
An Introduction to C Programming
F. Safai Tehrani

(francesco.safaitehrani@roma1.infn.it)

International School of Trigger and Data
Acquisition 2011

Document version 0.2 - 02 Feb 2011

This document is released under:

http://creativecommons.org/licenses/by-nc-sa/3.0/

mailto:francesco.safaitehrani@roma1.infn.it
mailto:francesco.safaitehrani@roma1.infn.it
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Course Syllabus! 5
Course structure! 5
Tools and prerequisites! 5
What you should know already and where to learn it: some pointers! 6

The C Language! 7
Unix and Linux! 7
Before we start: man pages! 8
Before we start: printf! 9

Syntax of printf! 9

Lifecycle of a program: from source to executable! 10
hello_world.c! 10

Preprocessing! 10
Compilation! 11
Assembler! 11
Link! 11
How to compile for real! 12

The structure of a C program! 12
The elements of C! 14

Comments! 14
Comment syntax! 14

Some preprocessor directives! 14
#include syntax! 14
#define syntax! 14
#ifdef syntax! 14

Variables and variable types! 14
integer_division.c! 15

Arrays! 17
Structs! 17

Flow control! 18
Tests and logical operators! 18

if keyword syntax! 18
if_test.c! 19

Iteration! 20
for keyword syntax! 20
count_to_ten.c! 20
while keyword syntax! 21

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 2 of 40

do ... while keyword syntax! 21
upTo10.c! 21

Functions! 21
function definition syntax! 22
sum3.c! 22
prefix_postfix.c! 23

Recursive functions! 23
factorial.c ! 24
Exercise 1. Factorial! 24

Exercise 2. Fibonacci numbers! 24

Function prototypes and headers! 24
fact_lib.c! 25
fact_lib.h! 25
print_lib.c ! 25
print_lib.h! 25
fact6.c! 25
Exercise 3. Unit conversion library! 27

Unix programming! 28
Tools, pipes and default I/O streams! 28
Everything is a file! 29
The Standard C Library! 30

Memory! 32
Memory Structure! 32

Exercise 4. Crash the stack! 33

More about functions! 33
swap_by_value.c! 34
swap_by_reference.c! 35
Exercise 5. Return multiple values! 35

sum_array.c! 36
Exercise 6. Numeric integration! 36

Arrays and pointer algebra! 36
array_pointer.c! 37

Data types and memory! 37
array_on_heap.c! 38
Exercise 7. Endianness! 39

Structs and pointers! 39

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 3 of 40

More exercises! 40
Exercise 8. Integration with Monte Carlo method! 40

Exercise 9. 1D Cellular Automata! 40

Exercise 10. The Sieve of Eratosthenes ! 40

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 4 of 40

Course Syllabus
The main aim of these notes is to provide the students participating to the International School

of Trigger and Data Acquisition (ISOTDAQ) 2011 with enough understanding of C programming on
Linux to fully profit from the school and its associated labs.

This is by no means intended to be a complete C programming course (or a programming
course at all), since it mainly addresses the elements of C that are of direct interest for TDAQ
systems. Hence we will be highlighting specific features of the language while barely mentioning
other ones.

Some advanced subjects (multiprocessing and multithreading in particular) will be the subject of
a school lesson, so they will be ignored in this note.

Course structure

This document provides the theoretical framework and a number of pointer to further treatment
of the material. The student should review this material and attempt to solve the exercises before
the beginning of the actual School. One of the initial lessons of the School will be dedicated to
discussing the exercises and reviewing them. The student will be expected to be reasonably
familiar with the C and Python languages (a note on Python will also be provided).

The content of this note is largely preliminary, since it is in its first draft. I do apologize in
advance for the mistakes that you will find throughout this text. Feel free to contact me for
comments, complaints and clarifications on the material or simply to point out the mistakes. If I get
enough comments, I might release a updated release before the school begins. If that happens I
will also provide pointers as to what has been changed between the releases so you can decide
whether the new version would be useful for you or not.

You should read this text while on a computer, with a Linux environment ready to test the code
provided and with an active Internet connection. A fundamental part of learning a language is
writing programs to solve specific problems in it. To this end a number of exercises have been
provided throughout the text.

 The level of the exercises is tailored to your expected level of understanding of the C language,
and the exercises should be attempted before moving further ahead with the material. Feel free to
contact me if you need help.

A large number of links has also been provided, often to Wikipedia pages. You should take the
time to at least skim these pages and maybe go back to them at a later time as you need deeper
understanding of specific issues. Some links point to large amounts of material, and are provided
for further reference only.

Tools and prerequisites

You need a running instance of Linux with the GCC compiler in order to test the provided code
and implement the exercises.

If you are unable to or donʼt feel like performing a full installation of a Linux distribution, we
suggest the use of one of the virtual machines (VM) provided by the CernVM project. This VM runs
a recent version of the SL5 Linux distribution and can be freely downloaded from http://
cernvm.cern.ch/cernvm/.

Two versions of the VM are available: Basic which is command-line only and lacks a GUI and
Desktop which runs a minimal Gnome environment. The Desktop version is more resource-hungry,

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 5 of 40

http://cernvm.cern.ch/cernvm/
http://cernvm.cern.ch/cernvm/
http://cernvm.cern.ch/cernvm/
http://cernvm.cern.ch/cernvm/

but probably simpler to use for the absolute beginner. Both versions are perfectly suitable for this
course.

At the time of writing the latest version of the CernVM is 2.1.0 and is distributed in various
formats which are meant to be run using different virtualization platforms. All the most common
platforms are supported: VMWare, VirtualBox and Parallels.

We suggest the use of VirtualBox which is freely available from http://www.virtualbox.org/ both
for Mac and for Windows. At the time of writing the latest release of VirtualBox is 3.2.12.

Unless specified otherwise on the CernVM site you should always use the latest version of
VirtualBox and of the CernVM. The CernVM site also provides an How-To procedure needed to
configure the VM and to make it work. You will have to carefully review and follow this procedure in
order for the VM to work correctly and be usable.

The current links to the HowTo-s are:

Virtual Box Quick Start for the Windows and Linux versions of VirtualBox and
Virtual Box On Mac Quick Start for the Mac version.

Please check on the CernVM website that these links are still current.

What you should know already and where to learn it: some pointers

You should already be familiar with the common programming concepts like variables, bounded
and unbounded loops, boolean operators and so on. The specific syntax for these entities in C will
be introduced, but the rationale behind them wonʼt be discussed.

You should also be able to think in an algorithmic way: starting from a problem being able to
reformulate it in terms of an algorithm to be implemented in a computer program.

You need to be able to perform common tasks with Linux (login, file and directory manipulation,
process control and so on), and be able to create and edit a text file, using an editor of your choice.
We will provide additional instructions for specific tasks (e.g. compiling a source file).

We offer the following links for self study, but your favourite search engine can find many more.

For an introduction to Linux check:

http://tldp.org/LDP/intro-linux/html/

For C programming:

http://www.cprogramming.com/tutorial.html

and look for the C Tutorials on this page.

