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CERN QTI and its
Roadmap

CERN established the QTI in 2020

Computing and 
Algorithms Sensing

Theory and 
Simulation Communication
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• Roadmap in 2021
• Publicly available on Zenodo

• Accessed more than 5000 times



Quantum Computing at CERN 

• QC is one of the four research areas in the CERN QTI 

• Understand which applications can profit from quantum algorithms
• Choose representative use cases
• Understand challenges and limitations (on NISQ and fault tolerant hardware)
• Optimize quantum algorithms

• Quantum Machine Learning algorithms are a primary candidate for 
investigation

• Increasing use of ML in many computing and data analysis flows
• Can be built as hybrid models where quantum computers act as accelerators
• Efficient data handling is a challenge
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Use Quantum Computing to accelerate ML/DL.

Quantum circuits are differentiable and can be trained minimizing a cost function dependent on training data:

1. Feature extraction and data encoding
• How to represent classical data in quantum states?

2. Model definition (kernel based or variational)
• Design wrt data

3. Optimisation and convergence in Hilbert space
• Convergence vs expressivity
• Barren plateau and vanishing gradients
• Gradient-free or gradient-based optimisers 
• …

Quantum Machine Learning
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Image credit Qiskit.org/textbook

Different tools can enable hybrid computations



Dimensionality reduction/feature extraction
• Reduce size of classical data
• Optimize input (PCA, Auto-Encoders.. ) 
• Pre-trained or co-trained in hybrid setup

Data embedding : compromise between
exponential compression and circuit depth

• Amplitude Encoding (exponential
compression in nqubits)

• Dense Qubit Encoding (one-to-one) 
• Hybrid Angle Encoding (bx2m values in bxm

qubits)

Dimensionality reduction and data embedding

01.05.22 5

Belis, Vasilis, et al. "Higgs analysis 
with quantum classifiers." EPJ 
Web of Conferences. Vol. 251. EDP 
Sciences, 2021.

S.Y. Chang, poster at ”Quantum Tensor 
Network in Machine Learning, NeurIPS 2021 

Effect of different 
encoding in quantum 
CNN 



Model definition

Parametric ansatz
Gradient-free or gradient-based optimization

Data Embedding can be learned
Can design architectures to leverage data 
symmetries1

Variational algorithms

Kernel methods
Feature maps as quantum kernels
Use classical kernel-based training
• Convex losses, global minimum
• Compute pair-wise distances in Ndata

Identify classes of kernels that relate to specific
data structures2

Image credit M. Schuld

2 Glick, Jennifer R., et al. "Covariant quantum 
kernels for data with group structure." arXiv
preprint arXiv:2105.03406 (2021).

1 Bogatskiy, Alexander, et al. "Lorentz group 
equivariant neural network for particle 
physics." International Conference on Machine 
Learning. PMLR, 2020.

Image credit SwissQuantumHub



Characterize the behaviour of different architectures, 
similarity and links among them and with the data. 
Ex: 

• Data Re-Uploading circuits: alternating data encoding and 
variational layers. 

• Represented as explicit linear models (variational) in larger 
feature space

à can be reformulated as implicit models (kernel)

• Representer theorem: implicit models achieve better 
accuracy

• Explicit models exhibit better generalization performance

Equivalent interpretations?  

Jerbi, Sofiene, et al. "Quantum machine learning beyond 
kernel methods." arXiv preprint arXiv:2110.13162 (2021).

KERNEL-BASED

DATA RE-UP

VARIATIONAL



Given the size of the Hilbert space a compromise between 
expressivity, convergence and generalization performance is 
needed.
Classical gradients vanish exponentially with the number of 
layers (J. McClean et al., arXiv:1803.11173)

• Convergence still possible if gradients consistent between 
batches.

