
An intro to C++
Francesco Safai Tehrani

francesco.safaitehrani@roma1.infn.it

Wednesday, February 9, 2011

mailto:francesco.safaitehrani@roma1.infn.it
mailto:francesco.safaitehrani@roma1.infn.it

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

Intro to C
+

+

The root of all evil

2http://abstrusegoose.com/307
This work is licensed under a Creative Commons Attribution-Noncommercial 3.0 United States License.

Wednesday, February 9, 2011

http://abstrusegoose.com/307
http://abstrusegoose.com/307
http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

Intro to C
+

+

Software, as seen by a cat fancier

3
!

!!!!"#$%!&'%!()*'&!+%,)-)./!#&!&'%!0%*)//)/*"#$%!&'%!()*'&!+%,)-)./!#&!&'%!0%*)//)/*
123./%/&)#445!)/,(%#-)/*!6#)/&%/#/,%!4.#+!6%#/-777123./%/&)#445!)/,(%#-)/*!6#)/&%/#/,%!4.#+!6%#/-777

!"#$%$&'()$*+,-$!"#$%$&'()$*+,-$
.'/0.'/0%$12'(+3)%$12'(+3)$%455$$%455$
3,".$3,".$,-+3$3+6),-+3$3+6)77

8'#9-+)2"2&-+&"5$
3':,*"2)$;77

!"
#$
%"
&
#'
(
"
&
)*
+
,
-
(
(
)*
(
"
*.
%'
/
/
$
%*
&
"
0
*1
&
#&
*2
,
3
4
'5
'#
'(
"
6*
7
89
*:
$
;
%4
&
%<
*=
>
7
>
6*
2
"
?
&
%&
6*
.@
%?
'<
$

!"
#$
%"
&
#'
(
"
&
)*
+
,
-
(
(
)*
(
"
*.
%'
/
/
$
%*
&
"
0
*1
&
#&
*2
,
3
4
'5
'#
'(
"
6*
7
89
*:
$
;
%4
&
%<
*=
>
7
>
6*
2
"
?
&
%&
6*
.@
%?
'<
$

2
*A
%'
$
B*
C
%(
/
%&
D
D
'"
/
*E
F
$
%F
'$
G
*H
*I
J
/
@
%*
K
(
;
&
"
(
L
)4

2
*A
%'
$
B*
C
%(
/
%&
D
D
'"
/
*E
F
$
%F
'$
G
*H
*I
J
/
@
%*
K
(
;
&
"
(
L
)4

Courtesy of
Özgür Çobanoglu

Wednesday, February 9, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

Intro to C
+

+

Object oriented programming
‣From functions to objects

‣With functions you have code blocks that accept
arguments and process them returning a response

‣With objects you have ʻentitiesʼ that interact with other
entities via well defined interfaces

‣ Interfaces describe fully what an object can do

‣Plenty of different ʻobject orientedʼ programming
approaches

‣Two main ones: static and dynamic

‣ Static: objects have a well defined nature which cannot change

‣ Dynamics: the objectʼs nature is detemined by its behavior 4

Wednesday, February 9, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

Intro to C
+

+

From C to C++
‣C != C++

‣but this should be abundantly clear by now ;)

‣C++ evolved from C as one of the versions of the
“C with objects” paradigm

‣OOP was invented (according to some) at Xerox
PARC during the development of the Alto
workstation to design and implement GUIs

‣and then they kind of gave it away...

‣ both the OO and the GUIs

‣ and the mouse, and the Ethernet, and ... 5

Wednesday, February 9, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

Intro to C
+

+

C++ by examples
‣ I am not going to try to teach you all of C++

‣yeah, right ;)

‣ Iʼll give some examples...

‣hopefully youʼll be able to glimpse the truth from these

‣ I am NOT going to talk about complex stuff

‣ just basic C++

‣ “C++ for the masses”

‣ Lots of talking, little writing

‣ thereʼs plenty of good books out there... no need to
replicate them 6

Wednesday, February 9, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

1D CA

7

I will use this example in the C++ lecture, hence the longer description.

