TENSOR NETWORK MACHINE LEARNING

Simone Montangero
University of Padova

Dipartimento
e Astronomia
Galileo Galilei

Università degli Studi di Padova

TENSOR NETWORK ANSATZ

$$
\left|\Psi_{\text {many-body }}\right\rangle=\sum_{s_{x_{1}}, s_{x_{2}} \ldots s_{x_{N}}} T_{s_{x_{1}}, s_{x_{2}} \ldots s_{x_{N}}}\left|s_{x_{1}}, s_{x_{2}} \ldots s_{x_{N}}\right\rangle
$$

TENSOR NETWORK ANSATZ

$$
\left.\left.\mid \Psi_{\text {many }} \text { bod } y\right\rangle=\sum_{s_{1}, s_{2}, s_{2}, s_{N}} \tau_{s_{s}} / 2^{N} \mathbb{N}\left|s_{x_{N}}\right| s_{x_{1},}, s_{s_{2}} \ldots s_{s_{N}}\right\rangle
$$

TENSOR NETWORK ANSATZ

TENSOR NETWORK ANSATZ

TENSOR NETWORK ANSATZ

TENSOR NETWORK ANSATZ

TENSOR NETWORK ANSATZ

suo!əวセıłuoว

TENSOR NETWORK ANSATZ

Assume:

$$
\left|\Psi_{\mathrm{MPS}}\right\rangle=\sum_{\left\{s_{i}\right\},\left\{\alpha_{i}\right\}} A_{\alpha_{1}}^{\left(s_{1}\right)} A_{\alpha_{1}, \alpha_{2}}^{\left(s_{2}\right)} \cdots A_{\alpha_{N-1}}^{\left(s_{N}\right)}\left|s_{1}, s_{2}, \cdots, s_{N}\right\rangle
$$

TENSOR NETWORKS STATES

$$
\psi_{\alpha_{1}, \alpha_{2}, \ldots \alpha_{N}} \quad \mathcal{O}\left(d^{N}\right)
$$

TENSOR NETWORKS STATES

$$
\psi_{\alpha_{1}, \alpha_{2}, \ldots \alpha_{N}} \quad \mathcal{O}\left(d^{N}\right)
$$

$$
A_{\alpha_{1}}^{\beta_{1}} A_{\alpha_{2}}^{\beta_{1} \beta_{2}} \ldots A_{\alpha_{N}}^{\beta_{N-1}} \mathcal{O}\left(N d m^{2}\right)
$$

TENSOR NETWORKS STATES

$$
\psi_{\alpha_{1}, \alpha_{2}, \ldots \alpha_{N}} \mathcal{O}\left(d^{N}\right)
$$

PEPS

$$
A_{\alpha_{1}}^{\beta_{1}} A_{\alpha_{2}}^{\beta_{1} \beta_{2}} \ldots A_{\alpha_{N}}^{\beta_{N-1}} \mathcal{O}\left(N d m^{2}\right)
$$

TENSOR NETWORKS STATES

$$
\psi_{\alpha_{1}, \alpha_{2}, \ldots \alpha_{N}} \mathcal{O}\left(d^{N}\right)
$$

PEPS

$$
A_{\alpha_{1}}^{\beta_{1}} A_{\alpha_{2}}^{\beta_{1} \beta_{2}} \ldots A_{\alpha_{N}}^{\beta_{N-1}} \mathcal{O}\left(N d m^{2}\right)
$$

Tree Tensor Network

TENSOR NETWORKS STATES

$$
\psi_{\alpha_{1}, \alpha_{2}, \ldots \alpha_{N}} \mathcal{O}\left(d^{N}\right)
$$

PEPS

$$
A_{\alpha_{1}}^{\beta_{1}} A_{\alpha_{2}}^{\beta_{1} \beta_{2}} \ldots A_{\alpha_{N}}^{\beta_{N-1}} \mathcal{O}\left(N d m^{2}\right)
$$

Tree Tensor Network

Tensor networks states are a compressed description of the system tunable between mean field and exact

TENSOR NETWORK ALGORITHMS

> State of the art in 1D (poly effort)

> No sign problem

- Extended to open quantum systems
> Machine learning
> Data compression (BIG DATA)
> Extended to lattice gauge theories
> Simulations of low-entangled systems of hundreds qubits
- Extended to quantum field theories
S. Montangero "Introduction to Tensor Network Methods", Springer (2019)
U. Schollwock, RMP (2005)
A. Cichocki, ECM (2013)
I. Glasser, et al. PRX (2018)

LATTICE GAUGE THEORIES

The current wisdom on the phase diagram of nuclear matter.

