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methods to Dark Matter search
The CYGNO use-case
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CYGNO a large TPC for dark matter and neutrino study
objective
exploiting the progress in commercial scientific Active Pixel Sensors (APS) based 
on CMOS technology to realise a large gaseous Time Projection Chamber (TPC) for 
Dark Matter and Solar Neutrino search.
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nuclear recoil threshold 
why light mass gaseous based TPC?

gassous 
low (O 100 eV) threshold 

just some ideas to increase 

sensitivity and scalability 

th = 30 keVnr

th = 4 keVnr

th = 1 keVnr

LArLXeHe

th <~ 0.1 keVnr (solid)
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the dark matter when living on the earth

solar systemCygnus

galaxy rotation
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Field cage
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Time Projection Chamber (TPC)

Filled with appropriate gas

TPC Detector in a nutshell

A TCP is costituite by a 
vessel filled with gas or 
liquid (Ar, Xe, etc) where an 
appropriate field is applied 
(typically kV/cm)



G. Mazzitelli, AI@INFN 2022

Field cage
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Incident particle

TPC Detector in a nutshell

when a charged particle 
pass true the gas, have a 
well known probability to 
ionise the gas and …
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Field cage
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ionization

Incident particle

TPC Detector in a nutshell

… produce free ions and 
electrons that …
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Field cage
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ionization drift

Incident particle

TPC Detector in a nutshell

… start to drift in the 
direction of the anode and 
the cathode where …
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Field cage
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Incident particle

TPC Detector in a nutshell

… a readout device is 
placed.
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Field cage
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ionization drift amplification

Incident particle

TPC Detector in a nutshell

in gas TCP an amplification 
process by means of triple 
Gas Electron Multiplier 
(GEM) and produce an 
avalanche of electrons …
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… that generate photons 
with an efficiency ~ 7-8% in 
HeCF4 gas mixture.

TPC Detector in a nutshell

Field cage
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Incident particle
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Field cage
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ionization drift amplification

Incident particle

optical readout in a nutshell

an sCMOS camera 
2304×2304 
resolution, 0.7 
electrons rms, 
equipped with 
standard optics 
collects the 
photons produced



G. Mazzitelli, AI@INFN 2022

Field cage

C
at

ho
de

C
at

ho
de

Re
ad

ou
t

Edrift

ionization drift amplification

Incident particle

optical readout in a nutshell

4 PMTs 
symmetrically 
placed around the 
camera to detect 
the time shape 
longitudinal 
evolution 
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Field cage
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ionization drift amplification

Incident particle

optical readout in a nutshell

cosmic and radioactivity at see level, 
in 500 ms image over 30*30 cm area 

PMTs
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underground signal and background

ν ν

Signal <—> Background
muons background 
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CYGNO (tech goal) to CYGNO 30 (physic goal)
the bet

5*10 litres, 1 camera

2.5 MB/event 0.2—>0.01 Hz

x 1 …

under test 
at LNGS
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CYGNO (tech goal) to CYGNO 30 (physic goal)
the bet

x 9 …

x 9 …

5*10 litres, 1 camera

2.5 MB/event 0.2—>0.01 Hz

1*10^3 litres, 18 cameras

45 MB/event (Hz ?)

x 1 …

under test 
at LNGS funded by  

ERC-INITIUM

107 readout channels + time signals  
18 cameras monitoring  330*330 mm  
each with 150 μm resolution and a 

sensitivity of ~ 1 ph / 2 eV released in gas
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CYGNO (tech goal) to CYGNO 30 (physic goal)
the bet

x 9 …

x 9 …

5*10 litres, 1 camera

2.5 MB/event 0.2—>0.01 Hz

1*10^3 litres, 18 cameras

45 MB/event (Hz ?)

3*10^4 litres, 540 cameras

1.3 GB/event (Hz ?)

x N …

x 1 …

under test 
at LNGS funded by  

ERC-INITIUM

a dream to prove 

its feasibility

107 readout channels + time signals  
18 cameras monitoring  330*330 mm  
each with 150 μm resolution and a 

sensitivity of ~ 1 ph / 2 eV released in gas
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particle identification “gym”
nuclear recoil, neutrino vs beta/gamma discrimination 
• exploiting dE/dx ionisation power (density)


• exploiting dE/dx ionisation profile vs path (shape, 
head-tail, snaking, etc)


• exploiting directionality


• exploiting time shape profile


up to now we are training our software in the “sea level  
gym” where natural radioactivity and cosmic rays are the 
main issue to deal with, generating strong occupancy 
and pileup in the data. This has forcing us to develop 
code aimed mainly at removing background (not 
expected underground) than to identify the signal