Let’s give some nomenclature.

The cellular automaton lives on a playground of N spaces.
The playground is circular (its leftmost element and its rightmost element are next to
each other).
Each ‘space’ in the playground is called a cell.
A cell can be dead (0) or alive (1).
Time flows in discrete steps. At each given step the cell state can change or remain
the same.
The cell state changes depending on its own state and the state of its first neighbors
(usually known as a neighborhood).

Each automaton is completely defined by its initial state and its evolution rules.

Since there are eight possible configurations for a neighborhood, each with a possible
outcome of 0 or 1 in the next state, there is a total of 256 possible evolution rules.

State

Outcome

111 110 101 100 011 010 001 000

0 0 1 1 0 1 0 0

As an example, this is rule 52 (2^2 + 2^4 + 2^5).

Wednesday, February 9, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

Intro to C
+

+

8

The implementation
‣ 4 versions of the same program, with increasing

technology.

‣ The program is EXTREMELY simple, and frankly overkill
for C++.

‣ ... but I hope itʼll help you figure out a few things

‣ Once we lay down the infrastructure it will pretty much
stay the same throughout the various versions...

‣ I have no plan, nor hope (nor desire) to try to cram all of
C++ into a 1h lecture

‣ The code is written to be plain and understandable, which
implies I didnʼt use many advanced features of C++

‣ e.g. I use loops instead of iterators...
Wednesday, February 9, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

Intro to C
+

+

Code structure
‣ Iʼve broken down the problem into two separate

entities:

‣ the Playground class which abstracts the notion of the
arena where the cells ʻliveʼ

‣ the Cell entity which abstracts ... well, the cell.

‣ In such a simple case, I expect most people
would agree with me on my ʻdesignʼ

‣and still I expect plenty would disagree

‣ the long debated issue: “should an event be an object?”

‣different people will design their programs differently...

‣ “different people have different needs” (Depeche Mode, deep 80s) 9

Wednesday, February 9, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

Intro to C
+

+

10

V.1
Wednesday, February 9, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

Intro to C
+

+

Cell.hh [v1]

11

#ifndef _CELL_H_
#define _CELL_H_

using namespace std;

class Cell {
private:
 int state;
 int RuleSet[8];

public:
 Cell() { state = 0; }

 Cell(int aState): state(aState) {}

 Cell(int aState, int* aRuleSet) {
 state = aState;
 for(int i=0; i<8; i++) {
 RuleSet[i] = aRuleSet[i];
 }
 }

 virtual ~Cell() {}

 int evolve(Cell* neighbors[]);

 int getState() {
 return state;
 }

 int setState(int aState) {
 state = aState;
 }
};

#endif

Overloaded constructors
(ctors)

Destructor

Constructor: the method that is invoked when
instantiating an object

Overloading: a kind of polymorphism where a
method can have different signatures. The
choice of the correct method to invoke is
performed based on the invocation signature

Destructor: the method that is invoked when
releasing an object

Virtual: a big can of worm that has to do with
what method gets invoked when. (A bit) more on
this later...

Destructors HAVE to be virtual, unless you
really know what you’re doing.

Wednesday, February 9, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

Intro to C
+

+

Cell.cc [v1]

12

#include "Cell.hh"

int Cell::evolve(Cell* neighbors[]) {
 int stateInfo = 4*(neighbors[0])->getState() + 2 * state + (neighbors[1])->getState();
 return RuleSet[stateInfo];
}

In C++:

headers contain the interface of a class
.c files contain the implementation of a class

Okay, what the heck is a class?
A class is a logical entity representing a part that contributes to the solution of
your problem. Different people have different classes (one man’s constant is another
man’s variable).

A class is the blueprint of the actual entity (the project for a car versus the actual
car). A class gets instantiated into an object.

An object is an instance of a class, that is it conforms to the class interface while
providing a state.

A class, being a blueprint, does not have a state.
An interface fully defines what an object can do, or (using the messaging model) what
messages can it answer?

