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Abstract

We consider the origin of the high-dimensional input space as a variable which can be opti-
mized before or during neuronal learning. This set of variables acts as a translation on the input
space in order to !nd an optimal origin, and can be seen as an adaptive data preprocessing,
included in a more general learning rule. In this framework, we can give a realistic biological
interpretation to the new model. The proposed modi!cation rule achieves the original objective
of the neuronal learning while keeping the energy consumption that is required for the synaptic
modi!cation at a minimal level. This presynaptic bias can be related to the concept of “optimal
spontaneous activity”. It extends the properties of a familiar models such as Kurtosis, PCA, ICA
and BCM, resulting in new insight and a better solution for problems such as clustering, feature
extraction and data compression.
The new learning rule competes with the fundamental approach of distinguishing between two

clusters: unlike Fisher discriminant analysis where two (symmetric) clusters are being separated
by a line that goes through their centers, our separation is achieved by a shift in the coordinate
system to a location where one cluster is orthogonal to the separating vector and the other is
not. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Expanded possibilities for unsupervised methods

Some features of real neurons, related to development and learning [3,4], have been
reproduced with simpli!ed models of synaptic plasticity [2,8,13]. The setup consists
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We study the selectivity properties of neurons based on BCM and kurtosis

energy functions in a general case of noisy high-dimensional input space.

The proposed approach, which is used for characterization of the stable

states, can be generalized to a whole class of energy functions. We charac-

terize the critical noise levels beyond which the selectivity is destroyed.

We also perform a quantitative analysis of such transitions, which shows

interesting dependency on data set size. We observe that the robustness to

noise of the BCM neuron (Bienenstock, Cooper, & Munro, 1982; Intrator

& Cooper, 1992) increases as a function of dimensionality. We explicitly

compute the separability limit of BCM and kurtosis learning rules in

the case of a bimodal input distribution. Numerical simulations show

a stronger robustness of the BCM rule for practical data set size when

compared with kurtosis.

1 Introduction

We describe a method for the study of a whole class of energy functions
deéned by
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where k is a constant and the hi operator denotes the average with respect to
the input distribution. Learning rules belonging to this class seek directions
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AI foundations: nervous system
Staining of neuronal cells: Camillo Golgi, Ramon Cajal (Nobel prizes)

NEURON: fundamental brain unit(1010-1011 neurons)
BRAIN STRUCTURE: CONNECTIVITY (1013-1015 synapses)



Nervous cell functionality
Electrophysiology (60's & 70's, Neher & Sackman, Nobel Prizes)

Signalling: "binary" code (action potential) frequency-modulated
Cell response varies as a function of previous stimulation
LEARNING & MEMORY



Artifical neuron

Dendrites = INPUT x
Synapses = WEIGHTS w
Action potential = OUTPUT y

y



ML & AI : backpropagation algorithm

Learning: adapt WEIGHTS to minimize a cost/error/energy
function (supervised learning)



Natural neural network structure: visual cortex
Layered structure: increasing processing levels of visual stimuli
(60's , Hubel & Wiesel, Nobel prizes)

Retina "raw" image > contours > shapes > 
complex objects

Somatotopic organization

Receptive field



Artificial cortex: Convolutional Neural Networks
Hyerarchical elaboration – increasing abstraction levels

MICROBIOLOGY Ban lifted on 
some experiments with 
killer pathogens p.11

FUNDING Philanthropists 
pour money into high-risk 
research p.10

RESEARCH Looking ahead 
towards scientific 
milestones in 2018  p.12

BIOMEDICINE A closer 
look at chronic fatigue 
syndrome p.14

B Y  A M Y  M A X M E N

Eyes are said to be the window to the soul 
— but researchers at Google see them as 
indicators of a person’s health. The tech-

nology giant is using deep learning to predict a 
person’s blood pressure, age and smoking status 
by analysing a photograph of their retina. Goog-
le’s computers glean clues from the arrangement 
of blood vessels — and a preliminary study sug-
gests that the machines can use this informa-
tion to predict whether someone is at risk of an 
impending heart attack.  