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 6 of 40

http://www.virtualbox.org
http://www.virtualbox.org
http://cernvm.cern.ch/cernvm/index.cgi?page=VirtualBoxQuickStart
http://cernvm.cern.ch/cernvm/index.cgi?page=VirtualBoxQuickStart
http://cernvm.cern.ch/cernvm/index.cgi?page=VirtualBoxOnMacQuickStart
http://cernvm.cern.ch/cernvm/index.cgi?page=VirtualBoxOnMacQuickStart
http://tldp.org/LDP/intro-linux/html/
http://tldp.org/LDP/intro-linux/html/
http://www.cprogramming.com/tutorial.html
http://www.cprogramming.com/tutorial.html

The C Language
"
The C language was created between 1969 and 1972 by Dennis Ritchie while working at Bell

Labs as a member of the ALGOL family of languages (via BCPL and B). It was meant to be a
system implementation language, specifically thought for the implementation of the Unix operating
system but it has been since used extensively as an application language. Well known examples
of applications written in C are Mathematica and MATLAB.

C is a procedural/imperative language (as opposed to C++ which is object oriented), statically
but weakly typed (variables have a type, but this type can change). It is usually compiled from
source code to an executable (more on this later). It is a relatively small language (it has a small
number of reserved keyword) whose more complex features are hosted in external libraries.

For a lot more about the C language and many additional pointers see:

http://en.wikipedia.org/wiki/C_language

Unix and Linux
The Unix operating system was created by a group of programmers working at AT&Tʼs Bell

Labs in 1969. The name Unix (originally Unics, as in ʻsingle userʼ) is a tongue-in-cheek reference
to Multics, an earlier mainframe operating system which ran on much larger machines and
supported multiple ʻtime-sharingʼ users. Unix was developed to run on a minicomputer (originally a
Dec PDP-7).

An important part of the Unix technology is that, after an initial implementation phase, Unix was
rewritten in C (architecture independent language) with minimal ʻcoreʼ elements implemented in
assembly language (which are architecture dependent). Previous operating systems had been
developed in machine/assembly language and were completely architecture-dependent. A new
architecture would then require a full rewrite of the operating system.

The Unix approach made it relatively simple to ʻportʼ Unix to run on different architectures which,
in addition to the Bell Labs policy of freely distributing the Unix source code to whoever asked for
it, made Unix very popular in the academic and business world. This also created a large number
of alternative implementations of Unix running on very different architectures (AIX, HP/UX, Ultrix,
OSF/1, ConvexOS, IRIX and so on).

Fast forward to the early nineties, when the first version of the Linux kernel was released in the
wild and used as the kernel of a fully open version of Unix, with most of the additional software
needed to create an actual distribution coming from the Free Software Foundationʼs GNU project.

Fast forward again to 2010 and youʼll find that Linux is extensively used in the scientific field as
the main operating system for data processing and often also for data acquisition.

Some links about Unix (if you are a beginner, you should really check these):

http://tldp.org/LDP/GNU-Linux-Tools-Summary/html/index.html

For more material about Unix, Linux and so on, see:

http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/GNU_Project

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 7 of 40

http://en.wikipedia.org/wiki/C_language
http://en.wikipedia.org/wiki/C_language
http://tldp.org/LDP/GNU-Linux-Tools-Summary/html/index.html
http://tldp.org/LDP/GNU-Linux-Tools-Summary/html/index.html
http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/GNU_Project
http://en.wikipedia.org/wiki/GNU_Project

Before we start: man pages
As mentioned above the student is supposed to be familiar with Unix/Linux, so this technical

section might feel redundant. We feel itʼs important to briefly describe the Unix man facility, which is
particularly relevant when developing C/Unix code.

The man (short for manual) command allows the user to access the documentation (“man
pages”) for most, if not all, Unix commands and library functions. The man pages are sometimes
substituted with larger documentation accessible via the info command (man info if you want to
know more about this). The man page usually points to the info documentation where available.

In addition to offering support for most commands (although the man page is barely sufficient
for the more advanced tools that Unix provides), all the standard library functions are described. As
an example letʼs get the man page for printf. In a C program, the function printf is used to
produce formatted output. To check its syntax, we can run the command man printf which yields:

PRINTF(1) User Commands PRINTF(1)

NAME
 printf - format and print data

SYNOPSIS
 printf FORMAT [ARGUMENT]...
 printf OPTION

DESCRIPTION
 Print ARGUMENT(s) according to FORMAT.
....

which does not look right, especially since at the top it says ʻUser Commandsʼ and PRINTF(1).
This is because , unless we specify otherwise, man first looks at the ʻUser Commandʼ section (also
known as Section 1), and as it happens there is a system command called printf. With unique
names you would get the correct page, without having to specify the section.

To access function documentation you need to know that man pages are logically divided in

sections (identified by numbers from 1 to 9 or letters) with the correct section number for functions
being 3. Letʼs try again: man 3 printf yields:

PRINTF(3) Linux Programmer’s Manual PRINTF(3)

NAME
 printf, fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf,
 vsnprintf - formatted output conversion

SYNOPSIS
 #include <stdio.h>

 int printf(const char *format, ...);
....

which instead describes the C function printf (and many more similar ones). The heading
“Linux Programmerʼs Manual” also indicates that we are looking at the correct documentation.

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 8 of 40

For a lot more about man and man pages, including the section numbers on various versions of
Unix, take a look at http://en.wikipedia.org/wiki/Man_page.

man man also provides an useful reading. An important feature is the -k switch that implements
a simple man page search facility. Say you are looking for the C compiler and donʼt remember the
command name: you could try running man -k compiler which yields:

....
g77 (1) - GNU project Fortran 77 compiler
gcc (1) - GNU project C and C++ compiler
gcc (rpm) - Various compilers (C, C++, Objective-C, Java, ...)
gcc [g++] (1) - GNU project C and C++ compiler
....

Each line contains the program name, the man page section and a brief one-line description of
the command/function.

Before we start: printf
We will be using printf to perform screen output and see the result of most of our program.

The function printf is a member of the standard C library together with a large number of other
output functions. To use printf you need to #include stdio.h. All the members of the printf
family share the same logical approach: they format their output via a very simply string description
language. This is the syntax of printf:

printf(“format string”, arg1, arg2, ...);
Syntax of printf

Printf is a slightly uncommon function since it can have a variable number of arguments.
Functions that can take a variable number of arguments are called variadic1.

An example of printf use is:

printf(“This is the output string: a number: %d, a character: %c\n”, 42, ‘a’);

This prints:

This is the output string: a number: 42, a character: a

The output string contains special metacharacters, introduced by the % symbol, that describe
what goes into that specific position. %d indicates an integer number, %c a character and so on.

 Further format specifications can be added, like number field length, justification and so on.
The replacement is purely positional: the first metacharacter is replaced with the first argument
following the format string, the second with the second and so on. C will try to convert the
argument into the correct type, but it might fail and create unpredictable results. Be sure to use the
correct metacharacter for what you want displayed. Also note that the number of arguments must
be equal to the number of metacharacters, or you will get an error.