LIME, just installed underground, will allow to test code 
in the real environment and validate the Montecarlo 
simulation
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clustering
unsupervised learning NCC, KNN, HC to DBSCAN

55Fe source generate almost round spot 
due to the interactions of photos of 5.9 
keV, easily identifiable by cluster shape/
density very useful for detector energy 
calibration. This signal up to know have 
to be select among environmental and 
sensor background and 

55Fe source, in 50 ms image over 30*30 cm area 

we start using NCC (Nearest Neighbors Clustering), K-Nearest Neighbors (KNN), Hierarchical 
clustering to arrive to Density Based Spatial Clustering able to detect closer in noise 
environments (DBSCAN) 
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DBSCAN+K-means
55Fe source example detector resolution estimation

photons/pixel  
(dE/dx)standard fit (exp+gauss)


after DBSCAN selection

k-means (3 cluster)

after DBSCAN 

selection

k-means 
(3 cluster)
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reconstruction flow chart
intensity DBSCAN
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post-processing 
calibrations


high-level analysis
calibrated  
data setsmulti-EVENTs  

data sets

user analysis 
physical outcomes

data “hits”
RAW events


calibration source, radioactivity, 
cosmic rays, Dark Matter wind…

sCMOS

images

PMT  
waveforms

data preparation 
zero suppression


noise filters 

optical corrections 

reconstruction 
clustering & 

superclustering

PMT info evaluation

EVENTs data sets

TTree clusters features

TTree PMTs features

noise filter: median filter

optical correction: vignetting, optical distortion

superclustering: Geodesic Active Contour (GAC)

http://INFN.it


G. Mazzitelli, AI@INFN 2022

iDDBSCAN
i-ntensity Directional DBSCAN to identify cosmic rays

2 - The clustering restarts from the 
unidirectional clusters and a polynomial-

RANSAC is used to fit them.

3 - Nearby points 
are added to the 
cluster based on 

the fit.

4 - The fit is updated 
whenever new points 

are added to the 
cluster.

5 - The procedure (2, 3, 4) is 
repeated on all unidirectional seeds.

6 - The remaining data is clustered 
using the DBSCAN logic.

iDDBSCAN  
final output

1 - DBSCAN is applied to detect the seeds 
and then a linear-RANSAC is used to 
determine the unidirectional clusters.
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Fully Convolutional Network for pixel-wise selection 
U-Net Fully Convolutional Network

• handle with the sensor noise is not trivial


• Gaussian thermal noise (exposure)


• tail due to telegraph noise (random discrete 
fluctuations or switching events as a function 
of time) typical of CMOS devices


• in the real life GEM discharge, FC discharge + 
physics

noise is simulated 
considering the PDF 

function of each 
pixels of the cameras 

tested
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Fully Convolutional Network for pixel-wise selection 
U-Net Fully Convolutional Network
• objective: increase signal pixels sent to 

reconstruction code, decreasing the number 
of background pixels, reducing the number 
of processed elements


• noise simulated by considering the density 
probability function of each pixel on camera.


• signal simulated with GEANT4 (for ER) or 
SRIM (for NR) 1-60keV


• each pixel is classified as signal or 
background


• 70% of samples were using for training
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entropy loss
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deep learning models comparison
Deep Neural Network, Random Forest Classifier, Gradient Boosted Classifier

• interaction of the particles with gas is simulated using either 
GEANT4 (for ER) or SRIM (for NR) 


• detector/readout effects are added to these track i.e. diffusion, 
camera noise, effective ionisation, gain fluctuations and geometrical 
acceptance etc.


• digitised images are reconstructed with a density based algorithm 
to find the cluster around the track.


• topological informations of reconstructed track can be used as 
discriminating variables (features)


• features: Length Along Principle Axis (LAPA), Maximum Density 
(MaxDen), Cylindrical Thickness (CylThick), Standard Deviation of 
Charge Distribution (SDCD), etc.


• the features were used for training the networks. 
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30 keV ER 
GEANT + 

digitalisation

30 keV NR 
SRIM + 

digitalisation
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deep learning models comparison
Deep Neural Network, Random Forest Classifier, Gradient Boosted Classifier

Nuclear Recoil (NR) interaction 

and propagation 


simulated by SRIM (1-40keV)

beta/gamma (ER) interaction 

and propagation 


simulated by GEANT (1-40keV)

CYGNO

digitisation


code

sample of images

feature 
length  
density 

thickness 
charge distribution 

… 

CYGNO

reconstruction


code

comparison to identify NR and ER 
Deep Neural Network, 


Random Forest Classifier, 

Gradient Boosted Classifier
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deep learning models compared
Deep Neural Network, Random Forest Classifier, Gradient Boosted Classifier