The research relied on a convolutional 

neural network, a type of deep-learning algo-
rithm that is transforming how biologists ana-
lyse images. Scientists are using the approach 
to find mutations in genomes and predict 
variations in the layout of single cells. Google’s 
approach, described in a preprint in August 
(R. Poplin et al. Preprint at https://arxiv.org/
abs/1708.09843; 2017), is part of a wave of new 
deep-learning applications that are making 
image processing easier and more versatile — 
and could even identify overlooked biological 
phenomena. 

“It was unrealistic to apply machine learn-
ing to many areas of biology before,” says Philip 

Nelson, a director of engineering at Google 
Research in Mountain View, California. “Now 
you can — but even more exciting, machines 
can now see things that humans might not have 
seen before.”

Convolutional neural networks allow com-
puters to process an image efficiently and 
holistically, without splitting it into parts. The 
approach took off in the tech sector around 
2012, enabled by advances in computer power 
and storage; for example, Facebook uses this 
type of deep learning to identify faces in photo-
graphs. But scientists struggled to apply the net-
works to biology, in part because of cultural 
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Retinal images could allow computers to predict a person’s risk of an imminent heart attack.

B I O L O G Y

Deep learning sharpens 
views of cells and genes
Neural networks are making biological images easier to process.
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NEWS IN FOCUS
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Object recognition
Image processing

Convolution & pooling = processing & scaling
of receptive field



Artificial 
Intelligence in
Medicine

INFN - CSN5 2022-2024

BA, BO, CA, CT, FE, FI, 
GE, LNS, MI, NA, PI, PV
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RESEARCH METHODOLOGY 
To achieve the main objectives of the project, the  nextAIM collaboration will follow the overall scheme 
of the project depicted in fig. 1.  

 
Figure 1. Schematic representation of nextAIM research topics, challenges and implementation. 

 

We will mainly focus on two AI-based widely used analysis pipelines:  
a) Radiomics approaches followed by ML. These methods convert images into meaningful diagnostic 
categories according to the following steps: image segmentation into regions of interest, then, their 
characterization in terms of Radiomic features, generally followed by AI-based predictive models. This 
approach is particularly suitable to study the shape and texture of lesions in oncology to predict their 
stage, their malignancy, patients’ response to treatment, etc.  Also automatized image processing can be 
used before feature extraction, to enhance image characteristics (e.g. through image super-resolution). 
b) Data analysis by DL. These fully data-driven methods process of raw images to carry out:  
- image classification, i.e. direct image-to-label conversion in a single step, generally implemented by 
Convolutional Neural Networks (CNN), to assign medical images to diagnostic/prognostic categories 
without the need for specific preprocessing.  
- image segmentation, i.e. image-to-image conversion, consisting into a pixel/voxel-wise assignment of an 
image into different regions of interest (such as organs, lesions and background), which is currently 
efficiently performed by Convolutional Auto Encoders (CAE) and U-nets. 
 
Both a) and b) approaches need to be further explored when implemented on real medical datasets 
(details provided in WP3 below), especially in relation to challenges I and II to improve the robustness of 
exploratory studies and to make the models and their findings explainable.  

Methodological details on how to address challenges I and II are provided below. 

Challenge I. Dealing with no-so-big datasets 

ML has the potential to completely transform the way healthcare is delivered, but unlocking those new 
approaches can come with risks. Ethical questions should be asked in the design and implementation of 
ML models to ensure they are developed to maximize benefit and avoid potential harm. ML relies on 
access to historical data, often containing personal information, and frequently available in lower quantity 



CNN Deep Learning: super-resolution
Improve image quality (pixel resolution)
INPUT: low resolution (natural) image
OUTPUT: 2x 4x higher resolution image
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Fig. 1. The proposed Super-Resolution Convolutional
Neural Network (SRCNN) surpasses the bicubic baseline
with just a few training iterations, and outperforms the
sparse-coding-based method (SC) [50] with moderate
training. The performance may be further improved with
more training iterations. More details are provided in
Section 4.4.1 (the Set5 dataset with an upscaling factor
3). The proposed method provides visually appealing
reconstructed image.

numbers of filters and layers, our method achieves
fast speed for practical on-line usage even on a CPU.
Our method is faster than a number of example-based
methods, because it is fully feed-forward and does
not need to solve any optimization problem on usage.
Third, experiments show that the restoration quality of
the network can be further improved when (i) larger
and more diverse datasets are available, and/or (ii)
a larger and deeper model is used. On the contrary,
larger datasets/models can present challenges for exist-
ing example-based methods. Furthermore, the proposed
network can cope with three channels of color images
simultaneously to achieve improved super-resolution
performance.