Other metacharacters are used for output string formatting, like \n which indicates a newline.

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 9 of 40
1 http://en.wikipedia.org/wiki/Variadic_function

http://en.wikipedia.org/wiki/Man_page
http://en.wikipedia.org/wiki/Man_page
http://en.wikipedia.org/wiki/Variadic_function
http://en.wikipedia.org/wiki/Variadic_function

For a full description of printf, the metacharacters and the formatting options see man 3
printf or http://en.wikipedia.org/wiki/Printf.

Lifecycle of a program: from source to executable
We start our overview of C programming by describing the full lifecycle of a program. First we

write a very simple program. Tradition calls for this program to simply print the message “Hello,
World!” upon execution. The source code is:

#include <stdio.h>

int main(int argc, const char * argv[]) {
 printf("Hello, World!\n");
 return 0;
}

hello_world.c

Thereʼs no need to worry right now about how the program works. Just type the code in your
favourite editor (or simply cut-and-paste) and save it in a file called hello_world.c.

The process of turning a source code into an executable (that is: a program that can be run) is
called compilation. Compilation, for C, is a multi-step process containing the following steps:
preprocessing, compilation to an object file and linking. Different compilers can alter these steps
(e.g. there might be two steps in the compilation phase), but this is usually transparent to the user.

Note that even though this time we will look at each step of the compilation process in detail,
running them one-by-one, this is not necessary as the standard compilation command runs all the
step implicitly producing an executable directly from a source file. Also, in general when dealing
with more complex programs (which often contain tens of thousands or more of source files) the
compilation steps are performed by other programs (like make or cmt) which are used to automate
complex compilation processes.

Preprocessing

The preprocessing step takes care of converting preprocessor directives (the instructions which
start with a # character) into C code. Preprocessor directives can be used to include header files
(#include), define symbols (#define) and a large number of other tasks. We will address the most
common usage of these directives later on, but advanced features like macros will be completely
left out.

The preprocessing step is performed by the cpp command (short for C pre-processor). Running
cpp hello_world.c produces a lot of output:

1 "hello_world.c"
1 "<built-in>"
1 "<command line>"
1 "hello_world.c"
1 "/usr/include/stdio.h" 1 3 4
28 "/usr/include/stdio.h" 3 4
1 "/usr/include/features.h" 1 3 4
....

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 10 of 40

http://en.wikipedia.org/wiki/Printf
http://en.wikipedia.org/wiki/Printf

This code contains the original code from our file plus a lot of additional code generated by
processing the #include <stdio.h> directive. Very rarely it might be necessary to examine the
result of the preprocessing by hand to solve some peculiarly complex error, but most of the time
this step is completely transparent. The output of this step is still source code.

The preprocessor can also be invoked from gcc using the -E command switch.

Compilation

This step transforms the C code into assembler code, which is a direct representation of CPU
instructions in some form of mnemonic code. The output of this step is a .s file containing the
assembler source code.

The compiler step is be invoked using the -S switch: gcc -S hello_world.c generates
hello_world.s. An excerpt of the content of hello_world.s is:

 .file "hello_world.c"
 .section .rodata
.LC0:
 .string "Hello, World!"
 .text
.globl main
 .type main, @function
main:
.LFB2:
 pushq %rbp
.LCFI0:
 movq %rsp, %rbp
....

Assembler

This step compiles the assembler source code into an object file. An object file contains code
that has been transformed (“compiled”) into an executable representation, but lacks the hooks to
connect to system libraries. Usually object files have a .o extension and are binaries (not text).

The assembler step of the C compiler is invoked via the gcc command, and using the -c switch
it does not perform the link step giving us just the object file. Running gcc -c hello_world.c
produces hello_world.o.

Linux also provides a standalone assembler as which can be used to compile assembler code
directly: man as if youʼre interested.

Link

The link step ̒ connectsʼ the object file to the operating system libraries, thus transforming it into
an executable. This step is performed by a linker, which on Linux is called ld. Invoking ld by hand
is extremely delicate and complex, requiring detailed knowledge about the version of the compiler,
the operating system and other details. Luckily gcc can do this work for us, and link our object file
into an executable. This step is performed using the -o switch followed by the name we want to
give to the executable: gcc -o hello_world hello_world.o links hello_world.o producing the
executable hello_world.

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 11 of 40

Letʼs look at the steps weʼve performed so far and the result in the printout of a session:

~> ls -l
-rw-r--r-- 1 safai zp 107 Dec 11 15:10 hello_world.c
~> gcc -S hello_world.c
~> ls -l
-rw-r--r-- 1 safai zp 107 Dec 11 15:10 hello_world.c
-rw-r--r-- 1 safai zp 949 Dec 11 15:10 hello_world.s
~> gcc -c hello_world.s
~> ls -l
-rw-r--r-- 1 safai zp 107 Dec 11 15:10 hello_world.c
-rw-r--r-- 1 safai zp 949 Dec 11 15:10 hello_world.s
-rw-r--r-- 1 safai zp 1512 Dec 11 15:10 hello_world.o
~> gcc -o hello_world hello_world.o
~> ls -l
-rwxr-xr-x 1 safai zp 6725 Dec 11 15:10 hello_world
-rw-r--r-- 1 safai zp 107 Dec 11 15:10 hello_world.c
-rw-r--r-- 1 safai zp 949 Dec 11 15:10 hello_world.s
-rw-r--r-- 1 safai zp 1512 Dec 11 15:10 hello_world.o
~> ./hello_world
Hello, World!

How to compile for real

As mentioned above, there is a way to invoke gcc which performs all of the above steps
transparently, going from source code to executable using a single command.

We start from hello_world.c and issue the command gcc -o hello_world hello_world.c.
This will produce the hello_world executable with a single command execution.

An important caveat: gcc -o hello_world.c hello_world.c will compile the source program
hello_world.c into an executable program hello_world.c overwriting your original source
code. No warnings, no ifs, no buts. You have been warned.

For a more detailed look at the entire compilation process, with (a lot) more information about
the details see:

 http://www.lisha.ufsc.br/teaching/os/exercise/hello.html

The structure of a C program
A C program is simply a set of instructions that are executed in sequence. Program execution

starts with the ʻfirstʼ instruction and end with the last.

C program execution always starts at a special entry point known as the main function. The
instructions in the main function are executed first to last, transferring control of the execution flow
as needed (typically during a function invocation). If a program finishes correctly (that is: it does not
crash due to an error or unforeseen problem) the last instruction to be executed is the return
instruction at the end of the main.

Letʼs look again at hello_world.c and discuss the various parts of the code:

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 12 of 40

http://www.lisha.ufsc.br/teaching/os/exercise/hello.html
http://www.lisha.ufsc.br/teaching/os/exercise/hello.html

#include <stdio.h>

int main(int argc, const char * argv[]) {
 printf("Hello, World!\n");
 return 0;
}

The first line is a preprocessor directive, instructing gcc to load the content of the file stdio.h.
Somewhere in your system, there is a text file named stdio.h (a common place for this is /usr/
include). This kind of file is known as a header file and contains a list of function and symbols that
are used to perform screen oriented I/O. Directives can be interspersed throughout the code as
needed, although #includes and #defines are usually located at the beginning of source files.