Quantum gradient decay exponentially in the number of 
qubits

• Random circuit initialization
• Loss function locality in shallow circuits (M. Cerezo et al., arXiv:2001.00550)
• Ansatz choice: TTN, CNN (Zhang et al., arXiv:2011.06258, A Pesah, et al., Physical 

Review X 11.4 (2021): 041011. )

• Noise induced barren plateau (Wang, S et al., Nat Commun 12, 6961 (2021))

Model Convergence and Barren Plateau
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QCNN: A Pesah, et al., Physical 
Review X 11.4 (2021): 041011

TTN for MNIST classification (8 qubits), 
Zhang et al., arXiv:2011.06258 

J. McClean et al., arXiv:1803.11173



Defining quantum Advantage 
for QML

Different possible definitions
Runtime speedup 
Sample complexity
Representational power

A quantum algorithm that cannot be efficiently simulated classically
• No established recipe for classical data
• Need to use the whole exponential advantage in Hilbert space, but will it converge ? 

(Algorithm expressivity vs convergence and generalization) 
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Kübler, Jonas, Simon Buchholz, and Bernhard Schölkopf. "The inductive bias of quantum kernels." Advances in Neural Information Processing Systems 34 (2021).
Huang, HY., Broughton, M., Mohseni, M. et al. Power of data in quantum machine learning. Nat Commun 12, 2631 (2021). https://doi.org/10.1038/s41467-021-22539-9

Abbas, Amira, et al. "The power of quantum neural 
networks." Nature Computational Science 1.6 (2021): 403-409.



Practical advantage
Practical implementation vs asymptotic complexity

Data embedding
NISQ vs ideal quantum devices
Realistic applications

Performance metrics and fair comparison to classical models

HEP data is classical, but originally produced by quantum processes. It is 
these intrinsically quantum correlations we are trying to identify  

A change of paradigm could reflect in interesting insights
• What are natural building blocks for QML algorithms?
• How can we construct useful bridges between QC and learning theory?
• How can we make quantum software ready for ML applications?
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See M. Grossi summary at the 2022 CERN Openlab Technical Workshop : https://indico.cern.ch/event/1100904/contributions/4775169/

Khachatryan, Vardan, et al. "Measurement of Long-
Range Near-Side Two-Particle Angular Correlations 
in p p Collisions at s= 13 TeV." Physical review 
letters 116.17 (2016): 172302.

Schuld, Maria, and Nathan Killoran. "Is quantum advantage the right goal 
for quantum machine learning?." arXiv preprint arXiv:2203.01340 (2022).



QML in High Energy Physics
Alexander Zlokapa, Alex Mott, Joshua Job, Jean-Roch Vlimant, 

Daniel Lidar, and Maria Spiropulu. Quantum adiabatic machine 
learning by zooming into a region of the energy surface.

Physical Review A, 102:062405, 2020. 
DOI:10.1103/PhysRevA.102.062405.

Koji Terashi, Michiru Kaneda, Tomoe Kishimoto, Masahiko Saito, Ryu 
Sawada, and Junichi Tanaka. Event classification with quantum 
machine learning in 20 high-energy physics. Computing and 
Software for Big Science, 5(1), January 2021.
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Sau Lan Wu, Jay Chan, Wen Guan, Shaojun Sun, Alex Wang, Chen 
Zhou, Miron Livny, Federico Carminati, Alberto Di Meglio, Andy C Y Li, 

and et al. Application of quantum machine learning using the 
quantum variational classifier method to high energy physics 

analysis at the lhc on ibm quantum computer simulator and 
hardware with 10 qubits. Journal of Physics G: Nuclear and Particle 

Physics, 48(12):125003, Oct 2021

Alessio Gianelle, Patrick Koppenburg, Donatella 
Lucchesi, Davide Nicotra, Eduardo Rodrigues, Lorenzo 
Sestini, Jacco de Vries, and Davide Zuliani. Quantum 
Machine Learning for 𝑏-jet identification. 
arXiv:2202.13943, 2022.