Overall, the contributions of this study are mainly in
three aspects:

1) We present a fully convolutional neural net-
work for image super-resolution. The network di-
rectly learns an end-to-end mapping between low-
and high-resolution images, with little pre/post-
processing beyond the optimization.

2) We establish a relationship between our deep-

learning-based SR method and the traditional
sparse-coding-based SR methods. This relationship
provides a guidance for the design of the network
structure.

3) We demonstrate that deep learning is useful in
the classical computer vision problem of super-
resolution, and can achieve good quality and
speed.

A preliminary version of this work was presented
earlier [11]. The present work adds to the initial version
in significant ways. Firstly, we improve the SRCNN by
introducing larger filter size in the non-linear mapping
layer, and explore deeper structures by adding non-
linear mapping layers. Secondly, we extend the SRCNN
to process three color channels (either in YCbCr or RGB
color space) simultaneously. Experimentally, we demon-
strate that performance can be improved in comparison
to the single-channel network. Thirdly, considerable new
analyses and intuitive explanations are added to the
initial results. We also extend the original experiments
from Set5 [2] and Set14 [51] test images to BSD200 [32]
(200 test images). In addition, we compare with a num-
ber of recently published methods and confirm that
our model still outperforms existing approaches using
different evaluation metrics.

2 RELATED WORK
2.1 Image Super-Resolution
According to the image priors, single-image super res-
olution algorithms can be categorized into four types –
prediction models, edge based methods, image statistical
methods and patch based (or example-based) methods.
These methods have been thoroughly investigated and
evaluated in Yang et al.’s work [46]. Among them, the
example-based methods [16], [25], [41], [47] achieve the
state-of-the-art performance.

The internal example-based methods exploit the self-
similarity property and generate exemplar patches from
the input image. It is first proposed in Glasner’s
work [16], and several improved variants [13], [45] are
proposed to accelerate the implementation. The exter-
nal example-based methods [2], [4], [6], [15], [37], [41],
[48], [49], [50], [51] learn a mapping between low/high-
resolution patches from external datasets. These studies
vary on how to learn a compact dictionary or manifold
space to relate low/high-resolution patches, and on how
representation schemes can be conducted in such spaces.
In the pioneer work of Freeman et al. [14], the dic-
tionaries are directly presented as low/high-resolution
patch pairs, and the nearest neighbour (NN) of the input
patch is found in the low-resolution space, with its corre-
sponding high-resolution patch used for reconstruction.
Chang et al. [4] introduce a manifold embedding tech-
nique as an alternative to the NN strategy. In Yang et al.’s
work [49], [50], the above NN correspondence advances
to a more sophisticated sparse coding formulation. Other
mapping functions such as kernel regression [25], simple
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feature maps

 Patch extraction 
and representation

Non-linear mapping Reconstruction 

Low-resolution
image (input)

High-resolution
image (output)

of low-resolution image of high-resolution image 
feature maps

Fig. 2. Given a low-resolution image Y, the first convolutional layer of the SRCNN extracts a set of feature maps. The
second layer maps these feature maps nonlinearly to high-resolution patch representations. The last layer combines
the predictions within a spatial neighbourhood to produce the final high-resolution image F (Y).

a kernel size c ⇥ f1 ⇥ f1. The output is composed of
n1 feature maps. B1 is an n1-dimensional vector, whose
each element is associated with a filter. We apply the
Rectified Linear Unit (ReLU, max(0, x)) [33] on the filter
responses4.