Next there is the program entry point: the main function. We will worry about how to define a
function and the meaning of all the elements on this line at a later time. For now, itʼs simply the way
we define the main function. Note that at the end of the line there is a { character, which is
matched by a } at the end of the code. The curly brackets { and } indicate respectively the
beginning and the end of the body of a function. The instructions contained between the { and
the } describe what the function does.

The group of instructions contained between curly brackets is also known as a code block and
is logically equivalent to a single instructions, that is to say that wherever I can put a single
instruction, I can alternatively put a group of instructions grouped between curly brackets.

Now we are inside the body of the main function, that in this specific case contains two
instructions: a call to the printf function and a return 0 instruction. All instructions in C are
closed with a semicolon (;), so the line printf("Hello, World!\n"); is an instruction and the
line return 0; is another.

The end of the hello_world.c file informs the compiler that thereʼs nothing more to do for this
program.

Large C programs are usually organized in a number of source (.c) files which are referenced
via their associated header files (.h). The code is logically organized in smaller, more manageable
units (modular programming) which in C take the shape of functions. Each function can, in turn,
transfer control to other functions (like the main function invoking the printf function) once it finishes
its work or simply return control to the calling function.

A first approximation to the philosophy of software development (and software engineering in
general) is: the developer has to decide how to break down the problem in logical ʻunitsʼ which can
then be mapped onto language entities (functions, objects, ...). The design needs to address the
problemʼs complexity while at the same time producing code that is correct and easily
manageable.

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 13 of 40

The elements of C
We are now going to look at the syntax of C.

Comments

Comments in C code are obtained by surrounding test between /* and */ like this:

/* This is a comment */
Comment syntax

All the text between /* and */ is ignored by the compiler.

Some preprocessor directives

We have already met one of the most common preprocessor directive #include which is used
to import a header file into the current file. Importing a header file allows us to use library functions
and in general modularize our code.

The syntax is #include <library.h> or #include “library.h”. There is an important
difference between the two forms:

#include <lib.h> /* look for lib.h in the default system include directory */
#include “lib.h” /* look for lib.h in the current directory */

#include syntax

It is also possible to specify an explicit path (partial or full) in the #include directive.

The #define directive associates a symbol to a value. During the preprocessing phase the
symbol is replaced by the value in the code. The syntax is:

#define SYMBOL value
#define syntax

Another useful directive is the one used for conditional compilation:

#ifdef SYMBOL
<lines to compile if SYMBOL is defined>
#else
<lines to compile if SYMBOL is undefined>
#endif

#ifdef syntax

The lines between #ifdef and #else are used if SYMBOL is defined, while the lines between
#else and #endif are used otherwise. This process happens before the compilation, in the
preprocessing step hence the compiler simply ignores the unselected code. SYMBOL is usually
provided on the command line that was used to invoke the compiler via the -D gcc switch.

Variables and variable types

In programs it is usually necessary to create ʻspacesʼ that we can store the logical entities that
we need to implement our algorithm. These ʻspacesʼ, called variables since their value can change

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 14 of 40

throughout the execution of our program, have three (four really, but weʼll get back to that later)
important properties:

• a name: a sequence of number and characters used to identify it
• a type: a language specifier used to indicate what kind of entity can be stored in the space
• a value: the entity stored in the space

Letʼs look at an example:

int a = 21;
int b = a + 21;

The first ʻspaceʼ is named a and we tell the compiler that we want to store integer numbers in
it. Using the = operator, we fill the a space with the number 21. Next we create a new ̒ spaceʼ, call it
b and then use it to store a + 21. This tells us that the ʻspaceʼ named a is simply a placeholder for
its value. A more common way to do this in an actual C function would be:

int a, b;
a = 21;
b = a + 21;

This time we have split the variable declaration, that is the place where we associate a name
with a type, from its initialization, that is the place where we associate the name with a value. The
first line declares a and b as variables of type int. The next line initializes a with 21, and the third
line initializes b to the value of a + 21. As usual the semicolon closes all the instructions.

Note that C requires that all variable declaration are placed at the very beginning of a function
body.

The variable type tells the compiler what kind of entity we plan on storing in the variable, so that
the compiler can complain when we try to store the wrong kind of entity. C is a relatively easy going
language (more formally: C is weakly typed, it has types but it can quietly convert one type into
another to complete a computation without complaining), so it actually allows us to freely mix types
in our operations as long as that makes sense.

It is also possible to explicitly specify that we want the content of a variable to be seen as one of
a different type via an operation called a cast (as in: we cast an integer variable to a char). This is
often necessary for complex memory manipulations and will be addressed in detail at a later time
when weʼll talk about memory management and pointers. A simple example is still needed here to
talk about a peculiar (as in: different from expected) behavior of C: the integer division.

Letʼs write a bit of code:

#include <stdio.h>

int main(int argc, const char * argv[]) {
	 int a = 1;
	 printf("1/2 = %f\n", a/2);
	 return 0;
}

integer_division.c

Compiling and running this program produces this output:

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 15 of 40

1/2 = 0.000000

which does not look correct. Whatʼs happening? C has found a division between two integers
and it treats it as an integer division, resulting in 0. Intuitively we would expect to get 0.5, but to get
that we need to explicitly tell C to consider this a real division. This can be done by changing the
division to:

	 printf("1/2 = %f\n", a/2.);

The . after the 2 indicates that the constant 2. is float rather than integer (this is an implicit
cast), hence triggering a real division. Another alternative is via an explicit cast, that is telling C that
even though a has been defined of type int, we really want it to be used as a float:

	 printf("1/2 = %f\n", (float)a/2);

The cast approach is more general, especially when you donʼt have any numeric constant in
your calculation to perform an implicit cast.

Now letʼs briefly look at the most common default data type that C offers:

• char, short, int, long, long long: these all represent an integer number.
The main difference between these is the range, that is the minimum and maximum number

that can be stored in a variable of this type. A char is 8 bit long, hence it can store numbers
between -127 and 128 (or 0 to 255 if unsigned), a short is 16 bit long so it can store a number
between -32767 and 32768 (or 0 to 65535 if unsigned) and so on.

• float, double, long double: these all represent a floating point number

As for integer types, the main difference is in the bit length, hence in the range and precision of
the number which can be stored in a variable of such type. All these types can also be specified as
unsigned to indicate that the values stored in them are always positive.

A char variable can also represent a character constant, via the ASCII code of the character, like
this:

char f = ‘F’;

The f variable now contains 70 which is the ASCII code of the letter F.

C also supports other variable types and more complex structures, but we wonʼt deal with those.
The Wikipedia page for the C syntax contains a lot more details about the supported data types:

http://en.wikipedia.org/wiki/C_syntax

and with further details:

http://en.wikipedia.org/wiki/C_variable_types_and_declarations

including the ranges for the various data types.

