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N o Outline

=> Introduction
=>» Measure energy deposition

- Scintillator setup
- Photomultiplier
 Analog-to-Digital conversion
- Charge-to-Digital conversion
« QDC in real life

=>» Measure position
- Wire chamber setup
- Time-to-Digital conversion
* TDC in real life

=>»Corollary
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N o Introduction @

=>» This wants to be a hands-on approach to the basic DAQ hardware

=>We will discuss two different experiments, requiring different techniques and
components

=>» We also have some good real data to discuss

* You we will see, we are talking about real life here

=>Let's get started!

Material and ideas have been taken from CERN Summer Student lectures of P.Farthouat, C.Joram and
O.Ullaland
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1% experiment

February 10" 2011

S. Ballestrero & W.Vandelli - ISOTDAQ2011




q&;\% Energy measurement

/

Scintillator Light

oude E x N,

Photomultiplier

Signal
HV

=>» Measure the energy deposited by a particle traversing a (special) medium

=>» The (detector) medium is a scintillator — The molecules, excited by the
passing particle, relax emitting light

- The amount of light is proportional to the deposited enerqy

=>» The light is then collected, using dedicated optical means (light guide), and
fed into a photo-detector — photomultiplier
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Photomultiplier
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=> Photo cathode: photon to electron conversion via
photo-electric effect

* Typical quantum efficiency ~1-10% (depends on material
and wavelength)

=> Dynodes: electrodes that amplify the number of
electrons thanks to secondary emission

- Typical overall gain ~10¢

=> Dark current: current flowing in the PMT without light
— noise
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Getting started

100 - PR PR PR ...:_

10

e cocellococ]connaas I

CH2: Vidiv
Time/div: 20ns

CH1: Vidiv 100mV Title:
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N o Good old scope @

=> Approximate Q measurement using

oscilloscope
T - Linear approximation of a exponential

~
S
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e cocellococ]connaas I

oy oo 1
Q) = / t)dt = /V( ) dt

1 bh 1 (3.5-(20ns))(4 - (100mV))

@~ 25 T 500 2 = 280pC
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Getting started

90

100% = [ = = = =

10

DG = = | = = =«

CH1:
CHZ:
Time/div: 20

() ~

Done! (In less than 5 slides)

| *Approximate measurement
-+ *Deadtime ~3000%/Hz (if you are good)

*Encode the data into some sort of electronic format by hand

Wouldn't be much more convenient to have a direct electronic
measurement? It could save the data in some digital format and fill a
histogram on-line. Wouldn't be cool?

l
The scope method is still fundamental: allows for the validation of ’t
your DAQ (and, yes, you should never thrust it a priori!)

Lbh 1 (3.5-(20ns))(4- (100mV))

— = 280pC

R 2 502 2
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! Analog to digital conversion:
<L introduction

=>Digitization — Encode a analog value into a binary representation

Entity to be measured

Ruler unit

Compare entity with a ruler
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Analog to digital conversion: Flash
F 2 T ADC

=>Digitization — Encode a analog value into a binary representation

Entity to be measured

Ruler unit

Compare entity with a ruler

Flash ADC | =»Flash ADC simplest and fastest

lStart Tbusy implementation

=>»Performs M comparisons in parallel

- Input voltage is compared with M fractions of a
— reference voltage: V_/(2M) — (M-1/2)V /M

Encoder

=»Result is encoded into a compact binary form

N=L M+1
0g; (M+1) of N bits

— Differential comparator
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Analog to digital conversion: Flash
F 2 T ADC

=>Digitization — Encode a analog value into a binary representation

Entity to be measured

Ruler unit

Compare entity with a ruler

Flash ADC | > Example M=3 — N=2
ls’[ar’[ Tbusy
V.IV Comparison Encoded

results form

N <1/6 000 00

BCE 1/6< <3/6 001 01

N=Log, (M+1)  3/6< <5/6 011 10

#1 5/6 < 111 11

R/z\

= Differential comparator
February 10" 2011 S. Ballestrero & W.Vandelli - ISOTDAQ2011 12




q&;\% ADC Characteristics

=>Digitization — Encode a analog value into a binary representation

Entity to be measured
[

Ruler unit

Compare entity with a ruler

=> Resolution (LSB), the ruler unit: V_ /2"

* 8bit, 1V — LSB=3.9mV
=> Quantization error, because of finite size of the ruler unit: +LSB/2
=>Dynamic range: V_/LSB

* N for linear ADC

* >N for non-linear ADC

— Constant relative resolution on the valid input range
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<Lr

