
1

Threaded Programming
Taylan Akdogan

Bogazici University / Istanbul

ISOTDAQ 2011 - Rome

•Multicore processors are took over,
manycore is coming

•The processor is the “new transistor”

•This is a “sea change” for HW designers and
especially for programmers

Why?

3

Creation of a new process using fork is
expensive (time & memory).

A thread (sometimes called a lightweight
process) does not require lots of memory or
startup time.

Threads vs Processes

4

fork()

fork()
Process A

Global
Variables

Code

Stack

Process B
Global

Variables

Code

Stack

5

pthread_create()
Process A
Thread 1
Global

Variables

Code

Stack

Process A
Thread 2

Stack

pthread_create()

6

Multiple Threads

Each process can include many threads.

All threads of a process share:

n memory (program code and global data)

n open file/socket descriptors

n signal handlers and signal dispositions

n working environment (current directory, user ID, etc.)

7

Each thread has it’s own:
– Thread ID (integer)
– Stack, Registers, Program Counter
–errno (if not - errno would be useless!)

Threads within the same process can communicate
using shared memory.

Must be done carefully!

Threads-Specific Resources

8

We will focus on Posix Threads - most widely supported
threads programming API.

Unix (Unix/Darwin) - you need to link
with “-lpthread”

On many systems this also forces the compiler to link in
re-entrant libraries (instead of plain vanilla C libraries).

Posix Threads

9

Thread Creation

pthread_create(

 pthread_t *tid,

 const pthread_attr_t *attr,

 void *(*func)(void *),

 void *arg);

func is the function to be called.

When func() returns the thread is terminated.

10

pthread_create()

n The return value is 0 for OK.

 positive error number on error.

n Does not set errno !!!

n Thread ID is returned in tid

11

pthread_t *tid

Thread attributes can be set using attr,
including detached state and scheduling policy.
You can specify NULL and get the system
defaults.

12

Each thread has a unique ID, a thread can find out it's ID
by calling pthread_self().

Thread IDs are of type pthread_t which is usually an
unsigned int. When debugging, it's often useful to do
something like this:

printf("Thread %u:\n",pthread_self());

Threads IDs

13

When func() is called the value arg specified in the
call to pthread_create() is passed as a
parameter.

func can have only 1 parameter, and it can't be larger
than the size of a void *.

Threads Arguments

14

Joinable: on thread termination the thread ID and exit
status are saved by the OS.

 One thread can "join" another by calling
pthread_join - which waits (blocks) until a
specified thread exits.

 int pthread_join(pthread_t tid,
 void **status);

Joinable Threads

Example 1

16

Thread Lifespan

Once a thread is created, it starts executing the
function func() specified in the call to
pthread_create().

If func() returns, the thread is terminated.

A thread can also be terminated by calling
pthread_exit().

If main() returns or any thread calls exit()all
threads are terminated.

17

Thread Arguments (cont.)

Complex parameters can be passed by creating a
structure and passing the address of the structure.

The structure shouldn’t be a local variable of the function
calling pthread_create (except main function)!!

	

 	

 - Threads have different stacks!

 - Use globals or dynamic variables (new/malloc)

Example 2

19

Each thread can be either joinable or detached.

Detached: on termination all thread resources are
released by the OS. A detached thread cannot be
joined.

 No way to get at the return value of the thread.
(a pointer to something: void *).

Detached State

20

Sharing global variables is dangerous - two threads
may attempt to modify the same variable at the
same time.

Just because you don't see a problem when running
your code doesn't mean it can't and won't
happen!!!!

Danger / Tehlike / Il pericolo / Gefahr

Shared Global Variables

Danger / Tehlike / Il pericolo / Gefahr

21

Example 3

22

pthreads includes support for Mutual Exclusion
primitives that can be used to protect against this
problem.

The general idea is to lock something (which is
lockable only once) before accessing global
variables and to unlock as soon as you are done.

Shared socket descriptors should be treated as global
variables!!!

Avoiding Problems

23

pthread_mutex

A global variable of type pthread_mutex_t is required:

Static initilization:
pthread_mutex_t counter_mtx=	

	

 PTHREAD_MUTEX_INITIALIZER;

Dynamic initialization:
pthread_mutexattr_t mattr;
pthread_mutex_t counter_mtx mutex;
pthread_mutexattr_init(&mattr);
pthread_mutex_init(&mutex, &mattr);

Note that, by default, mutex is created in unlocked state.

24

Locking and Unlocking

n To lock (blocking):

 pthread_mutex_lock(pthread_mutex_t *mutex);

n To lock (nonblocking):

 pthread_mutex_trylock(pthread_mutex_t *mutex);

n To unlock:

 pthread_mutex_unlock(pthread_mutex_t *mutex);

Note: semaphore of IPC corresponds to a mutex protected
variable.

25

Example 3
(cont.)

26

A server creates a thread for each client. No more
than n threads (and therefore n clients) can be
active at once.

How can we have the main thread know when a
child thread has terminated and it can now
service a new client?

Example Problem

27

pthread_join() doesn’t help

pthread_join (which is sort of like wait())
requires that we specify a thread id.

We can wait for a specific thread, but we can't wait
for "the next thread to exit".