The object is the core entity of C++ programming. A C++ programming can be seen as a
‘network’ of ‘objects’ which interact with each other exchanging ‘messages’

Or, using an ‘active’ view: each object can ask another object to perform a service and
return a result (this is known as ‘delegation’).

Wednesday, February 9, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

Intro to C
+

+

Playground.hh [v1]

13

#ifndef _PLAYGROUND_H_
#define _PLAYGROUND_H_

#include "Cell.hh"

using namespace std;

class Playground {
private:
 Cell** currentArena;
 Cell** nextArena;
 Cell** tmpArena;
 int RuleSet[8];
 int rule;
 int size;

public:
 Playground(int aSize, int aRule) {
 size = aSize;
 rule = aRule;

 currentArena = new Cell*[size];
 nextArena = new Cell*[size];

 createRuleSet();

 for(int idx=0; idx<size; idx++) {
 currentArena[idx] = new Cell(0, RuleSet);
 nextArena[idx] = new Cell(0, RuleSet);
 }
 initCurrentArena();
 }

 virtual ~Playground() {
 delete[] currentArena;
 delete[] nextArena;
 }

 void createRuleSet();
 void initCurrentArena();
 void nextGeneration();
 void printArena();
};

#endif

Wednesday, February 9, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

Intro to C
+

+

Playground.cc [v1]

14

#include <iostream>
#include "Playground.hh"

using namespace std;

void Playground::createRuleSet() {
 for(int idx=0; idx<8; idx++) {
 RuleSet[idx] = (rule & (1 << idx)) / (1 <<idx);
 }
}

void Playground::nextGeneration() {
 Cell* neighborhood[2];

 for(int idx=0; idx<size; idx++) {
 int pidx = (idx-1)<0?(size-1):(idx-1);
 neighborhood[0] = currentArena[pidx];
 neighborhood[1] = currentArena[(idx+1)%size];
 (nextArena[idx])->setState((currentArena[idx])->evolve(neighborhood));
 }
 tmpArena = currentArena;
 currentArena = nextArena;
 nextArena = tmpArena;
}

void Playground::initCurrentArena() {
 // impulse
 (currentArena[size/2])->setState(1);
}

void Playground::printArena() {
 for(int idx=0; idx<size; idx++) {
 if((currentArena[idx])->getState()) {
 cout << "o";
 } else {
 cout << " ";
 }
 }
 cout << endl;
}

Wednesday, February 9, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

Intro to C
+

+

ca1d.cc [v1]

15

#include<iostream>
#include "Cell.hh"
#include "Playground.hh"

#define PLAYGROUND_SIZE 80
#define GENERATIONS 100
#define RULE 30

int main (int argc, const char * argv[]) {
 Playground* myPlayground = new Playground(PLAYGROUND_SIZE, RULE);

 for(int idx=0; idx<GENERATIONS; idx++) {
 myPlayground->nextGeneration();
 myPlayground->printArena();
 }
 return 0;
}

Compile like this:

g++ -c Cell.cc
g++ -c Playground.cc
g++ -o ca1d ca1d.cc Cell.o Playground.o

Wednesday, February 9, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

Intro to C
+

+

16

V.2
Wednesday, February 9, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

Intro to C
+

+

AbsCell.hh [v2]

17

#ifndef _ABSCELL_H_
#define _ABSCELL_H_

class AbsCell {

public:
 virtual ~AbsCell() {};

 virtual int evolve(AbsCell* neighbors[])=0;
 virtual int getState()=0;
 virtual int setState(int)=0;
};

#endif

This is an abstract class. A class that cannot be instantiated.
It is just an interface, no behavior whatsoever.

The trick is that purely abstract methods HAVE TO BE implemented before the a class
can be instantiated.

The other tools you need is inheritance.