ADC phase-space

Many different ADC technique exists, mostly
because of the trade-off between speed and

resolution

Speed (sampling rate)

GHz

Hz

v@glar
Flash
ub-Rangin
Pipeline
ccessive A
Discrete
6 22 #Bits

Power

>\

<mW
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q&;\% ADC (In)Accuracies

A . . . .
ADC Transfer function it 111 1—  Integral & Differential L
V4 . . =
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Non-monotonic |
010 + i
|
001 + —== |
’ ~" Missing Code :
000 kL I >
/

| | | | | |
1)8 2/!8 318 4/18 518 6/8 7/8 FS
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q&;\’ff Charge to Digital - QDC @m

=>ADC converts a voltage into a digital representation. However, in our
experiment, we have a current and we are interested in the total charge

=2 QDC — Charge to Digital Converter

- Essentially an integration step followed by an ADC

b
= Integration requires limits — gate I = / f(CL’) dx
a

February 10" 2011 S. Ballestrero & W.Vandelli - ISOTDAQ2011 16



q&;\% QDC and experiment 1 @

=>ADC converts a voltage into a digital representation. However, in our
experiment, we have a current and we are interested in the total charge

=2 QDC — Charge to Digital Converter

- Essentially an integration step followed by an ADC

b
= Integration requires limits — gate I = / f(x) dx
a
Gate l—r
gen.

% delay QDC ) 0xa3, 0x15, 0x8d, ...

=>We are done: we have a digital representation of:

Question: what should
Q O 7\7 O E follow the QDC? With
’7 which aim?

February 10" 2011 S. Ballestrero & W.Vandelli - ISOTDAQ2011 17




*t\% QDC and experiment 1 @m

QADC Left 784 [Sm— 100000 QADC Right 784 Grwi s 1000
Ehean 504 Bhan 408
dN/idq | i
nee 222 e oie
1000 =~ 1000 =
" Lmmpead O 0040 08 2 wapal O O00e 04

Mean:549.4
RMS: 261.8

Mean:550.4 scol
RMS: 262.2

ol_l_l

600 800 17000 1200 71400 1600 200 400 600 800 1000 1200 17400 1600

07-03-13 09-32-49 QDC count

=>We are done: we have a digital representation of:
Question: what should

( ’ follow the QDC? With
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<) QDC: Timing
1D

/
ﬁé;— delay Va QDC j . bf(x) o

=> Relative timing between signal and gate is important

. - Q: the tail is exponential,
Delay tuning % how large is large enough?
=>» Gate should be large enough to contain the full pulse
and to accommodate for the jitter

* Fluctuations are always with us! f(x)
=>» Gate should not be too large — increases the noise \ /
level
a b
- By the way, which is the noise contribution to our charge _‘ |_
measurement?
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q&;\/ff QDC: pedestal subtraction
cloc ate | L—1

, o[> G L
% delay .\/_ QDC j>

/ |_RUN387 - ADCN1 (no ped sub) | - Gzjipration data from a test
10°F beam @CERN
: : dN/dQ
= With an out-of-phase trigger we can Q -
measure the baseline (pedestal) -
21—
- PMT dark current, thermal noise, ... 10 =
. Out-of-time particles -
=>» The same noise enters our physics 10
measurements and contributes with -
an offset to the distribution -
=>» The result of a pedestal measurement 1 { WH
haStObeSUbtraCtedfromOurCharge :IIII|IIII|IIII|IIIllllllllllllllllllmlI|IIII|IIII
210 215 220 225 230 235 240 245 250 255

measurements
QDC count
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N o Real QDCs at work @AV

Trigger L{L
counters
: f

L R
= Real data from a beam test @ CERN \PMT /

2> PbWO, (scintillating) crystal equipped with two PMTs and exposed to e,u and
™ beams

February 10" 2011 S. Ballestrero & W.Vandelli - ISOTDAQ2011 21



N o Real QDCs at work @

Trigger |fL
counters
\f
L R
- Real data from a beam test @CERN \PMT e
2> PbWO, (scintillating) crystal equipped with two PMTs and exposed to e,u and
™ beams
h
Entries 100000
M 624.7
dN/dQ RMS 245
500 —
400—
300 Nice pion-beam charge-
- distribution for one PMT
200
100 —
0700 600 800 4000 1200 1400 16001860 2000

QDC count
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q&;\% Real QDCs at work @