Anybody who deals with numerical computing should also take a look at ʻWhat Every Scientist
Should Know About Floating-Point Arithmeticʼ:

http://docs.sun.com/app/docs/doc/800-7895/.

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 16 of 40

http://en.wikipedia.org/wiki/C_syntax
http://en.wikipedia.org/wiki/C_syntax
http://en.wikipedia.org/wiki/C_variable_types_and_declarations
http://en.wikipedia.org/wiki/C_variable_types_and_declarations
http://docs.sun.com/app/docs/doc/800-7895/
http://docs.sun.com/app/docs/doc/800-7895/

Arrays

It is often necessary to work with collections of variables of the same type (like all the values
from a specific measurement). To do that, C provides the array data structure. An array is a
collection of ʻspacesʼ all of the same type, indexed via an integer number and of predefined length.
An array is defined like an ordinary variable, but with the added specification of the array size
appended after the variable name, like this:

int distance[256];

The variable distance is now an array of integers, that is a collection of 256 ints. Accessing
an element of an array is done via the [..] operator, like this:

distance[128] = 345;
distance[129] = distance[128] + 1;

These command set the 129th element of the distance array to 345, and the 130th to 346.

Array indexes are 0-based, so the first element of distance is distance[0] and the last one is
distance[255]. Trying to access distance[256] (or larger indexes) will cause your program to
crash with a ʻSegmentation Faultʼ error.

The array size is defined at declaration time and cannot be changed if a larger array is needed,
hence itʼs common when doing defensive programming to specify the array size via a #define:

#define SAMPLES 44100
...
float sample[SAMPLES];
...

"
So if at a later time we need to raise the number of our samples to 96000, we wonʼt need to

modify the code, but only change the #define-d value. This works even better if we are consistent
in our use of #define-d symbols. More on this later. Also a lot more about arrays will be said when
we talk about memory management and pointers.

Structs

It is often useful to logically organize simple types into more complex ones to simplify code. C
offers the possibility of creating data structures (structs) to group entities. In addition to structs,
C provides also unions and bitfields, that we will not address. You can find some information
about them in the Wikipedia C syntax page, and a lot more can be found with your favourite search
engine.

A struct is a collection of simple data type. Letʼs define a sample entity containing an integer
value (the sample index), and two float values: the sample value and the sample error:

struct sample_s {
	 int index;
	 float value;
	 float error;
} aSample;

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 17 of 40

This code defines a structure named sample_s containing three fields: index (int), value and
error (float). It also defines a variable of type sample_s called aSample. To access the fields we
can use the name.field_name syntax:

aSample.index = 255;
aSample.value = 3.14;
aSample.error = 0.03;
float maxValue = aSample.value + aSample.error;

To create new variables of type sample_s we need to inform the compiler that sample_s is a
struct by writing:

struct sample_s anotherSample;

We can also use the typedef facility of C, which creates new datatypes, and change our
original definition to:

typedef struct sample_s {
	 int index;
	 float value;
	 float error;
} sampleType;

Now we will be able create new variables of type sampleType directly.

Flow control

Now we know how to create spaces to store values, and how to name and organize them, so
itʼs time we move to control the program flow. The flow of a program is usually controlled via tests:

• if condition_is_true do_this otherwise do_that

bounded iteration

• do this this many times

or unbounded iteration

• do this until this condition is true/false/...

Tests and logical operators

Tests in C are introduced by the keyword if followed by a predicate (a logical condition that can
be true or false), a code block to be executed if the predicate is true (the then clause) and,
optionally, the keyword else followed by a code block to be executed otherwise (the else clause):

if (predicate) {
	 do this if predicate is true;
} else {
	 do this if predicate is false;
}

if keyword syntax

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 18 of 40

Letʼs look at some real code:

#include <stdio.h>

int main(int argc, const char * argv[]) {
	 int a = 42;
	 int b = 21;
	 if (a>b) printf(“a is greater than b\n”);
	 else {
	 	 printf(“b was greater than a ... but not anymore!\n”);
	 	 a = b+1;
	 }
	 return 0;
}

if_test.c

The predicate a>b is true, so the instruction printf(“a is greater than b\n”) is executed.
Note how in the body of the else we have specified two instructions, so we had to surround them
with curly brackets to turn them into a code block, while the then clause contained only one
instruction so it did not need curly brackets.

Operators which take a single argument are called unary operators and operators that take two
arguments (like +, -, ...) are called binary operators.

All the common math comparison operators are supported as in the following list:

• > greater than
• < lesser than
• >= greater or equal
• <= lesser or equal
• == equal (beware of the double =, a single = works but does something completely different!)
• != not equal

In addition to these there are the logical operators which are used to create more complex

boolean conditions:

• c1 && c2 (and): true is both c1 and c2 are both true2

• c1 || c2 (or): true if at least one of c1 or c2 is true
• !c1: negates its argument: true if c1 is false, and vice versa

C has a special form of if for assignments called the ternary operator:

aVariable = condition?value_if_true:value_if_false;

the value stored in aVariable depends on the condition. If condition is true then aVariable will
contain value_it_true, while it will get value_if_false otherwise.

For a lot more about C operators (including the bitwise ones and notes on the operator
precedence) see:

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 19 of 40

2 Trueness in C: C does not have a dedicated entity/datatype for the logical True/False, hence anything that
is not zero/NULL is true, zero/NULL is always false.

http://en.wikipedia.org/wiki/Operators_in_C_and_C++.

It is also possible to use the switch statement to select between different possibilities. See the
C syntax page for a description of switch.

Iteration

Bounded iteration in C is implemented via the for keyword. The syntax for for is:

for(initialization; continue_iteration_predicate; increment) {
	 instructions_to_repeat;
}

for keyword syntax

The initialization clause sets the loop index to its initial value, the increment clause specifies
how the loop index should be increased while the predicate is a logical condition that causes the
loop to continue until it becomes false.

In practice:

#include <stdio.h>

int main(int argc, const char * argv[]) {
	 int index;
	 for (index=0; index<10; index=index+1) {
	 	 printf("Index is at %d\n", index);
	 }
	 return 0;
}

count_to_ten.c

The integer index variable is initialized to 0 and the beginning of the loop, at each step of the
loop the index variable is increased by one and the loop is repeated as long as index is less than
ten. The value of the increment, and more in general, the increment technique can vary widely.

A few additional notes:

• the operation index=index+1 means: take the value of index, add one to it and replace it as
the new value of index. Mathematically incorrect, but it makes perfect sense in the context of
programming.
• since operations like index=index+increment are very common, C supports the augmented

assignment operators +=, -=, *= and so on. So instead of writing index=index+increment, we
can write index+=increment. See:

http://en.wikipedia.org/wiki/Augmented_assignment

• the self-increment-by-one (and decrement) operation is so common that it has its own special
dedicated operators: ++ and --. So index=index+1 can be written as index++ or ++index.
• the self-increment and self-decrement operators can be used prefix or postfix with a slightly

different meaning. The underlying idea is when the increment actually happens: with the prefix
operator first you use the value then you increment, while with the postfix operator itʼs vice versa.
Look for the prefix_postfix_increment.c example a little later in the text.

