|\Psi_{\text{many-body}}\rangle = \sum \mathcal{T}_{s_{x_1}, s_{x_2} \dots s_{x_N}} |s_{x_1}, s_{x_2} \dots s_{x_N}\rangle$ $s_{x_1}, s_{x_2}...s_{x_N}$

$$|\Psi_{\text{many-body}}\rangle = \sum_{s_{x_1}, s_{x_2}...s_{x_N}} \mathcal{T}_{s_x} 2^N ... s_{x_N} |s_{x_1}, s_{x_2}...s_{x_N}\rangle$$

 $|\Psi_{\text{many-body}}\rangle = \sum_{s_{x_1}, s_{x_2}...s_{x_N}} \mathcal{T}_{s_x} 2^N ... s_{x_N} |s_{x_1}, s_{x_2}...s_{x_N}\rangle$

 $|\Psi_{\text{many-body}}\rangle = \sum_{s_{x_1}, s_{x_2}...s_{x_N}} \mathcal{T}_{s_x} 2^N ... s_{x_N} |s_{x_1}, s_{x_2}...s_{x_N}\rangle$

SVD

• •

• •

. . .

• •

.

.

. .

SVD

$$|\Psi_{\text{many-body}}\rangle = \sum_{s_{x_1}, s_{x_2}...s_{x_N}} \mathcal{T}_{s_x} 2^N ... s_{x_N} |s_{x_1}, s_{x_2}...s_{x_N}\rangle$$

• •

. . .

.

• •

.

• •

. . .

.

$$|\Psi_{\text{many-body}}\rangle = \sum_{s_{x_1}, s_{x_2}, \dots, s_{x_N}} \mathcal{T}_{s_x} 2^N \dots s_{x_N} |s_{x_1}, s_{x_2} \dots s_{x_N}\rangle$$

SVD

. .

.

SVD

Contractions

Tree Tensor Network

PEPS

Tree Tensor Network

Tensor networks states are a compressed description of the system tunable between mean field and exact

TENSOR NETWORK ALGORITHMS

- State of the art in 1D (poly effort)
- ► No sign problem Kraus
- Extended to open quantum systems Climension
- ► Machine learning
- ► Data compression (BIG DATA)
- Extended to lattice gauge theories
- Simulations of low-entangled systems of hundreds qubits
- Extended to quantum field theories

S. Montangero "Introduction to Tensor Network Methods", Springer (2019)

U. Schollwock, RMP (2005)

A. Cichocki, ECM (2013) I. Glasser, et al. PRX (2018)

LATTICE GAUGE THEORIES

The current wisdom on the phase diagram of nuclear matter.

McLerran, L. Nucl.Phys.Proc.Suppl. 195 (2009) 275-280

3D TREE TENSOR NETWORK

T. Felser, P. Silvi, M. Collura, S. Montangero PRX (2020)

G. Magnifico, T. Felser, P. Silvi, and S. Montangero Nat. Comm. (2021)

$$H_{pen} = \nu \sum_{x,\mu} \left(1 - \delta_{2,\hat{L}_{x,\mu}} \right)$$

Local dimension 267, up to 12288 Hamiltonian operators

$$H_{pen} = \nu \sum_{x,\mu} \left(1 - \delta_{2,\hat{L}_{x,\mu}} \right)$$

Up to 5 weeks x 64 cores of computational time

$$H_{pen} = \nu \sum_{x,\mu} \left(1 - \delta_{2,\hat{L}_{x,\mu}} \right)$$

 $m_c \approx +0.22$ $g_m^2 = 8/g_e^2$

 $g_m^2 = 8/g_e^2$

 $g_e^2 = g^2/a, \, g_m^2 = 8/(g^2a)$

Real time

MESONS SCATTERING

T. Pichler, E. Rico, M. Dalmonte, P. Zoller, and SM, PRX (2016)

Real time

MESONS SCATTERING

T. Pichler, E. Rico, M. Dalmonte, P. Zoller, and SM, PRX (2016)

Space

ENTANGLEMENT GENERATION IN QED SCATTERING PROCESSES

M. Rigobello, S. Notarnicola, G. Magnifico, and S. Montangero, Phys. Rev. D 104, 114501 (2021).

ENTANGLEMENT GENERATION IN QED SCATTERING PROCESSES

M. Rigobello, S. Notarnicola, G. Magnifico, and S. Montangero, Phys. Rev. D 104, 114501 (2021).

SU(2) LATTICE GAUGE THEORY IN 1+1D

P. Silvi et al Quantum (2017)

SU(3) 1+1D study in P. Silvi, et al. PRD (2019)

Quantum Technologies for Lattice Gauge Theories

Simulating Lattice Gauge Theories within Quantum Technologies

M.C. Bañuls^{1,2}, R. Blatt^{3,4}, J. Catani^{5,6,7}, A. Celi^{3,8}, J.I. Cirac^{1,2}, M. Dalmonte^{9,10}, L. Fallani^{5,6,7}, K. Jansen¹¹, M. Lewenstein^{8,12,13}, S. Montangero^{7,14} ^a, C.A. Muschik³, B. Reznik¹⁵, E. Rico^{16,17} ^b, L. Tagliacozzo¹⁸, K. Van Acoleyen¹⁹, F. Verstraete^{19,20}, U.-J. Wiese²¹, M. Wingate²², J. Zakrzewski^{23,24}, and P. Zoller³