Trigger LIL
counters
\%
L R
- Real data from a beam test @CERN \PMT e
2> PbWO, (scintillating) crystal equipped with two PMTs and exposed to e,u and
m beams
h
Entries 100000
M 624.7
dN/dQ RMS 245
500 —
400 - Nice pion-beam charge-
- distribution for one PMT
300 — .
- But, what are all those little
B peaks? Just statistical
200 — fluctuations? Let's zoom in!
100 —
:.I...I...I...I... . P PR PP T BRI I
0 400 600 800 1000 1200 1400 1600 1800 2000

QDC count
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N o Real QDCs at work @AV

Trigger
counters

"

N f e

[
L

Entries : 100000
dN/da f ean 5418
500 —
- *Bin with N entries shall
400— fluctuate with
- w" e o=VN
300 — w‘
= «/360~18 = (540-360)/18=100
2000 «Spikes are regularly distributed

 Some systematic effect must
be taking place

100

«Z0o0om in a bit more!

] | ] ] ] ] | ] ] ] ] | ] ] ] ] | ] ] ] ] | ] ] ] ]
400 500 600 700 800
QDC count
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Real QDCs at work @

Trigger i
415 & 416 — 0x19f & Ox1a0 e
*431 & 432 — Ox1af & 0x1b0 %
447 & 448 — Ox1bf & 0x1cO PMT

h
Entries 100000

S50 — Mean 430.5
dN/dQ RMS 11.98
500 — u
450 Can you see the effect?
400 f—
150 = The QDC prefers output
n configurations of type
300 xxx0 in respect of those
250 f— like xxxf
200 f— | B
#0415 420 425 430 435 440 445 450

QDC count

February 10" 2011
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Real QDCs at work

415 & 416 — 0x19f & Ox1a0
431 & 432 — Ox1af & Ox1b0
447 & 448 — Ox1bf & 0x1c0

h

Entries 100000

550
dN/dQ
500
450
400
350

300

250

200

Mean 430.5
RMS 11.98

afTT
- —
o

Module: 4c6543726f79204c31313832 | <&

Ll | | |
415 420 425 430 435

440

445 450
QDC count

Trigger

[
counters 7ZL

PM T

Can you see the effect?

The QDC prefers output
configurations of type
xxx0 in respect of those
like xxxf

2\

Homework: which is the
simplest way to fix this
problem in the data? At which
cost? Can you understand the
module name?

February 10" 2011
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2" experiment
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%’ff Position measurement @m

=> This time we want to measure the position
of particle with a wire chamber

=>» The ionization electrons created by the
passage of the particle will take a time At
to reach the anode wire

=> Transit time is normally negligible with
respect to At

= |f we consider a constant drift speed v,
(50um/ns), then position is:

r=vp - At
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Triggering @

FD— delay

seintillator

i

L

The wire chamber alone is not sufficient
however

=>We need a triggering system

=» Therefore we will measure a relative time
At+t, =t*

-t accounts for the time delays, offsets, ...

between the wire chamber and the triggering
system

r = aat” + (3

February 10" 2011
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N o Time measurement @

clock — f

N bit
counter

reset

scintillator Set
e
vi B

=>We can measure the time offset between
the two signals using a N-bit digital counter
driven by a clock of frequency f

=>» The wire signal acts as a start signal

=> The trigger provides the stop signal

February 10" 2011 S. Ballestrero & W.Vandelli - ISOTDAQ2011
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N o Time measurement — TDC

R R R [

glock — f

L —

delay A
| v- Clear

Q

N bit
counter

scintillator | Set
>
vi B

reset

=>» Resolution: 1/f

=>»Dynamic range: N
=>»Single hit TDC

* e.g. a noise spikes comes just before the

;lIIIIlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII:

=>» Time-to-Digital Converter

signal — _measure is lost
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<Lr

Multi-hit TDC

clock — f

N bit
counter

FIFO

reset

O—
hit l_/_\
Vv v~

=>» Gate resets and starts the counter. It also provides the measurement period.

It must be smaller than 2V/f

=>Each “hit” (i.e. signal) forces the FIFO to load the current value of the

counter, that is the delay after the gate start

- In order to distinguish between hits belonging to different gates, some additional

logic is need to tag the data

=» Common-start configuration

February 10" 2011
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N o Actual TDCs

Common-stop TDC

‘_ reject latency

window offset (programmable)

search window
reject
margin

margin
(programmaljle)

(programmable

trigger input

d

=» Real TDCs provide advanced functionalities for fine-tuning the hit-trigger
matching

- Internal programmable delays
- Internal generation of programmable gates

- Programmable rejection frames

Can you imagine/sketch a
common stop setup?
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Real life wire chamber & TDC @AV

> XDWC: delay wire chambers used on the SPS
extracted lines to measure beam profiles