Inheritance is a property of OO where I can declare that a class ‘inherits’ from
another class, that is the new class takes all the behaviors of the parent class
and ‘specializes’ them, that is it changes the behavior to adapt for its specific
needs.

purely virtual functions

Wednesday, February 9, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

Intro to C
+

+

Cell.hh [v2]

18

#ifndef _CELL_H_
#define _CELL_H_

#include <iostream>
#include "AbsCell.hh"

using namespace std;

class Cell: public AbsCell {
private:
 int state;
 int RuleSet[8];

public:
 Cell() { state = 0; }

 Cell(int aState): state(aState) {}

 Cell(int aState, int* aRuleSet) {
 state = aState;
 for(int i=0; i<8; i++) {
 RuleSet[i] = aRuleSet[i];
 }
 }

 virtual ~Cell() {}

 virtual int evolve(AbsCell* neighbors[]);

 virtual int getState() {
 return state;
 }

 virtual int setState(int aState) {
 state = aState;
 }
};

#endif

Inheritance: the class Cell inherits
the interface (and the behavior if
any) from AbsCell.
You can also say that Cell conforms
to the AbsCell interface.

and here I specialize the evolve method
defined in the AbsCell interface...

Wednesday, February 9, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

Intro to C
+

+

pippo.c

19

#ifndef _PLAYGROUND_H_
#define _PLAYGROUND_H_
#include "Cell.hh"

using namespace std;

class Playground {
private:
 AbsCell** currentArena;
 AbsCell** nextArena;
 AbsCell** tmpArena;
 int RuleSet[8];
 int rule, size;

public:
 Playground(int aSize, int aRule) {
 size = aSize;
 rule = aRule;

 currentArena = new AbsCell*[size];
 nextArena = new AbsCell*[size];

 createRuleSet();

 for(int idx=0; idx<size; idx++) {
 currentArena[idx] = new Cell(0, RuleSet);
 nextArena[idx] = new Cell(0, RuleSet);
 }
 initCurrentArena();
 }

 virtual ~Playground() {
 delete[] currentArena;
 delete[] nextArena;
 }

 void createRuleSet();
 void initCurrentArena();
 void nextGeneration();
 void printArena();
};

in this class I need to substitute most of
the Cell variables with AbsCell variables

The reason will become clear later...

Liskov substition principle:
Let q(x) be a property provable about
objects x of type T. Then q(y) should be
true for objects y of type S where S is a
subtype of T.

Wednesday, February 9, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

Intro to C
+

+

Playground.cc [v2]

20

#include <iostream>
#include "Playground.hh"

using namespace std;

void Playground::createRuleSet() {
 for(int idx=0; idx<8; idx++) {
 RuleSet[idx] = (rule & (1 << idx)) / (1 <<idx);
 }
}

void Playground::nextGeneration() {
 AbsCell* neighborhood[2];

 for(int idx=0; idx<size; idx++) {
 int pidx = (idx-1)<0?(size-1):(idx-1);
 neighborhood[0] = currentArena[pidx];
 neighborhood[1] = currentArena[(idx+1)%size];
 (nextArena[idx])->setState((currentArena[idx])->evolve(neighborhood));
 }
 tmpArena = currentArena;
 currentArena = nextArena;
 nextArena = tmpArena;
}

void Playground::initCurrentArena() {
 // impulse
 (currentArena[size/2])->setState(1);
}

void Playground::printArena() {
 for(int idx=0; idx<size; idx++) {
 if((currentArena[idx])->getState()) {
 cout << "o";
 } else {
 cout << " ";
 }
 }
 cout << endl;
}

Okay, now which evolve method is being
called?

The one from AbsCell or the one from Cell?
Why? How does C++ do the right thing?

Virtualization and late binding!

Wednesday, February 9, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

Intro to C
+

+

21

V.3
Wednesday, February 9, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

Intro to C
+

+

22

Okay, great but there are other CAs out there... what if I want to define a different
kind of cell conforming to the AbsCell interface? Do I need to rewrite the Playground
every time I have a different kind of cell?

Naturally not, and this question has an (almost) infinite amount of answers in terms of
what you can do.

For this particular tasks I’ve chosen to use a template: a structure that has one or
more parametric arguments whic can be classes or types.