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 20 of 40

http://en.wikipedia.org/wiki/Operators_in_C_and_C++
http://en.wikipedia.org/wiki/Operators_in_C_and_C++
http://en.wikipedia.org/wiki/Augmented_assignment
http://en.wikipedia.org/wiki/Augmented_assignment

Unbounded iteration is implemented via two different constructs: the while statement and the
do ... while statements. Both take a logical condition as argument and keep repeating their
associated code block while the associated logical condition remains true. The syntax is:

while (condition) {
	 instructions;
}

while keyword syntax

do {
	 instructions;
} while (condition);

do ... while keyword syntax

The main difference between the two keywords is that the while body might never be executed
if the condition is found to be false at the beginning of the while, while the do ... while body
gets executed at least once.

Unless we are trying to produce an infinite loop, something within the while / do ... while
body should modify the variables involved in the logical condition. In code:

#include <stdio.h>

int main(int argc, const char * argv[]) {
 int index=0;
 while (index<10) {
	 	 printf("index: %d\n", index);
	 	 index++;
 }
 return 0;
}

upTo10.c

The value of index is modified within the loop, so the while loop finishes when its value hits ten.

Functions

The logical unit to modularize the C code is the function. We have already met two functions:
main and printf. From a logical standpoint we can see a function as a black box: an entity that
accepts some arguments and returns a value. We donʼt really need to know that happens within
the function body to use it. We know that printf accepts arguments and its effects is to print its
arguments on the terminal console. There is no need for us to discover how that actually happens,
or even if printf does the actual job or simply delegates it to some other function.

Just like with printf, we would like to be able to write our code organizing it in functions that
we will simply invoke when we need them to do their work.

A function is identified by four elements:
• its name
• its return type
• its argument list (also known as the function signature or interface)
• its body

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 21 of 40

The syntax for a function definition is:

return_type function_name(arg1, arg2, ...) {
	 function_body;
	 return value_to_return;
}

function definition syntax
"
Letʼs define a simple function that calculates the sum of three numbers:

#include <stdio.h>

float sum3(float v1, float v2, float v3) {
	 float tmp = v1+v2+v3;
	 return tmp;
}

int main(int argc, const char * argv[]) {
	 float rv = sum3(1.41, 2.73, 3.14);
	 printf("sum3: %f\n", rv);
 return 0;
}

sum3.c

The function sum3 takes three float arguments (locally called v1, v2 and v3) and sums them,
returning their sum. The correspondence between the formal arguments and the value in the
invocation is positional: v1 takes the value 1.41, v2 takes 2.73 and v3 takes 3.14.

The return keyword “returns” the value, which is then taken to be ʻthe value of the functionʼ.
From this standpoint C functions behave like their mathematical counterparts: y = f(x), y takes
the value of f calculated in x.

Is is legal to invoke a function and ignore its return value (like with printf). It is also possible to
define a function that does not return a value by indicating its return type as void.

In general, before using a function, the C compiler needs to be able to see its definition. This
might create a problem when using library functions, whose code is usually not immediately
available. This is solved by including in the source code the function prototypes which are forward
declarations that inform the compiler about the return value and the signature of a function before
you use it.

It is not actually necessary for the compiler to see the function code until your program runs.
This is the idea underlying libraries. Libraries are collections of precompiled functions that your
program can use (printf is an example of this). To use printf in your program you just need to
declare its prototype somewhere and then, at link time (static library) or at run time (dynamic
library) the actual code will be pulled in. Libraries are usually provided with special files containing
the prototypes for the library functions in the form of header/include files. So what we are really
doing with the line #include <stdio.h> at the beginning of our code is pulling in the function
prototypes for the I/O oriented functions of the standard (std) library. We can also create our own
libraries and header files for our own private libraries as weʼll demonstrate later on.

Now we can go back to the issue of the prefix/postfix self-increment/decrement operator. Letʼs
repeat what was said when we introduced them:

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 22 of 40

• The underlying idea is when the increment actually happens: with the prefix operator first you
use the value then you increment, while with the postfix operator itʼs vice versa

To display this behavior clearly we implement a simple function (pp) that prints out its numeric
argument and then invoke it once with prefix self-increment and once with postfix self-increment:

#include <stdio.h>

void pp(int datum) {
	 printf("%d", datum);
}

int main(int argc, const char * argv[]) {
 int index,i2;
 for (index=0; index<10; index++) {
	 	 i2 = index;
	 	 printf("index: %d -- pp(index++): ", index);
	 	 pp(i2++);
	 	 i2 = index;
	 	 printf(" -- pp(++index): ");
	 	 pp(++i2);
	 	 printf("\n");
 }
 return 0;
}

prefix_postfix.c

Compile and run this program and you can see the different effect of the prefix and postfix self-
increment operators. This works because the increment happens before function invocation (with
the prefix notation) or after function invocation (with the postfix notation). The consequence is that
the function receives the value of i2 already incremented (prefix) or not yet incremented (postfix).

Recursive functions

It is sometimes useful to define functions in terms of themselves, that is define a function that
performs its work by doing some operations and then calling itself again. This is called recursion.
The default example of this is the factorial function:

x! = 1 * 2 * ... * x

The only detail we need to be careful about is that the computation needs to finish, otherwise
we will create an endless loop that will cause our program to crash (the precise reason why it
crashes will be explained later on). Letʼs implement the factorial function in an iterative and in a
recursive fashion:

#include <stdio.h>

int recursive_factorial(int num) {
	 if(num==1) return 1;
	 return num * recursive_factorial(num-1);
}

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 23 of 40

int iterative_factorial(int num) {
	 int i, result=1;
	 for (i=num; i>1; i--) result *= i;
	 return result;
}

int main(int argc, const char * argv[]) {
	 printf("Iterative 6! :%d\n", iterative_factorial(6));
	 printf("Recursive 6! :%d\n", recursive_factorial(6));
 return 0;
}

factorial.c

In both algorithm we have used backward iteration, going from num to 1. This makes the
recursive approach somewhat simpler. The following exercise will help you analyze the
advantages and disadvantages of the two approaches:

Exercise 1. Factorial
Rewrite both the iterative and recursive factorial functions using forward counting (from 1 to num).

For the next exercise, you will need to know about Fibonacci numbers. If youʼre not familiar with
them, be sure to read this:

http://en.wikipedia.org/wiki/Fibonacci_number

Exercise 2. Fibonacci numbers
The formula to calculate the n-th Fibonacci number Fn is:

Fn = Fn-1 + Fn-2
F0 = F1 = 1

Write a program containing two functions (one iterative and one recursive) which take n as
arguments and return Fn.

Function prototypes and headers

We have already mentioned and used header/include files, mainly in the context of system
libraries. A large program will use many system libraries, but it will also create some of its own so
you should be able to correctly create and use header files.