3.1.2 Non-linear mapping
The first layer extracts an n1-dimensional feature for
each patch. In the second operation, we map each of
these n1-dimensional vectors into an n2-dimensional
one. This is equivalent to applying n2 filters which have
a trivial spatial support 1⇥ 1. This interpretation is only
valid for 1⇥1 filters. But it is easy to generalize to larger
filters like 3 ⇥ 3 or 5 ⇥ 5. In that case, the non-linear
mapping is not on a patch of the input image; instead,
it is on a 3⇥ 3 or 5⇥ 5 “patch” of the feature map. The
operation of the second layer is:

F2(Y) = max (0,W2 ⇤ F1(Y) +B2) . (2)

Here W2 contains n2 filters of size n1⇥f2⇥f2, and B2 is
n2-dimensional. Each of the output n2-dimensional vec-
tors is conceptually a representation of a high-resolution
patch that will be used for reconstruction.

It is possible to add more convolutional layers to
increase the non-linearity. But this can increase the com-
plexity of the model (n2 ⇥ f2 ⇥ f2 ⇥ n2 parameters for
one layer), and thus demands more training time. We
will explore deeper structures by introducing additional
non-linear mapping layers in Section 4.3.3.

3.1.3 Reconstruction
In the traditional methods, the predicted overlapping
high-resolution patches are often averaged to produce
the final full image. The averaging can be considered
as a pre-defined filter on a set of feature maps (where
each position is the “flattened” vector form of a high-
resolution patch). Motivated by this, we define a convo-
lutional layer to produce the final high-resolution image:

F (Y) = W3 ⇤ F2(Y) +B3. (3)

4. The ReLU can be equivalently considered as a part of the second
operation (Non-linear mapping), and the first operation (Patch extrac-
tion and representation) becomes purely linear convolution.

Here W3 corresponds to c filters of a size n2 ⇥ f3 ⇥ f3,
and B3 is a c-dimensional vector.

If the representations of the high-resolution patches
are in the image domain (i.e.,we can simply reshape each
representation to form the patch), we expect that the
filters act like an averaging filter; if the representations
of the high-resolution patches are in some other domains
(e.g.,coefficients in terms of some bases), we expect that
W3 behaves like first projecting the coefficients onto the
image domain and then averaging. In either way, W3 is
a set of linear filters.

Interestingly, although the above three operations are
motivated by different intuitions, they all lead to the
same form as a convolutional layer. We put all three
operations together and form a convolutional neural
network (Figure 2). In this model, all the filtering weights
and biases are to be optimized. Despite the succinctness
of the overall structure, our SRCNN model is carefully
developed by drawing extensive experience resulted
from significant progresses in super-resolution [49], [50].
We detail the relationship in the next section.

3.2 Relationship to Sparse-Coding-Based Methods
We show that the sparse-coding-based SR methods [49],
[50] can be viewed as a convolutional neural network.
Figure 3 shows an illustration.

In the sparse-coding-based methods, let us consider
that an f1 ⇥ f1 low-resolution patch is extracted from
the input image. Then the sparse coding solver, like
Feature-Sign [29], will first project the patch onto a (low-
resolution) dictionary. If the dictionary size is n1, this
is equivalent to applying n1 linear filters (f1 ⇥ f1) on
the input image (the mean subtraction is also a linear
operation so can be absorbed). This is illustrated as the
left part of Figure 3.

The sparse coding solver will then iteratively process
the n1 coefficients. The outputs of this solver are n2

coefficients, and usually n2 = n1 in the case of sparse
coding. These n2 coefficients are the representation of
the high-resolution patch. In this sense, the sparse coding

Dong et al., arXiv:1501.00092v3
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Super-resolution on NMR brain images

RMSE – root mean square error
pSNR – peak signal-to-noise ratio
SSIM – structural similarity index
HFEN – high-frequency error norm

C. Fiscone, N. Curti , C. Testa, et al. 
(DIFA & IRCCS Bellaria)



Super-res: application to breast mCT

Image enhancement: improvement for clinical diagnosis?
Feedback from radiologists (in progress) - explaination
(Dott. N Curti DIMES & INFN BO, Prof. G Mettivier Team INFN NA)



Nervous cells: short- and long-term memory

Real neurons have different levels of learning & memory
Short-term memory can be converted into long-term memory

Concurring mechanisms:
Electrochemical processes
Change in conductance
Protein phosphorylation



Artificial long-short-term memory neuron LSTM

Recurrent networks that can keep/forget signals over time (also
very far in time – learn from context)

Application: analysis of time series (also symbolic)



EU H2020 VEO - Versatile Emerging infectious disease Observatory
www.veo-europe.eu @EuropeVeo