Vishal S Ngairangbam, Michael Spannowsky, and 
Michihisa Takeuchi. Anomaly detection in high-energy 
physics using a quantum autoencoder. arXiv preprint 
arXiv:2112.04958, 2021.

Samuel Yen-Chi Chen, Tzu-Chieh Wei, Chao 
Zhang, Haiwang Yu, and Shinjae Yoo. Quantum 
convolutional neural networks for high energy 
physics data analysis. arXiv preprint: 2012.12177, 
2020.
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QML at CERN
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Tüysüz, Cenk, et al. "Hybrid quantum classical graph neural 
networks for particle track reconstruction." Quantum 
Machine Intelligence 3.2 (2021): 1-20.

M. Shenk, V. Kain, Quantum Reinformcement Learning, 
BQiT 2021, 2022 CERN openlab Tech Workshop

p0=5%

Vasilis Belis, Samuel González-Castillo, Christina Reissel, Sofia 
Vallecorsa, Elías F. Combarro, Günther Dissertori, and Florentin
Reiter. Higgs analysis with quantum classifiers. EPJ Web of 
Conferences, 251:03070, 2021

Borras, Kerstin, et al. "Impact of quantum noise on the 
training of quantum Generative Adversarial 
Networks." arXiv preprint arXiv:2203.01007 (2022).

Chang S.Y. et al., Running the Dual-PQC 
GAN on Noisy Simulators and Real 
Quantum Hardware, QTML2021, ACAT21

O. Kiss, Quantum Born Machine for 
event generation, ACAT2021

Kinga Wozniak, Unsupervised clsutering for a 
Randall–Sundrum Graviton at 3.5TeV narrow 
resonance

Bravo-Prieto, Carlos, et al. "Style-based 
quantum generative adversarial networks 
for Monte Carlo events." arXiv preprint 
arXiv:2110.06933 (2021).



Quantum Reinforcement Learning

Q-learning – learn value function Q(s, a) using function 
approximator

• DQN: Deep Q-learning (feed-forward neural network)
• QBM-RL (Quantum Boltzmann Machine)

RL book: Sutton & Barto

M. Shenk, V. Kain
BQiT 2021
2022 CERN openlab Tech Workshop

https://indico.cern.ch/event/1009424

Free Energy RL: clamped QBM
• Network of coupled, stochastic, binary units (spin up / down)
• !𝑸 𝒔, 𝒂 ≈ negative free energy of classical spin configurations 𝑐
• Sampling 𝑐 using (simulated) quantum annealing
• Clamped: visible nodes not part of QBM; accounted for as biases
• Using 16 qubits of D-Wave Chimera graph
• Discrete, binary-encoded state and action spaces
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Clamped QBM

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf


Beam optimisation in linear accelerator

• Action: deflection angle 
• State: BPM position 
• Reward: integrated beam intensity on target
• Optimality: what fraction of possible states does 

agent take the right decision

State
Reward

Action

xDipole 
magnet

Beam Position 
Monitor (BPM)

Target
±
3!Particle 

beam

Training efficiency Training efficiency vs. # Q-net / QBM weights

70k

340

8

52

M. Schenk
2022 CERN openlab technical workshop

• Training efficiency: FERL 
massively outperforms classical 
Q-learning (8±2 vs. 320±40 
steps)

• Descriptive power: QBM can 
reach high performance with 
much fewer weights than DQN 
(52 vs. ~70k)



Quantum Circuit Born Machine

• Only able to generate discrete PDFs (continuous in the limit #qubits  → ∞)
• Train using Maximum Mean Discrepancy: 

MMD(P,Q) =  𝔼4~6
7~6

K X, Y + 𝔼4~8
7~8

K X, Y − 2𝔼4~6
7~8

[K X, Y ]

with K a gaussian kernel 
• Pros: relativly easy to optimize, Cons: empircally less efficient than an adversarial approach
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Coyle, B., Mills, D. et al, The Born supremacy. In: npj Quantum Inf 6, 60 (2020)

slide adapted from O. Kiss, QTI CERN

Sample from a variational wavefunction 
| ⟩ψ(θ) with probability given by the Born 
rule: 

p9 x = |⟨x|ψ(θ ⟩) |:



Muon Force Carriers predicted by 
several theoretical models:

• Could be detected by muon fixed-
target experiments (FASER) or muon 
interactions in calorimeters (ATLAS)1. 