3D TREE TENSOR NETWORK

T. Felser, P. Silvi, M. Collura,
S. Montangero PRX (2020)
G. Magnifico, T. Felser, P. Silvi, and S. Montangero

Nat. Comm. (2021)

3D TREE TENSOR NETWORK

T. Felser, P. Silvi, M. Collura,
S. Montangero PRX (2020)

G. Magnifico, T. Felser, P. Silvi, and S. Montangero Nat. Comm. (2021)

3D QUANTUM-LINK FORMULATION OF QED

$$
\begin{aligned}
& \hat{H}=-t \sum_{x, \mu}\left(\hat{\psi}_{x}^{\dagger} \hat{U}_{x, \mu} \hat{\psi}_{x+\mu}+\text { H.c. }\right) \\
& +m \sum_{x}(-1)^{x} \psi_{x}^{\dagger} \hat{\psi}_{x}+\frac{g_{e}^{2}}{2} \sum_{x, \mu} \hat{E}_{x, \mu}^{2} \\
& -\frac{g_{m}^{2}}{2} \sum_{x}\left(\square_{\mu_{x}, \mu_{y}}+\square_{\mu_{x}, \mu_{z}}+\square_{\mu_{s}, \mu_{z}}+\text { H.c. }\right)
\end{aligned}
$$

$$
\hat{G}_{x}=\hat{\psi}_{x}^{+} \hat{\psi}_{x}-\frac{1-(-1)^{x}}{2}-\sum_{\mu} \hat{E}_{x, \mu}
$$

$$
H_{p e n}=\nu \sum_{x, \mu}\left(1-\delta_{2, L_{x, \mu}}\right)
$$

3D QUANTUM-LINK FORMULATION OF QED

$$
\begin{aligned}
& \hat{H}=-t \sum_{x, \mu}\left(\hat{\psi}_{x}^{\dagger} \hat{\psi}_{x, \mu} \hat{\psi}_{x+\mu}+\text { H.c. }\right) \\
& +m \sum_{x}(-1)^{x} \hat{\psi}_{x}^{\dagger} \hat{\psi}_{x}+\frac{g_{e}^{2}}{2} \sum_{x, \mu} \hat{E}_{x, \mu}^{2} \\
& -\frac{g_{m}^{2}}{2} \sum_{x}\left(\square_{\mu_{x}, \mu_{y}}+\square_{\mu_{x}, \mu_{z}}+\square_{\mu_{y}, \mu_{z}}+\text { H.c. }\right)
\end{aligned}
$$

$$
\hat{G}_{x}=\hat{\psi}_{x}^{+} \hat{\psi}_{x}-\frac{1-(-1)^{x}}{2}-\sum_{\mu} \hat{E}_{x, \mu}
$$

Local dimension 267, up to 12288 Hamiltonian operators

$$
H_{p e n}=\nu \sum_{x, \mu}\left(1-\delta_{2, L_{x, \mu}}\right)
$$

3D QUANTUM-LINK FORMULATION OF QED

$$
\begin{aligned}
& \hat{H}=-t \sum_{x, \mu}\left(\hat{\psi}_{x}^{\dagger} \hat{\psi}_{x, \mu} \hat{\psi}_{x+\mu}+\text { H.c. }\right) \\
& +m \sum_{x}(-1)^{x} \hat{\psi}_{x}^{\dagger} \hat{\psi}_{x}+\frac{g_{e}^{2}}{2} \sum_{x, \mu} \hat{E}_{x, \mu}^{2} \\
& -\frac{g_{m}^{2}}{2} \sum_{x}\left(\square_{\mu_{x}, \mu_{y}}+\square_{\mu_{x}, \mu_{z}}+\square_{\mu_{y}, \mu_{z}}+\text { H.c. }\right)
\end{aligned}
$$