Analisi network di twitter
• Eu VEO - Versatile Emerging infectious disease Observatory  
• Digital health: device elettronici; temi sociali relativi alla salute     
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OBJECTIVE 1 – TO DEVELOP AND OPERATE THE VEO DATA PLATFORM  
The VEO data platform will support rapid mining, sharing, integration, presentation and analysis of traditional 
and novel ‘Bio data’ with a choice of “Contextual data”,  integrating publicly available and confidential data. 
This objective deals with developing new infrastructure to be able to handle, search, integrate and analyse the diverse 
data types of relevance to this 
project (see Figure 3). 

 
 

 

Figure. 2:  Overview of the envisaged VEO system, enabling handling, integration and analysis of currently used biodata 
data (light grey box)) and various novel ‘non-traditional’ contextual data sets (dark blue box, top left) for forecasting, 
nowcasting and tracking of changes in key global drivers of EID emergence and generating actionable information for 
early warning, risk assessment and monitoring of EID threats. Numbers 1-7 refer to the VEO project objectives. 
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VEO Analytical Platform 
(based on Kooplex)Figure 3: The VEO system will support 

rapid sharing, integration, 
presentation, and analysis of pathogen 
and health “biodata”( Table 1.1.1), 
building from the datahub model 
developed under the COMPARE 
project as part of core European 
infrastructure linked to the European 
Bioinformatics Institute (EBI). VEO 
will support integration of “contextual 
data” through a searchable registry to 
track external datasets (WP1, VEO 
Data Platform), and through search 
and packaging tools that will allow 
users to prepare datasets for data 
mining and further analytical 
operations (WP2, VEO Analytical 
platform).  
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To ensure that the technologies developed 
in the project meet concrete demands of the 
key public health and research actors in 
Europe, combined toolbox and data mining 
infrastructure will be developed around 5 
complementary use-case scenarios. 
These 5 use-case scenarios are 
complementary in terms of pathogens, 
hosts, transmission routes (e.g., vector, 
respiratory, feco-oral) and stage of 
emergence (e.g., circulating in animals to 
sustained human-to-human transmission). 
They serve three purposes in the project: (i) 
they articulate needs and provide concrete 
demands for new technologies and 
workflows for generating, pooling, 
accessing, analysing, presenting and 
sharing of relevant data, including next 
generation sequencing, (ii) they test and 
validate these technologies and workflows 
and (iii) they support the realisation of the 
expected impact on early warning, risk 
assessment and monitoring of EID threats 
in Europe by the key public health, clinical 
and pre-clinical research actors. In each use-case several of our partners from different disciplinary backgrounds 
collaborate with citizens and with external stakeholders, making use of different complementary sources of data (e.g., 
research data, public health data and non-traditional data sources) and integrating different complementary types of 
data (e.g., sequence, clinical, lab. data, climate data).  
 
Our approach is to bring together data experts and disease expertise to develop a common data repository, set-up 
collaborative workspaces for data analysis and tool development, and challenge these by working through specific 
use-case scenarios reflecting the main routes by which new diseases could emerge in Europe and globally. The tools 
will address the generation and use of both “biodata” and “contextual data”, as defined in Table 1.1.1. Through joint 
scoping workshops, key needs for all tool developers will be defined through use case scenarios, in which disease 
experts review the disease threats, and challenges in preparedness, and developers explain the potential solutions 
from their areas of expertise to develop a joint workplan to work towards prediction and early detection.  
 
A key output of the mining of contextual data on drivers for disease emergence and spread will be the identification 
of regions where the risk of emergence or circulation is greatest. Each use case scenario has defined specific studies 
to follow-up on these signals, in order to validate findings, or provide feedback for model adaptation. The targeted 
field studies also serve to test fieldable metagenomic sequencing and protein-array-based host susceptibility profiling 
to provide essential data for further tool development. A key output of all use case scenario’s is translation of the 
findings into publicly accessible reports that also provide access to the underlying data and software. Where possible, 
these reports will include intuitive and interactive visualisation to attract a wide range of stakeholders.     
 