Templates are extremely powerful tools and constitute a kind of language within the
language. I’m not even going to scrape its surface.

Just FYI, templates are the base of generic programming.

Wednesday, February 9, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

Intro to C
+

+

Playground.hh [template version, v3][1/2]

23

#ifndef _PLAYGROUND_H_
#define _PLAYGROUND_H_

#include "AbsCell.hh"

using namespace std;

template <class T> class Playground {
private:
 AbsCell** currentArena;
 AbsCell** nextArena;
 AbsCell** tmpArena;
 int RuleSet[8];
 int rule, size;

public:

 Playground(int aSize, int aRule) {
 size = aSize;
 rule = aRule;

 currentArena = new AbsCell*[size];
 nextArena = new AbsCell*[size];

 this->createRuleSet();

 for(int idx=0; idx<size; idx++) {
 currentArena[idx] = new T(0, RuleSet);
 nextArena[idx] = new T(0, RuleSet);
 }
 this->initCurrentArena();
 }

 virtual ~Playground() {
 delete[] currentArena;
 delete[] nextArena;
 }

 void createRuleSet();
 void initCurrentArena();
 void nextGeneration();
 void printArena();
};

Template definition: I’m informing
the compiler that T is going to be a
class.
The compiler knows NOTHING
about T until I actually ‘instantiate’
the template with a real class

Wednesday, February 9, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

Intro to C
+

+

Playground.hh [template version, v3][2/2]

24

template <class T> void Playground<T>::createRuleSet() {
 for(int idx=0; idx<8; idx++) {
 RuleSet[idx] = (rule & (1 << idx)) / (1 <<idx);
 }
}

template <class T> void Playground<T>::nextGeneration() {
 AbsCell* neighborhood[2];

 for(int idx=0; idx<size; idx++) {
 int pidx = (idx-1)<0?(size-1):(idx-1);
 neighborhood[0] = currentArena[pidx];
 neighborhood[1] = currentArena[(idx+1)%size];
 (nextArena[idx])->setState((currentArena[idx])->evolve(neighborhood));
 }
 tmpArena = currentArena;
 currentArena = nextArena;
 nextArena = tmpArena;
}

template <class T> void Playground<T>::initCurrentArena() {
 // impulse
 (currentArena[size/2])->setState(1);
}

template <class T> void Playground<T>::printArena() {
 for(int idx=0; idx<size; idx++) {
 if((currentArena[idx])->getState()) {
 cout << "o";
 } else {
 cout << " ";
 }
 }
 cout << endl;
}
#endif

Wednesday, February 9, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

Intro to C
+

+

ca1d.cc [v3]

25

#include<iostream>
#include "Playground.hh"
#include "Cell.hh"

#define PLAYGROUND_SIZE 80
#define GENERATIONS 100
#define RULE 30

int main (int argc, const char * argv[]) {

 Playground<Cell>* myPlayground = new Playground<Cell>(PLAYGROUND_SIZE, RULE);

 for(int idx=0; idx<GENERATIONS; idx++) {
 myPlayground->nextGeneration();
 myPlayground->printArena();
 }

 return 0;
}

...and here I instantiate the template
with ‘Cell’ instead of T...

Wednesday, February 9, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

Intro to C
+

+

26

V.4
Wednesday, February 9, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

Intro to C
+

+

AbsCell.hh [v4]

27

#ifndef _ABSCELL_H_
#define _ABSCELL_H_

#include <iostream>

class AbsCell {

public:
 virtual ~AbsCell() {};

 virtual int evolve(AbsCell* neighbors[])=0;
 virtual int getState()=0;
 virtual int setState(int)=0;
 virtual void print()=0;
};

#endif

Responsibility: who should do what?
Shouldn’t the AbsCell decide how to display itself?

Somebody should, and everybody should be able to delegate to someone else, as long
as somebody knows how to to do it (The perfect hyerarchical principle).