$$
\hat{G}_{x}=\hat{\psi}_{x}^{+} \hat{\psi}_{x}-\frac{1-(-1)^{x}}{2}-\sum_{\mu} \hat{E}_{x, \mu}
$$

$$
H_{p e n}=\nu \sum_{x, \mu}\left(1-\delta_{2, \hat{L}_{x, \mu}}\right)
$$

3D QUANTUM-LINK FORMULATION OF QED

$$
\begin{aligned}
& \hat{H}=-t \sum_{x, \mu}\left(\hat{\psi}_{x}^{\dagger} \hat{U}_{x, \mu} \hat{\psi}_{x+\mu}+\text { H.c. }\right) \\
& +m \sum_{x}(-1)^{x} \hat{\psi}_{x}^{\dagger} \hat{\psi}_{x}+\frac{g_{e}^{2}}{2} \sum_{x, \mu} \hat{E}_{x, \mu}^{2} \\
& -\frac{g_{m}^{2}}{2} \sum_{x}\left(\square_{\mu_{x}, \mu_{y}}+\square_{\mu_{x}, \mu_{z}}+\square_{\mu_{y}, \mu_{z}}+\text { H.c. }\right)
\end{aligned}
$$

$$
\hat{G}_{x}=\hat{\psi}_{x}^{\dagger} \hat{\psi}_{x}-\frac{1-(-1)^{x}}{2}-\sum_{\mu} \hat{E}_{x, \mu}
$$

Local dimension 267, up to 12288 Hamiltonian operators

Up to 5 weeks $x 64$ cores of computational time

$$
H_{p e n}=\nu \sum_{x, \mu}\left(1-\delta_{2, \hat{L}_{x, \mu}}\right)
$$

(b)
Iteration

QUANTUM PHASES

Hilbert space of

$$
\begin{gathered}
m_{c} \approx+0.22 \\
g_{m}^{2}=8 / g_{e}^{2}
\end{gathered}
$$

CONFINEMENT

$$
g_{e}^{2}=g^{2} / a, g_{m}^{2}=8 /\left(g^{2} a\right)
$$

Real time

MESONS SCATTERING

T. Pichler, E. Rico, M. Dalmonte, P. Zoller, and SM, PRX (2016)

Real time

MESONS SCATTERING

T. Pichler, E. Rico, M. Dalmonte, P. Zoller, and SM, PRX (2016)

ENTANGLEMENT GENERATION IN QED SCATTERING PROCESSES

M. Rigobello, S. Notarnicola, G. Magnifico, and S. Montangero, Phys. Rev. D 104, 114501 (2021).

ENTANGLEMENT GENERATION IN QED SCATTERING PROCESSES

M. Rigobello, S. Notarnicola, G. Magnifico, and S. Montangero, Phys. Rev. D 104, 114501 (2021).

SU(2) LATIICE GAUGE THEORY IN 1+1D

$$
H=H_{\text {coupl }}+H_{\text {free }}+H_{\text {break }}
$$

$$
\begin{gathered}
H_{\text {coupl }}=t \sum_{j=1}^{\mathrm{L}-1} \sum_{s, s^{\prime}=\uparrow, \downarrow} c_{j, s}^{[M] \dagger} U_{j, j+1 ; s, s^{\prime}} C_{j+1, s^{\prime}}^{[M]}+\text { h.c. } \\
H_{\text {free }}=\frac{g_{0}^{2}}{2} \sum_{j=1}^{\mathrm{L}}\left[\bar{J}_{j-1, j}^{[R]}\right]^{2}+\left[\bar{J}_{j, j+1}^{L L]}\right]^{2}
\end{gathered}
$$