=>» Two cathode planes provide X and Y positions

=>»Measurement is based on the delay gained
along a delay line

ANODE CATHODE

\ -------
\ ------- z
s _______ =~ DWC
— 3 _

™~
SL-Note-98-023 -
February 10" 2011 S. Ballestrero & W.Vandelli - ISOTDAQ2011 34




Principle @AV

> XDWC: delay wire chambers used on the SPS
extracted lines to measure beam profiles

=>» Two cathode planes provide X and Y positions

=>»Measurement is based on the delay gained
along a delay line

y:@'At+ﬂ:a'(ttop_tbottom)+ﬁ

scintillator trigger

ANODE CATHODE :
I~ . — ‘
- V- top
DWC
v
v
vy - At bottom
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N o Raw time data @

[ RUN997 - TDC | tdc_dwc_dw_u | [ RUN997 - TDC | tdc_dwc_dw_d
Entries 4105 Entries 4840
= Mean 79.38 — Mean 118.9
il 160
140 - RMS 24.2 - RMS 22.32
- 140
120 — :
C 120
100 — "
B 100 —
80| TOP b BOTTOM
60— -
C 60 —
40 — 40 :_
20— 20—
0 _ 1 | 1 1 1 1 | 1 1 1 1 | 0 : Irll- 1 1 1 1 Tl 1 1 1 | 1 1 1 1 | 1 1 1 1 I
0 300 400 500 0 100 200 300 400 500
TDC count TDC count
Individual channel distributions
| RUN997 - TDC | tdc_dwc_dw_| | RUN997 - TDC | tdc_dwc_dw_r
Entries 4828 Entries 4850
= Mean 1131 Mean 88.4
C RMS 23.42 : RMS 22.86
120 — 120 —
100 100
80— 80—
F LEFT ol RIGHT
a0l a0
20 20—
0 _ L Liwiwt 0 v o b v by vy by by 0 L ol P T [ TR L
0 50 200 250 300 350 400 450 500 0 300 400 500
TDC count TDC count
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%’ff (Uncalibrated) Beam Profile @
[ RUN997 -DWCDWU-D | Im :zdniﬁ::c_d\:ﬁugﬂ

= Mean -39.79
100 — RMS 21.64
au_—
su_—
40:—
I [ Rungg7-DwcDWL-R | | RIGHT-LEFT tdc_dwc_dw_Ir
20— Entries 4827
= Mean 24.76
- 100‘_ RMS 23.13
0_| | 01 fol ol ingden 0 oo lve v b b iy |Mﬂ1ﬁmﬂﬂﬂﬁnlﬂi Lain Lol 1 —
-140 120 100 -80 -60 -40 20 0 20 40 60 80 =
TDC count 80 |
->Beam sizes are still in TDC counts -
 Not very useful, though -
40 —
> How do we convert this into a -
known scale (e.g. cm)? 20
0_| nl | LT nn||n||ll | | | 1 1 | | | 1 | f‘1|"'lhll'|rl'| I'hllnnhml lol nl 1 |
=100 -50 0 50 100 150 200
TDC count
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Corollary: calibration
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N o Calibration @

=» Both the experiments we discussed provide relative measurements. The
values obtained via our system are in some (known) relation with the
interesting quantity

- Scintillator
QQ o< N, o< E

- XDWC

y:@'AH'ﬂ:O"(ttop_tbottom)_\'ﬁ

=>»Our instruments need to be calibrated in order to give us the answer we are
looking for

- We have to determine the parameters that transform the raw data into a physics
quantity

- The parameters normally depend on the experimental setup (e.g. cable length,
delay settings, HV settings, ... )

=>In the design of our detector and DAQ we have to foreseen calibration
mechanisms/procedures
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~{ ¥=| Ge crystal for isotope identification \@

Crystal HPGe

Trigger & front-end
Readout (ADC)
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A
A &

Crystal calibration

)

T 1
= =
&= Y 4
=
= 10* =

10° =

10% £

0 2000 2500
Energy [ADC ch]

% 1600
= 1400—
el —
2 1200
2 —
w1000

800 —

600 —

400 —

200—

- 1 L 1 L L L L 1 L L L L 1 L L L L
Oy 500 1000 1500 2000 2500

Energy [ADC ch]

=>“Europium reference
source

* Known y emission lines
* Peak find & fit

=>» Allow for definition of the
parameters describing
functional relation
between ADC count and

E
QxN,xE
=> Reality is not perfectly
linear

 Polynomial fits

 Physical models

February 10" 2011
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q&;\/ff |Isotope identification

o
T F
1]