EPJD (2020)

MACHINE LEARNING WITH TENSOR NETWORKS

TN MACHINE LEARNING OF HEP DATA

Hypothesis class: $f^{\ell}(\bar{x}) = \mathbf{W}^{\ell} \cdot \Phi(\bar{x})$

$$f^{\ell}(\bar{x}) = \sum_{\mathbf{s}} W^{\ell}_{s_1 s_2 \dots s_N} \phi(x_1)^{s_1} \phi(x_2)^{s_2} \dots \phi(x_N)^{s_N}$$

 f^{ℓ} map input data to the space of labels

PROBLEM: W is a N+1 order tensor that grows exponentially with the input data

MACHINE LEARNING WITH TREE TENSOR NETWORKS

P-P SCATTERING

Typical event in LHC

BINARY B BBAR CLASSIFICATION

This kind of events are used to measure **asymmetries** between the charge of b and \overline{b} .

MACHINE LEARNING BASED CLASSIFICATION

arXiv: 2004.13747

T. Felser et al. Npj quantum inf. (2021) in collaborato with L. Sestini, A. Gianelle, D. Zuliani, D. Lucchesi

BINARY CLASSIFICATION

Until now, Boosted Decision trees:

.. giving only a 6% of identification efficiency on processes like H -> $c\bar{c}$.

Article:

Identification of beauty and charm quark jets at LHCb, The LHCb collaboration

LHCB SIMULATED DATA ANALYSIS

CLASSIFICATION

correctly classified

CORRELATIONS

CORRELATIONS

-0.8

- 0.4
- --0.4

FINAL RESULT

FINAL RESULT

• Only 0.8% less precise

FINAL RESULT

	Model M_{16} (incl. all 16 features)			Model B_8 (best 8 features determined by QuIPS)		
χ	Prediction time	Accuracy	Free parameters	Prediction time	Accuracy	Free parameters
200	$345\mu{ m s}$	70.27 $\%~(63.45~\%)$	51501	-	-	-
100	$178\mu{ m s}$	70.34 % (63.47 %)	25968	-	-	-
50	$105\mu{ m s}$	70.26 $\%~(63.47~\%)$	13214	-	-	-
20	$62\mu{ m s}$	70.31 $\%~(63.46~\%)$	5576	-	-	-
16	-	-	-	$19\mu{ m s}$	69.10~%~(62.78~%)	264
10	$40\mu{ m s}$	70.36 $\%~(63.44~\%)$	1311	$19\mu{ m s}$	69.01~%~(62.78~%)	171
5	$37\mu\mathrm{s}$	69.84~%~(62.01~%)	303	$19\mu{ m s}$	69.05~%~(62.76~%)	95

COMPARISON WITH MACHINE LEARNING

$$\psi_{w}(\mathbf{s}) = \prod_{i} \cosh\left(b_{i} + \sum_{j} w_{ij} s_{j}\right)$$
$$\propto \prod_{i} \left(e^{b_{i} + \sum_{j} w_{ij} s_{j}} + e^{-b_{i} - \sum_{j} w_{ij} s_{j}}\right)$$

$$\propto \prod_{i} \operatorname{Tr} \begin{pmatrix} e^{b_i + \sum_{j} w_{ij} s_j} & 0 \\ 0 & e^{-b_i - \sum_{j} w_{ij} s_j} \end{pmatrix}$$
$$\propto \prod_{i} \operatorname{Tr} \left(\prod_{j \in i} A_{i,j}^{s_j} \right),$$

where

$$A_{i,j}^{s_j} = \begin{pmatrix} e^{b_i/N + w_{ij}s_j} & 0\\ 0 & e^{-b_i/N - w_{ij}s_j} \end{pmatrix}$$

Ivan Glasser et al PRX (2018)

COMPARISON WITH MACHINE LEARNING

G. Carleo, M. Troyer Science (2017)

M. Collura et al., SciPost Phys. Core (2021)

- Tensor network algorithms can be used to benchmark, verify, support and guide quantum simulations/computations
- High-dimensional tensor network simulations are becoming available
- Scalability to HPC is necessary to produce relevant results
- ► Interaction with HEP is becoming more and more relevant
- Interesting developments also in other directions (classical optimisers/annealers)
- ► Tensor network machine learning is competitive with DNN

Ottocento anni di libertà e futuro

<u>quantum.dfa.unipd.it</u> <u>qtech.unipd.it</u>

Università degli Studi di Padova

Ottocento anni di libertà e futuro

Thank you for your attention!

Simone Montangero **Pietro Silvi** Giuseppe Magnifico Simone Notarnicola Daniel Jaschke Luca Arceci **Timo Felser** Phila Rembold Marco Rossignolo Marco Rigobello Samuele Cavinato Giovanni Cataldi Marco Ballarin Alice Pagano

OUANTUM **UANTERA** INF stituto Nazionale di Fisica Nuclea DFG Deutsche Forschungsgemeinschaft **PAS** Pas MIUR uantHEP **OTFLAG** Google Fondazione Cassa di Risparmio di Padova e Rovigo ╸╸╺ CINECA **b**GRiD

<u>quantum.dfa.unipd.it</u> <u>qtech.unipd.it</u>

Dipartimento di Fisica e Astronomia Galileo Galilei

Università degli Studi di Padova