Generate E, pt, η of outgoing muon 
and MFC

QCBM for event generation

16

1 Galon, I, Kajamovitz, E et al. "Searching for muonic forces with the ATLAS detector". In: Phys. Rev. D 101, 011701 (2020)

Kiss O. et al., ACAT21

Perfect simulator 
Noisy simulator (IBMQ 
casablanca)  (no error 
mitigation)
IBMQ Montreal
Classical GMMD  of size 
(15,128, 256,128,16,1)
Easy GMMD ~ QCBM in size



Quantum Generative Adversarial Networks

• Single particles generate energy deposits in 
a calorimeter

• Represented as a 3D regular grid
• Reduce to:
• 1D distribution along the calorimeter depth
• 2D distribution on the y-z plane

Generating Energy Profiles in Calorimeters

Energy
(GeV)

Particle

500 GeV example

Borras, Kerstin, et al. "Impact of quantum noise on the training of 
quantum Generative Adversarial Networks." arXiv preprint 
arXiv:2203.01007 (2022).

Rehm, Florian, et al. "Quantum Machine Learning for HEP 
Detector Simulations." (2021).

Quantum Generator

Measurement Real
Data

Fake
Data

Classical 
Discriminator

Classical 
Data

Evaluate Gradients &
Update Parameters 

Uniform 
Initialization



Quantum generation of energy profiles

Simplify simulation problem
1D & 2D energy profiles from detector 

Train a hybrid classical-quantum GAN to generate average image

IBM qGAN1 can load probability distributions in quantum states
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Calorimeter DepthQuantum Generator: 3 Ry layers

qGAN image

Calorimeter Depth

Real image

Calorimeter Depth

3 qubits

6 qubits
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1 Zoufal, C., Lucchi, A. & Woerner, S. Quantum Generative Adversarial Networks for learning and loading random 
distributions. npj Quantum Inf 5, 103 (2019). https://doi.org/10.1038/s41534-019-0223-2



Readout noise effect on GAN training

Florian Rehm - CERN openlab Technical 
Workshop 2022

• Training is up to
~5% readout noise
tolerant

• Higher readout
noise reduces
accuracy

• Intrinsic instability
in the training
process

p0=1% p0=5% p0=10%

Borras, Kerstin, et al. "Impact of quantum noise on the training of quantum Generative Adversarial 
Networks." arXiv preprint arXiv:2203.01007 (2022).



Running the model on noisy devices
Train on noisy simulator
• Evaluate importance of training hyperparameters
• Error mitigation needed only for higher noise 

level

Florian Rehm, S. Y. Chang:
https://arxiv.org/abs/2203.01007

Importance wrt Objective Function
Qubit Number 0 1 2

Readout Error 2.34% 2.66% 2.05%

CX-gate Error 1.11% 1.75%

Inference on IBM Q Manila hardware
• Maintain good physics perfomance

https://arxiv.org/abs/2203.01007


Research on QML applications in High Energy Physics is producing a large number of prototypes
• So far focus on different steps of data processing in «controlled environment»
• Some preliminary hints of advantage in terms of input feature size and representational power
• Mostly we do «as good as classical methods»
• Need more robust studies to relate quantum model architecture and performance to data sets
• Identify use cases where quantum approach could be more effective than classical

machine/deep learning
• Studying QML algorithms today can build links between QC and learning theory

Summary
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Sofia.Vallecorsa@cern.ch

Thanks!

https://quantum.cern/

https://openlab.cern/quantum
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https://quantum.cern/
https://openlab.cern/quantum