C. Ethical, Legal and Societal perspective: - what are we allowed, and what are we – as a society - willing to 
do to improve the preparedness for EID? – covered by objectives 6 and  7 

The exploration, (re-)use of public and private data, and integration of data from multiple sources for new analyses 
raises important questions about potential negative effects which would inhibit the realisation of the expected impact 
of VEO on EID and AMR preparedness and response. The data quality and availability, either in public or protected 
repositories, determine highly the juridical status and feasibility of aggregating big data collections. The European 
Union differs notably from most other countries and regions with respect to data handling due to the General Data 
Protection Regulation (GDPR 2016/679/EU) and the Database Directive (96/9/EC) as a special interpretation of the 
WTO TRIPS Agreement. Moreover, although working under the same global or European umbrella, these rules and 
regulations may be interpreted differently between countries or regions; such differences in interpretation of for 
instance data protection laws, Nagoya protocol, definitions of open access, and use of social media fundamentally 
impact on the potential for data integration and re-use. These ethical, legal and societal implications (ELSI) are 
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Viral protein variant analysis



LSTM & NLP

Input = symbolic strings
Protein = "sentence"
Aminoacid = "word"

Similar sentences = functional proteins
Different sentences = immune escape
[Hie et al. Science 2021]

NOTE: self-supervised learning
The learning task is to reconstruct the 
sentence itself (one word at a time)



SARS-CoV-2 Spike protein

Host similarity



Antigenic map:
[Smith et al. 
Science 2004]

Experiments on 
animal sera: 
antigenic
response to virus

dated to ensure sufficient efficacy against
newly emerging variants (7, 8). The World
Health Organization coordinates a global
influenza surveillance network, currently
consisting of 112 national influenza centers
and four collaborating centers for reference
and research. This network routinely char-
acterizes the antigenic properties of influ-
enza viruses using a hemagglutination in-
hibition (HI) assay (1). The HI assay is a
binding assay based on the ability of influ-
enza viruses to agglutinate red blood cells
and the ability of animal antisera raised
against the same or related strains to block
this agglutination (9). Additional surveil-
lance information is provided by sequenc-
ing the immunogenic HA1 domain of the
HA gene for a subset of these strains. The
combined antigenic, epidemiological, and
genetic data are used to select strains for
use in the vaccine.

Retrospective quantitative analyses of the
genetic data have revealed important insights
into the evolution of influenza viruses (10–
13). However, the antigenic data are largely
unexplored quantitatively because of difficul-
ties in interpretation, even though antigenic-
ity is a primary criterion for vaccine strain
selection and is thought to be the main driv-
ing force of influenza virus evolution. When
antigenic data have been analyzed quantita-
tively, it has usually been with the methods
of, or methods equivalent to, numerical tax-
onomy (14–16). These methods have pro-
vided insights (15–19); however, they
sometimes give inconsistent results, do not
properly interpret data that are below the
sensitivity threshold of the assay, and approx-
imate antigenic distances between strains in
an indirect way [discussed by (4, 16, 18)].
Lapedes and Farber (4) solved these prob-
lems with a geometric interpretation of bind-
ing assay data, in which each antigen and
antiserum is assigned a point in an “antigenic
map” [based on the theoretical concept of
“shape space” (20–23)], such that the dis-
tance between an antigen and antiserum in
the map directly corresponds to the HI mea-
surement. Lapedes and Farber used ordinal
multidimensional scaling (MDS) (24) to po-
sition the antigens and antisera in the map.

The method used in this manuscript is
based on the fundamental ideas described
by Lapedes and Farber (4 ) and, in particu-
lar, takes advantage of their observation
that antigenic distance is linearly related to
the logarithm of the HI measurement. Ex-
ploiting this observation allowed us to cre-
ate a new method that is parametric yet still
handles HI measurements that are beyond
the sensitivity of the HI assay (9). We use
a modification of metric MDS (25 ) to po-
sition the antigens and antisera in the map
(9). This new approach offers computation-
al advantages over the ordinal approach,

including reduced running time and fewer
local minima, making it tractable to run on
datasets the size of the one used in this
manuscript, and on larger datasets.
Antigenic map of human influenza A