Phase diagram at
finite chemical potential

Quantum Technologies for Lattice Gauge Theories

Simulating Lattice Gauge Theories within Quantum Technologies

M.C. Bañuls ${ }^{1,2}$, R. Blatt 3,4, J. Catani ${ }^{5,6,7}$, A. Celi ${ }^{3,8}$, J.I. Cirac ${ }^{1,2}$, M. Dalmonte ${ }^{9,10}$, L. Fallani ${ }^{5,6,7}$, K. Jansen ${ }^{11}$, M. Lewenstein ${ }^{8,12,13}$, S. Montangero ${ }^{7,14}{ }^{\text {a }}$, C.A. Muschik ${ }^{3}$, B. Reznik ${ }^{15}$, E. Rico ${ }^{16,17}{ }^{\text {b }}$, L. Tagliacozzo ${ }^{18}$, K. Van Acoleyen ${ }^{19}$, F. Verstraete ${ }^{19,20}$, U.-J. Wiese ${ }^{21}$, M. Wingate ${ }^{22}$, J. Zakrzewski ${ }^{23,24}$, and P. Zoller ${ }^{3}$
EPJD (2020)

QUANTERA

MACHINE LEARNING WITH TENSOR NETWORKS

$\begin{aligned} & \frac{\pi}{3} \\ & \frac{\pi}{0} \\ & 3 \\ & \pi \\ & \underset{\sim}{3} \end{aligned}$	00000000									
	1	1	1	11	11	1	1		1	
	2		2	2	22	2	2		2	2
	3	3	3	3	3	3	3		3	3
	4	4	4	4	44	4	4		4	4
	5		5	55	55	5	5		5	5
	6		6	6	66	6	6		6	6
	7	7	7	7	77	7	7		7	7
	8	8	8	8	88	8	8		8	8
	9									

$$
\xrightarrow[{\Phi\left(x_{j}\right)=\left[\cos \left(\frac{\pi}{2} x_{j}\right), \sin \left(\frac{\pi}{2} x_{j}\right)\right.}]]{\text { Map to "Spins" }}
$$

$$
f^{\ell}(\bar{x})=\sum_{\mathbf{s}} W_{s_{1} s_{2} \ldots s_{N}}^{\ell} \phi\left(x_{1}\right)^{s_{1}} \phi\left(x_{2}\right)^{s_{2}} \ldots \phi\left(x_{N}\right)^{s_{N}}
$$

W : weight tensor
$f(x)$: decision function

Stoudenmire, Advances in Neural IPS 29, 4799 (2016), arXiv: I 605.05775

TN MACHINE LEARNING OF HEP DATA

Hypothesis class: $\quad f^{\ell}(\bar{x})=\mathbf{W}^{\ell} \cdot \Phi(\bar{x})$
$f^{\ell}(\bar{x})=\sum_{\mathrm{s}} W_{s_{1} s_{2} \ldots s_{N}}^{\ell} \phi\left(x_{1}\right)^{s_{1}} \phi\left(x_{2}\right)^{s_{2}} \ldots \phi\left(x_{N}\right)^{s_{N}}$
f^{ℓ} map input data to the space of labels PROBLEM: \mathbf{W} is a $\mathbf{N + 1}$ order tensor that grows exponentially with the input data

Tensor diagram notation

SOLUTION: use a tensor network!

MACHINE LEARNING WITH TREE TENSOR NETWORKS

\%		0	0	O	0	0	O			Map to "Spins"		
	1	1	1	1	1	1	1	1	1			
	2	2	2	2	2	2	2	2	2			
	3	3	3	3	3	3	3	3	3			
	4	4	4	4	4	4		4	4	$\Phi\left(x_{j}\right)=\left[\cos \left(\frac{\pi}{2} x_{j}\right), \sin \left(\frac{\pi}{2} x_{j}\right)\right]$		
$$	5	5	5	5	5	5		5	5			
	6	6	6	6	6	6		6	$\frac{6}{7}$			
	7	7	7	7	7	7		7	7			
	8	8	8	8	8	8		8	8			
	9	9	9	9	9							

P-P SCATERRNG

Typical event in LHC

BINARY B BBAR CLASSIFICATION

This kind of events are used to measure asymmetries between the charge of b and $\overline{\mathrm{b}}$.