28

When each thread starts up:
–acquires a lock on the variable (using a mutex)
– increments the variable
–releases the lock.

When each thread shuts down:
–acquires a lock on the variable (using a mutex)
–decrements the variable
–releases the lock.

Use a Global Variable

29

 active_threads=0;
 // start up n threads on first n clients
 // make sure they are all running
 while (1) {
 // have to lock/release active_threads
 if (active_threads < n)
 // start up thread for next client
 busy_waiting(is_bad);
 }

What about the main loop?

30

pthreads support condition variables, which allow
one thread to wait (sleep) for an event
generated by any other thread.

This allows us to avoid the busy waiting problem.

pthread_cond_t cond =
PTHREAD_COND_INITIALIZER;

Condition Variables

31

Condition Variables (cont.)

A condition variable is always used with mutex.

pthread_cond_wait(pthread_cond_t *cond,
 pthread_mutex_t *mutex);

pthread_cond_signal(pthread_cond_t *cond);
pthread_cond_broadcast(pthread_cond_t *cond)

don’t let the word signal confuse you -
this has nothing to do with Unix signals

32

Each thread decrements active_threads when
terminating and calls pthread_cond_signal
to wake up the main loop.

The main thread increments active_threads
when each thread is started and waits for
changes by calling pthread_cond_wait.

Revised Strategy

33

All changes to active_threads must be inside
the lock and release of a mutex.

If two threads are ready to exit at (nearly) the
same time – the second must wait until the
main loop recognizes the first.

We don’t lose any of the condition signals.

Revised Strategy

34

// global variable the number of active
// threads (clients)
int active_threads=0;

// mutex used to lock active_threads
pthread_mutex_t at_mutex =

PTHREAD_MUTEX_INITIALIZER;

// condition var. used to signal changes
pthread_cond_t at_cond =

PTHREAD_COND_INITIALIZER;

Global Variables

35

void *cld_func(void *arg) {
 . . .
 // handle the client
 . . .
 pthread_mutex_lock(&at_mutex);
 active_threads--;
 pthread_cond_signal(&at_cond);

 pthread_mutex_unlock(&at_mutex);
 return();
}

Child Thread Code

36

// no need to lock yet
active_threads=0;
while (1) {
 pthread_mutex_lock(&at_mutex);
 while (active_threads < n) {
 active_threads++;
 pthread_start(…);
 }
 pthread_cond_wait(&at_cond, &at_mutex);
}

IMPORTANT!
Must happen while the

mutex lock is held. mutex
will be unlocked

atomically , at the start of
wait.

Main Thread

37

Other Thread Functions

Posix Threads solve almost all the problems you may
encounter when you design a multi threaded
application for a shared memory system.

It is usually the basis for other interfaces such as the
threads of Root. (TThread)

See “man pthread” for more information.

1. Write a multithreaded program that accepts two arguments:
• The number of threads n
• A long integer number N.

2. It will calculate π with the following series (Gregory-Leibniz series):

with at least 9 correct significant figures.
3. Time your program with n=1 and n=2,...
4. Make sure that n=”number of cores” runs number of cores times faster

compared to n=1 case.

Homework

π ≈ 4
N�

k=0

(−1)k

2k + 1
= 4

�
1

1
− 1

3
+

1

5
− 1

7
+

1

9
− 1

9
· · ·+ (−1)N

2N + 1

�

π =
√
12

∞�

k=0

(−3)−k

2k + 1
=

√
12

�
1− 1

3 · 3 +
1

5 · 32 − 1

7 · 33 + . . .

�

Do not attempt to use some other series that does the job faster, like Madhava series
(N=27 yields 15 significant figures):

We want something slower to test the timing

Homework (cont.)
long long counter_max; // Upper limit determined by main function
long long counter = 1; // Initial value of the loop
pthread_mutex_t counter_mutex = PTHREAD_MUTEX_INITIALIZER; // for the counter
double *sum_res; // To return the partial sum

void *pi_thread(void *arg) {
 while (1) {

 pthread_mutex_lock(&counter_mutex);
 begin = counter;
 counter += 1000000;
 pthread_mutex_unlock(&counter_mutex);

 }

}

int main(int argn, char *arg[]) {
 ...
 sum_res = (double *)malloc(n*sizeof(double));
 tid = (pthread_t *)malloc(n*sizeof(pthread_t));
 id = (int *)malloc(n*sizeof(int));
 ...
 for (i=0;i<n;i++)
 pthread_create(tid+i, NULL, pi_thread, id+i);
 ...
 // wait the threads to exit

 pi = 0.0;
 for (i=0;i<n;i++)
 pi += sum_res[i];
 ...

Homework (cont.)

Seeing is believing...
(demo)

41

Thread Safe library functions

n You have to be careful with libraries.

n If a function uses any static variables (or global memory)
it’s not safe to use with threads!

n Make sure that the functions you use are Posix thread-
safe, before you use in your threaded application…

42

Threads are awesome, but may be dangerous. You
have to pay attention to details or it is easy to end
up with a code that is incorrect (doesn't always
work, or hangs in deadlock).

Posix threads provides support for mutual exclusion,
condition variables and thread-specific data.

MPI is another way of making your program
multithreaded (and multi-noded)

Summary