(H3N2) virus. We applied this method to
mapping the antigenic evolution of human
influenza A (H3N2) viruses, which became
widespread in humans during the 1968 Hong
Kong influenza pandemic and have been a
major cause of influenza epidemics ever
since. Antigenic data from 35 years of influ-
enza surveillance between 1968 and 2003
were combined into a single dataset. We se-
quenced the HA1 domain of a subset of these
virus isolates (26, 27) and restricted the an-
tigenic analysis to these sequenced isolates to
facilitate a direct comparison of antigenic and
genetic evolution. The resulting antigenic
dataset consisted of a table of 79 postinfec-
tion ferret antisera by 273 viral isolates, with
4215 individual HI measurements as entries
in the table. Ninety-four of the isolates were
from epidemics in the Netherlands, and 179
were from elsewhere in the world.

We constructed an antigenic map from
this dataset to determine the antigenic evolu-
tion of influenza A (H3N2) virus from 1968
to 2003 (Fig. 1). Because antigen-antiserum
distances in the map correspond to HI values,
it was possible to predict HI values that were
missing in the original dataset and subse-
quently to measure those values using the HI
assay, so as to determine the resolution of the
map. We predicted and then measured 481
such HI values with an average absolute pre-
diction error of 0.83 (SD 0.67) units (each
unit of antigenic distance corresponds to a
twofold dilution of antiserum in the HI assay)
and a correlation between predicted and mea-
sured values of 0.80 (p !! 0.01). The accu-
racy of these predictions indicates that the
map has resolution higher than that previous-
ly considered available from HI data and
higher than the resolution of the assay. The
resolution of the map can be greater than the
resolution of the assay because the location of
a point in the map is fixed by measurements
to multiple other points, thereby averaging
out errors (9).

The map reveals high-level features of the
antigenic evolution of influenza A (H3N2)
virus. The strains tend to group in clusters
rather than to form a continuous antigenic
lineage, and the order of clusters in the map is
mostly chronological; from the original Hong
Kong 1968 (HK68) cluster, to the most recent
Fujian 2002 (FU02) cluster. The antigenic
distance from the HK68 cluster, through con-
secutive cluster centers, to the FU02 cluster is
44.6 units, and the average antigenic distance
between the centers of consecutive clusters is
4.5 (SD 1.3) units. The influenza vaccine is
updated between influenza seasons when
there is an antigenic difference of at least 2

units between the vaccine strain and the
strains expected to circulate in the next sea-
son; thus, not unexpectedly, we find at least
one vaccine strain in each cluster.

The ability to define antigenic clusters
allows us to identify the amino acid substitu-
tions that characterize the difference between
clusters (Table 1, fig. S1). Some of these
“cluster-difference” substitutions (9) will
contribute to the antigenic difference between
clusters, some may be compensatory muta-

Fig. 1. Antigenic map of influenza A (H3N2)
virus from 1968 to 2003. The relative positions
of strains (colored shapes) and antisera (uncol-
ored open shapes) were adjusted such that the
distances between strains and antisera in the
map represent the corresponding HI measure-
ments with the least error (9). The periphery of
each shape denotes a 0.5-unit increase in the
total error; thus, size and shape represent a
confidence area in the placement of the strain
or antiserum. Strain color represents the anti-
genic cluster to which the strain belongs. Clus-
ters were identified by a k-means clustering
algorithm (9) and named after the first vaccine-
strain in the cluster—two letters refer to the
location of isolation (Hong Kong, England, Vic-
toria, Texas, Bangkok, Sichuan, Beijing, Wuhan,
Sydney, and Fujian) and two digits refer to year
of isolation. The vertical and horizontal axes
both represent antigenic distance, and, because
only the relative positions of antigens and an-
tisera can be determined, the orientation of the
map within these axes is free. The spacing
between grid lines is 1 unit of antigenic dis-
tance—corresponding to a twofold dilution of
antiserum in the HI assay. Two units corre-
spond to fourfold dilution, three units to eight-
fold dilution, and so on.

R E S E A R C H A R T I C L E S
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Antigenic map reconstruction from protein sequence alone



In silico "gain of function"

Try single-aminoacid mutations and test immune escape

Mutations in same positions Hotspot regions



Challenges and future directions

Explaination: why it works

Semi & self supervised learning

Manifold learning

Synthetic data generation

Physics (& physiology)-informed models