Easier problem:

- 16 selected features (most physically relevant)
- ~10^6 data samples

MACHINE LEARNING BASED CLASSIFICATION

T. Felser et al. Npj quantum inf. (2021)
in collaborato with L. Sestini, A. Gianelle, D. Zuliani, D. Lucchesi

BINARY CLASSIFICATION

Until now, Boosted Decision trees:

.. giving only a 6\% of identification efficiency on processes like H -> c(\bar{c}.
Article:
Identification of beauty and charm quark jets at LHCb, The LHCb collaboration

LHCB SIMULATED DATA ANALYSIS

CLASSIFICATION

correctly classified

CORRELATIONS

CORRELATIONS

FINAL RESULT

FINAL RESULT

- 18 times faster
- Only 0.8% less precise

FINAL RESULT

	Model M_{16} (incl. all 16 features)			Model B_{8} (best 8 features determined by QuIPS)		
χ	Prediction time	Accuracy	Free parameters	Prediction time	Accuracy	Free parameters
$\mathbf{2 0 0}$	$345 \mu \mathrm{~s}$	$70.27 \%(63.45 \%)$	51501	-	-	-
$\mathbf{1 0 0}$	$178 \mu \mathrm{~s}$	$70.34 \%(63.47 \%)$	25968	-	-	-
$\mathbf{5 0}$	$105 \mu \mathrm{~s}$	$70.26 \%(63.47 \%)$	13214	-	-	-
$\mathbf{2 0}$	$62 \mu \mathrm{~s}$	$70.31 \%(63.46 \%)$	5576	-	-	-
$\mathbf{1 6}$	-	-	-	$19 \mu \mathrm{~s}$	$69.10 \%(62.78 \%)$	264
$\mathbf{1 0}$	$40 \mu \mathrm{~s}$	$70.36 \%(63.44 \%)$	1311	$19 \mu \mathrm{~s}$	$69.01 \%(62.78 \%)$	171
$\mathbf{5}$	$37 \mu \mathrm{~s}$	$69.84 \%(62.01 \%)$	303	$19 \mu \mathrm{~s}$	$69.05 \%(62.76 \%)$	95

COMPARISON WITH MACHINE LEARNING

$$
\begin{aligned}
\psi_{w}(\mathbf{s}) & =\prod_{i} \cosh \left(b_{i}+\sum_{j} w_{i j} s_{j}\right) \\
& \propto \prod_{i}\left(e^{b_{i}+\sum_{j} w_{i j} s_{j}}+e^{-b_{i}-\sum_{j} w_{i j} s_{j}}\right) \\
& \propto \prod_{i} \operatorname{Tr}\left(\begin{array}{cc}
e^{b_{i}+\sum_{j} w_{i j} s_{j}} & 0 \\
0 & e^{-b_{i}-\sum_{j} w_{i j} s_{j}}
\end{array}\right) \\
& \propto \prod_{i} \operatorname{Tr}\left(\prod_{j \in i} A_{i, j}^{s_{j}}\right)
\end{aligned}
$$

where

$$
A_{i, j}^{s_{j}}=\left(\begin{array}{cc}
e^{b_{i} / N+w_{i j} s_{j}} & 0 \\
0 & e^{-b_{i} / N-w_{i j} s_{j}}
\end{array}\right)
$$

(b) Restricted Boltzmann machine in 2 D

(d) SBS

COMPARISON WITH MACHINE LEARNING

G. Carleo, M. Troyer Science (2017)
M. Collura et al., SciPost Phys. Core (2021)

TAKE HOME MESSAGES

- Tensor network algorithms can be used to benchmark, verify, support and guide quantum simulations/computations
> High-dimensional tensor network simulations are becoming available
- Scalability to HPC is necessary to produce relevant results
> Interaction with HEP is becoming more and more relevant
> Interesting developments also in other directions (classical optimisers/annealers)
- Tensor network machine learning is competitive with DNN

Thank you for your attention!

Simone Montangero Pietro Silvi
Giuseppe Magnifico Simone Notarnicola

Daniel Jaschke Luca Arceci Timo Felser
Phila Rembold
Marco Rossignolo Marco Rigobello
Samuele Cavinato
Giovanni Cataldi
Marco Ballarin Alice Pagano