ER 
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ER     NR
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DNN

• the weights of the network 

are optimised iteratively

• result is the output of the last 

layer

RFC

• It can build each tree 

independently	 	 

• results are combined at the 

end of the process

GBC

• It builds one tree at a time

• It combines results along the 

way
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model comparison

Preliminary

models NR det 
eff. [%]

background 
eff. [%]

RFC
50 0.075

40 0.045

GBC
50 0.45

40 0.27

DNN
50 0.99

40 0.45

Traditional 
Approach

50 3.5

40 0.8

nuclear recoil detection efficiency

nu
cl

ea
r r

ec
oi

l

ROC for all models

background: ER classified as NR in 
each energy bin

minimum NR efficiency in each energy bin is the signal 
efficiency and background (ER) efficiency is the overall 
background classified as signal in all energy bins.  
traditional approach: simple cut on the variable.
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next steps 1/2
Convolutional Neural Network
• operate on real data with CNN for the 

reconstruction, classification and computing 
physical quantities associated to the track.


• A ResNet model and a CNN classifier is 
already been made and tested on simulated 
data.

ER classification  
92.3% DNN ->91.6% CNN


NR classification 
95.9% DNN -> 97.6% CNN


ResNet CNN model (60 keV ER)

image in input

mask

results of CNN are very similar to the one of DNN

prediction of the network
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events 
identifier

next steps 2/2
combining CMOS and PMTs data 

PM
Ts
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track 1

image and 
related PMTs 
are divided in 

subset of 
images and 
waveforms

combine data CMOS 
and PMT data

sunset classification

track 2

track 3

track N

event 
classifier

ER/NR

event 
classifier

ER/NR

event 
classifier

ER/NR

event 
classifier

ER/NR
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infrastructure - schematic view
CLOUD INFN use-case

user
scratch

data

CYGNO S3
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Conclusion
actually a work in progress…

• our experiment is probably an ideal use-case where machine learning methods can 
be apply, tested and skills can grow up. 

• up to now we have played with our code in a “gym” where the environment is very 
different from the one where the detector is now installed and is going to start taking 
more realistic data


• this allow us to develop code able to deal with very hard background condition and 
trained us to start deal with unsupervised and supervise machine learning methods 


• At the LNGS Laboratory the bet will be to look for sub millimetric tracks of NR 
respect to the most luckily background of the ER (beta/gamma) to find the ultimate 
operational energy and directional threshold
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gas detector for DM & neutrino
“ionisation” detectors

detector gas pressure

low pressure atmospheric pressure high pressure

NEWS-G

(SNOLAB)

Ne:CH4 

TREX-DM

(LSC)


Ne 

CYGNO/INITIUM

DRIFT

(negative Ion) 


DMTCP

OPT with CCD

liquid, cryogenic

medium (O 1000 eV) threshold 

high sensibility and

scalability

gassous 
low (O 100 eV) threshold 

just some ideas to increase 

sensitivity and scalability 

solid, cryogenic

very low (O 10 eV) threshold 

limited mass and scalability
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LIME prototype
design
overground/underground first phase:


• 50 cm drift made of Cu ring 33*33 cm


• 50kV Cu cathode (up to 1kV/cm)


• triple GEM stack amplification stage


• low radioactivity PMMA vessel 


• 50 litres sensitive volume with an He/CF4  
based mixture at atmospheric pressure


• a single sCMOS Active Pixel Sensors (APS) 
HAMAMATSU camera + Schneider 
commercial optics


• 4 PMT symmetrically placed around the sensor 
for time shape


• Aluminum faraday cage
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LIME prototype
tracking performance Example of a few cosmic tracks in LIME (Long Imaging ModulE)

3D reco: PMT vs CMERA track clusters
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LIME prototype
overground performance

• distribution of the light content of the 
55Fe events reconstructed from the 
sCMOS images (left), and distribution of 
the charge measured by the PMT 
signals (right). 


• behaviour of the normalised number of 
55Fe spots as a function of the drift 
electric field (left) and event depth in 
the sensitive volume (right) 


• dependence of η on the left and ηPMT 
on the right as a function of the track 
distance from the GEM 


• detection efficiency for nuclear recoils 
(εtotal) as a function of their detected 
energy for electron recoils efficiency of 
4% (squares) and 1% (circles). 

The CYGNO Experiment. Instruments 2022, 6, 6. 
https://doi.org/10.3390/instruments6010006

6 keV nuclear recoil 
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LIME prototype
beta/gamma performance/calibration

good linearity response in the energy range 4.5 keV - 45 keV

1 keV energy 
resolution for 5.9 keV 

photons