Letʼs create and compile a program, splitting some of its functionalities into a library/header file.
To do that we recover the factorial.c program and factor out its functionalities. First we factor
out the factorial functions to a file:

#include "fact_lib.h"

int recursive_factorial(int num) {
 if(num==1) return 1;
 return num * recursive_factorial(num-1);
}

int iterative_factorial(int num) {

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 24 of 40

http://en.wikipedia.org/wiki/Fibonacci_number
http://en.wikipedia.org/wiki/Fibonacci_number

 int i, result=1;
 for (i=num; i>1; i--) result *= i;
 return result;
}

fact_lib.c

Next we need to create the header file for this code. The header file contains simply the
prototype of the functions in fact_lib.c:

int recursive_factorial(int);
int iterative_factorial(int);

fact_lib.h

Note how the function prototype simply needs to specify the types but not the names of the
formal parameters. It is also legal to specify the name, but it is useless.

Now letʼs create another function to print out the result of the evaluation of 6!:

#include "print_lib.h"

void calc_fact_6() {
	 printf("Iterative 6! :%d\n", iterative_factorial(6));
	 printf("Recursive 6! :%d\n", recursive_factorial(6));
 }

print_lib.c

and its associated header file:

#include <stdio.h>
#include "fact_lib.h"

void calc_fact_6();
print_lib.h

Finally, letʼs create the main program:

#include <stdio.h>
#include "fact_lib.h"
#include "print_lib.h"

int main (int argc, const char * argv[]) {
	 calc_fact_6();
	 return 0;
}

fact6.c

Before we analyze the code, letʼs see how we have to compile this program. The ʻlibʼ files
cannot be compiled to an executable on their own, since they lack a main function. What we do is
compile them to object files:

~> gcc -c fact_lib.c print_lib.c
~> ls -la *lib.o

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 25 of 40

-rw-r--r-- 1 safai zp 1528 Dec 18 18:16 fact_lib.o
-rw-r--r-- 1 safai zp 1744 Dec 18 18:16 print_lib.o

Now we just need to link them into our main executable. To do that, we inform gcc that we want
to use them:

~> gcc -o fact6 fact6.c print_lib.o fact_lib.o

So we have produced the fact6 executable, which contains and uses the ʻlibraryʼ functions
recursive_factorial, iterative_factorial and calc_fact_6.

The library infrastructure is completely described by the interplay between include files and
include directives. Note how each ʻlibraryʼ #includes its own header: this is to ensure that header
and implementation are in sync with regards to function signatures. The compiler would in fact
signal an error if we were to try to create a function with the wrong signature. Next we should note
that to use a function from a library, we need its prototype. So, to use calc_fact_6, we need to
include print_lib.h, which in turn includes the headers for the functions that are used within
print_lib.c.

Also note how to include headers that are in the current directory we have surrounded the
header name with double quotes rather than brackets:

#include “fact_lib.h”

instead of

#include <stdio.h>

As a side note, headers tend to contain a lot more stuff when writing C++ code. Sometimes this
is described as: headers contain interface code and source files contain implementation code. This
will be a lot more interesting when you will learn some C++.

Letʼs suppose that we now want to distribute our library, without distributing the source code.
We can simply hand over to other developers the object files (organized in some way) and the
relevant header files. That is all other developers need to use our code. Collections of function
objects can also be organized in special files known as static or dynamic libraries, which then can
be linked against your executables. The main difference between a static library and a dynamic
library is when the library is ʻconnectedʼ to the program.

 With a static library the connection between the executable and the library happens at link time,
creating what is called a monolithic executable. A monolithic executable contains its entire
environment within the executable file and does not need any additional file to run. While this might
seem desirable the shortcomings are the big (sometimes very big) file sizes of the executable
which cause large load times and in general make the program more difficult to transfer between
machines.

The alternative is a dynamic (or, in Unix speak, shared objects) library: is this case external
functions are loaded at run time ʻas neededʼ. The executable is much smaller since it does not
need to contain all of the code that is used, but it has a strong dependency on the operating
system environment. This also diminishes code replication, since programs share a single copy of
the library code, without needing to include one within their own executable.

Another widely used name for dynamic libraries is DLL, dynamic link libraries. Programs
depending on dynamic libraries are, by far, the most common on a modern Unix/Linux system.

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 26 of 40

The creation of static and dynamic libraries is vastly outside the scope of the present document,
but the interested reader can check:

http://en.wikipedia.org/wiki/Library_(computing)
http://en.wikipedia.org/wiki/Static_library
http://en.wikipedia.org/wiki/Dynamic_loading
http://tldp.org/HOWTO/Program-Library-HOWTO/index.html
http://www.yolinux.com/TUTORIALS/LibraryArchives-StaticAndDynamic.html
http://www.adp-gmbh.ch/cpp/gcc/create_lib.html

Exercise 3. Unit conversion library
For this exercise you will implement a set of unit conversion library. You can find the conversion
factors and algorithms online.

Start with a library to convert centimeters to inches, meters to feet and vice versa, then add miles
to kilometers. Add as many as you want.

Now create another library to convert weights, and implement the conversion between kilograms
and pounds. Add as many as you want.

Now create a library to convert between different temperature scales, Celsius to Fahrenheit and
vice versa, Celsius to Kelvin, Kelvin to Fahrenheit and so on.

Create a test program to use these libraries and print various conversions. Check that the result
are correct.
Now, unless youʼve done some design in advance, you will find yourself with a lot of functions
which do exactly the same thing (more or less).

Would it be possible to rewrite your conversion libraries to minimize code repetition, maybe by
implementing some utility functions in a special dedicated library? (Utility functions are functions
which solve a specific problem in a more general way).

Rewrite your libraries to maximize code reuse. Is it simpler now to add new conversions? Discuss
your solution.

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 27 of 40

http://en.wikipedia.org/wiki/Library_(computing
http://en.wikipedia.org/wiki/Library_(computing
http://en.wikipedia.org/wiki/Static_library
http://en.wikipedia.org/wiki/Static_library
http://en.wikipedia.org/wiki/Dynamic_loading
http://en.wikipedia.org/wiki/Dynamic_loading
http://tldp.org/HOWTO/Program-Library-HOWTO/index.html
http://tldp.org/HOWTO/Program-Library-HOWTO/index.html
http://www.yolinux.com/TUTORIALS/LibraryArchives-StaticAndDynamic.html
http://www.yolinux.com/TUTORIALS/LibraryArchives-StaticAndDynamic.html
http://www.adp-gmbh.ch/cpp/gcc/create_lib.html
http://www.adp-gmbh.ch/cpp/gcc/create_lib.html

Unix programming
In this section we will provide some basic information regarding programming in the Unix

environment. Due to the limited amount of space, most of the material is meant to be informative
rather than technical. Pointers will be provided to more technical documentation.