=10°% = & & o &

T F & N N N > >
= — ‘.:\h*- i;‘* 1¥+ + ,I'\-'% re.‘% ‘]F%
L= - I

;
-
i

102

sample PET1
1 1 1 | 1 1 1 | 1 1 I | 1 1 1 J \

1 1 1 I LNy ] vd
500 1000 1500 2000 2500
Energy [keV]

Calibrate crystal setup can be used to identify isotopes generated
in y-irradiated samples
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o XDWC Calibration

=> XDWC chamber have 3 calibration inputs that allow for independent
calibrations of X and Y axis with only 3 different sets of data

=>» The calibration input simulate signals from particles respectively hitting

(] /\
- Right-top corner (X=Y=30mm)

 Center (X=Y=0mm) wl X
- Left-bottom corner (X=Y=-30mm) _Ismpe

=>The calibration data sets shall be taken | 0 >< : >
with final setup and TDC B 150 Dot o)

=> Interpolating the three points in the t-x X B
space, the_parameters of the calibration
equation can be measured
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. Calibrated XDWC <)

| RUN997 - X_DW | X_DW
Entries 4827
= Mean -2.727
500 — RMS 4.181
. ' Beam profile
400— TOP-BOTTOM
- [ RUN997 -Y_DW vs X DW | Y vs X DW
300— = Entries 4075
- 20— Meanx -2.696
B C Meany  -523
B Y(cm) © RMSx  4.150
200 — 15— RMSy 3.973
- 10
100— . R
B 5— Tl
o_lll Voo v v v by by B n;;;g;;';::n
20 A5 05 0 5 10 15 20 0 LtisosgEEEsEzerl:
[ RUN997 - Y_DW | X(cm)[ v ow - '::BBB88B8885 55 " "
Entries 4094 L -EEEEDEI lIIEIIEIgS;;
- Mean -5.235 S o o0 ogd e
i RMS 4.009 - : E‘EEE‘I 0 DEEEEE??: T
00 A0[- _i:iiiSzogzogogeariiil
400 A5 "
E -2:IllllIIII|'III-I|IIII|III-I|IIII|IIII|IIII|
300 % 45 40 5 0 5 10 15 20
B X (cm)
200
- RIGHT-LEFT
100
0_ L1 1 | L1 1 1 | L1 1 1 | 1 11 1 | Ll ] |
20 15 10 5 0 5 10 15 20
Y (cm)
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N o Wrap-up @AV

=> Digitization techniques produce data directly manageable by digital systems
(e.g. a computer)

- Greatly simplifies the down-stream data-handling
* Root of every modern DAQ system

- Available on a variety of platforms: VME, PCI, USB, ...

=>»Open the “black box” and see where the numbers come from

—

« Real electronics does not behave as the ideal one

=> Trade-offs between speed/precision/cost exist
 You have to choose the solution that best suits you
=» Physics quantities are derived from the raw data via calibration

- Calibration procedures have to be foreseen for your detector and DAQ
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<{ 3| Example — NA59 Drift Chambers

=> More complex, precise detectors need
more sophisticated calibration

=» Calibrate both “detector behavior” and
“DAQ behavior” (eg TDC), sometimes at

o  HHTHELELZLTTTTT
3mm
300 4
£
é 200
Ground Plate 1004
! Field wires LLMM
' —
é) / o o o o} ?  ©o © o ©O 0 0 0 T T T T T T 1
% -14 -13 -12 -1 -10 -9 -8 -7
} e- ) Horizontal position [cm]
b o 0 0o 5 00 0o o o o ol o " 6 5 6 6 o 6 6 o o o . FIG. 4. Calibration data for drift chamber 4. The “comb” is due
: e _— L to slits in the veto (Slitl) combined with hits in the corresponding
! Sense!wires Cell separating field wire ! K L X
- . counter (Hitl) as indicated in the upper part of the figure.
Ground Plate ' |
Cell 1 ' Cell 2 1 Cell 3
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<L

A word on front-end electronics

2\

Detector
Pre-amplifier

Shaping

Peak finder
ADC

Zero suppression

Format & Readout

Advanced FE Complex FE
Detector
v Impedance match v Amplifier
Noise suppression |[___ | Filter
) - Tail integration & Shaper
Wide range (calorimetry) |¢ Range compression
O Sampling
A mmllm_ Digital filter
$ % Zero suppression
—— ' Buffer
DCL Feature extraction
|

| | Event tags, data blocks |

Buffer

Format & Readout

February 10" 2011
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