Wednesday, February 9, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

Intro to C
+

+

Cell.hh / Cell3.hh[v4]

28

#ifndef _CELL_H_
#define _CELL_H_

#include <iostream>
#include "AbsCell.hh"

using namespace std;

class Cell: public AbsCell {
private:
 int state;
 int RuleSet[8];

public:
 Cell() { state = 0; }

 Cell(int aState): state(aState) {}

 Cell(int aState, int* aRuleSet) {
 state = aState;
 for(int i=0; i<8; i++) {
 RuleSet[i] = aRuleSet[i];
 }
 }

 virtual ~Cell() {}

 virtual int evolve(AbsCell* neighbors[]);

 virtual int getState() {
 return state;
 }

 virtual int setState(int aState) {
 state = aState;
 }

 virtual void print();
};

#endif

#ifndef _CELL3_H_
#define _CELL3_H_

#include <iostream>
#include "AbsCell.hh"

using namespace std;

class Cell3: public AbsCell {
private:
 int state;
 int RuleSet[8];

public:
 Cell3() { state = 0; }

 Cell3(int aState): state(aState) {}

 Cell3(int aState, int* aRuleSet) {
 state = aState;
 for(int i=0; i<8; i++) {
 RuleSet[i] = aRuleSet[i];
 }
 }

 virtual ~Cell3() {}

 virtual int evolve(AbsCell* neighbors[]);

 virtual int getState() {
 return state;
 }

 virtual int setState(int aState) {
 state = aState;
 }

 virtual void print();
};

#endif

Wednesday, February 9, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

Intro to C
+

+

Cell.cc / Cell3.cc [v4]

29

#include "Cell.hh"

int Cell::evolve(AbsCell* neighbors[]) {
 int stateInfo = 4*(neighbors[0])->getState() + 2 * state + (neighbors[1])->getState();
 return RuleSet[stateInfo];
}

void Cell::print() {
 if(state) {
 cout << "o";
 } else {
 cout << " ";
 }
}

#include "Cell3.hh"

int Cell3::evolve(AbsCell* neighbors[]) {
 int stateInfo = 4*(neighbors[0])->getState() + 2 * state + (neighbors[1])->getState();
 return RuleSet[stateInfo];
}

void Cell3::print() {
 if(state) {
 cout << ".";
 } else {
 cout << " ";
 }
}

Wednesday, February 9, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

Intro to C
+

+

Playground.hh [v4]

30

[... same code as before, this is the only method that was
affected by the interface change due to delegation...]

template <class T> void Playground<T>::printArena() {
 for(int idx=0; idx<size; idx++) {
 (currentArena[idx])->print();
 }
 cout << endl;
}

Wednesday, February 9, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

Intro to C
+

+

ca1d.cc [v4]

31

#include<iostream>
#include "Playground.hh"
#include "Cell.hh"
#include "Cell3.hh"

#define PLAYGROUND_SIZE 80
#define GENERATIONS 100
#define RULE 30

int main (int argc, const char * argv[]) {

 Playground<Cell>* myPlayground = new Playground<Cell>(PLAYGROUND_SIZE, RULE);

 for(int idx=0; idx<GENERATIONS; idx++) {
 myPlayground->nextGeneration();
 myPlayground->printArena();
 }

 cout << endl << "And now for something completely different... " << endl;

 Playground<Cell3>* myPlayground2 = new Playground<Cell3>(PLAYGROUND_SIZE, RULE);
 for(int idx=0; idx<GENERATIONS; idx++) {
 myPlayground2->nextGeneration();
 myPlayground2->printArena();
 }

 return 0;
}

Wednesday, February 9, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

Intro to C
+

+

32

In the end (this time really for real)
‣ You donʼt know C++, you didnʼt learn it today

‣ unless you knew it already

‣ It will take time to learn it

‣ a lot of time

‣ deal with it ;)

‣ Thereʼs a lot more out there, and you will learn it over time.

‣ Like it or not, itʼs a tool

‣ Object oriented programming is NOT C++

‣ and vice versa!

‣ The more you know the less youʼll be surprised...

‣ and you donʼt want to be surprised. Right? ;)
Wednesday, February 9, 2011