Before reading on, you should read the Wikipedia page about the Unix architecture:

http://en.wikipedia.org/wiki/Unix_architecture

Tools, pipes and default I/O streams

When developing software, and in general working with Unix, you will often be working with the
command line (in a shell). Unix provides a large number of utility applications, most of which follow
the so called ʻtool philosophyʼ: rather than implementing large applications for generic tasks, it is
preferable to implement small, very specialized applications (ʻtoolsʼ) for specific tasks (check the
yes application for an extreme example of this). These applications can then be ʻconnectedʼ in a
ʻtool chainʼ at the command line to perform more complex tasks via pipes and redirection.

An example will help clarify this approach. To understand what follows you need to know that ls
lists the content of a directory, grep selects text lines in its arguments (which can be files or
streams) conforming to a specific pattern, and wc counts characters, letters or words. Reading the
man pages for ls, grep and wc provides more details, especially for grep which is a very powerful
command.

Letʼs count the number of subdirectories contained in the current directory:

ls -la | grep ^d | wc -l

How does this work? Each tool has three standard channels (streams) that it offers: stdin,
stdout and stderr. A tool should read its input from stdin, print its regular output to stdout and
its error messages to stderr. Each stream is directly accessible via redirection (check the
documentation for the shell you are using if you donʼt know about redirection) and via pipes. The |
character is called pipe and provides the service of connecting the stdout stream of the
application on its left to the stdin stream of the application on its right.

So, rereading the command above: ls -la prints out the complete list of files in a directory to
its stdout. If the stdout is not piped into another application, the output gets printed to your
terminal window. This time we have plugged it into grepʼs stdin. So grep ʻreadsʼ the data stream
from ls, filters is by selecting all the strings that start with ʻdʼ and prints them to its stdout3. grepʼs
stdout is piped into wcʼs stdin which is instructed by the -l switch to just count lines. wc then
prints to its stdout the number of lines it counted and this number ends up on your screen.

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 28 of 40

3 The ^d in grep is a regular expression (regex), where ^ indicates the beginning of a string and d is simply
the letter d, so this means “all the strings that begin with d”. Regular expressions are very powerful and
useful so you should probably spend some time learning how to build and use them. The main shortcoming
is that different languages format their regexes differently so that will require additional work. A good starting
point can be found on Wikipedia: http://en.wikipedia.org/wiki/Regular_expression

http://en.wikipedia.org/wiki/Unix_architecture
http://en.wikipedia.org/wiki/Unix_architecture
http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_expression

ls -la

stderr

stdout
grep ^d

stderr

stdout
stdin

wc -l

stderr

stdout
stdin||

You might wonder why there is not stdin stream in ls. While it is common for tools to
implement and consistently use all three streams it is by no means mandatory. Some applications
simply cannot take ʻinputʼ from other applications. More unpleasant are applications which use
non-standard output techniques, hence their output cannot be filtered, redirected and in general
manipulated. Luckily they are very uncommon. When developing software, you should always
wonder about the potential use of your program and if they might be needed in a tool chain and be
a good Unix citizen and implement your standard streams correctly and consistently.

Programs that do their work mainly by taking input from the stdin and writing their output to the
stdout are also known as filters.

The Unix standard library provides all the facilities that are needed to implement, manage and
use pipes, which can be especially useful when used programmatically to interface multiple
processes and threads within your programs. The IPC (Inter-Process Communication) page on
Wikipedia offers a glimpse of the available facilities:

http://en.wikipedia.org/wiki/Inter-process_communication

which is by no means exhaustive.

Concurrency and concurrent programming, of which IPC is a special case, is an active research
field, often spawning new languages and technologies that take a while to find their way into the
mainstream. Again some Wikipedia pages offer a very basic entry point to the field:

http://en.wikipedia.org/wiki/Concurrency_(computer_science)
http://en.wikipedia.org/wiki/Dining_philosophers_problem
http://en.wikipedia.org/wiki/Concurrent_computing

For a more general view (not Unix specific) about pipes and pipelines:

http://en.wikipedia.org/wiki/Pipes_and_filters

For Unix pipes and pipelines:

http://en.wikipedia.org/wiki/Pipeline_(Unix)

For something useful you can actually do with pipes and Unix:

http://en.wikibooks.org/w/index.php?title=Ad_Hoc_Data_Analysis_From_The_Unix_Command_Line

Everything is a file

Another core tenet of the Unix philosophy is the ʻeverything is a fileʼ statement. This indicates
the the file metaphor is used an an abstraction layer to implement all ʻpartsʼ of Unix. The
advantage of modeling all entities as files is that it provides a unified interface to everything. So we

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 29 of 40

http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Concurrency_(computer_science
http://en.wikipedia.org/wiki/Concurrency_(computer_science
http://en.wikipedia.org/wiki/Dining_philosophers_problem
http://en.wikipedia.org/wiki/Dining_philosophers_problem
http://en.wikipedia.org/wiki/Concurrent_computing
http://en.wikipedia.org/wiki/Concurrent_computing
http://en.wikipedia.org/wiki/Pipes_and_filters
http://en.wikipedia.org/wiki/Pipes_and_filters
http://en.wikipedia.org/wiki/Pipeline_(Unix
http://en.wikipedia.org/wiki/Pipeline_(Unix
http://en.wikibooks.org/w/index.php?title=Ad_Hoc_Data_Analysis_From_The_Unix_Command_Line
http://en.wikibooks.org/w/index.php?title=Ad_Hoc_Data_Analysis_From_The_Unix_Command_Line

can ʻopenʼ and ʻreadʼ a file that can really be a file (a collection of bytes on a filesystem), a device
(e.g. a USB port) or a socket (a network connection).

From the hardware standpoint this has interesting consequences. A hardware device gets
interfaced with the operating system (OS) via an element of the kernel (called module). The kernel
module acts like a device driver exposing standard operations that allow the OS and the users to
access and use the device. Devices are logically mapped to element of the filesystem mimicking
files which are usually stored in the /dev filesystem. Using such a device can be as easy as
ʻopeningʼ the file for I/O, and then performing standard ʻreadʼ and ʻwriteʼ operations.

The file abstraction breaks when it comes to operation which would be file-like (e.g. like
searching in a file) that do not really make sense with some device, like a printer. Still the
abstraction is consistently used within the system and makes working with external devices a lot
easier.

Another interesting part of Linux is the /proc filesystem which contains a mirror image of the
entire running system. There is one subdirectory per process (identified by the process id) and a
number of other subdirectories that contain informations about buses, devices, disks and so on.

For a lot more information about advanced Linux programming, including many subjects we
havenʼt even mentioned in passing, you should take a look at Advanced Linux Programming. This
book can be freely downloaded from:

http://www.advancedlinuxprogramming.com/

and contains a large amount of information for the Linux system programmers. Chapter 7 of the
current edition at the time of writing is dedicated to the /proc filesystem. For even more advanced
material about writing Linux kernel module, another full book is available for download:

http://lwn.net/Kernel/LDD3/

Both these link contain material ranging from advanced to very advanced. Caveat emptor. Less
daunting, but still very advanced:

http://tldp.org/LDP/lkmpg/2.6/html/index.html

The Standard C Library

While C is a relatively small language (few keywords and datatypes) it comes with a relatively
large standard library. The content of the library is part of the C standard as approved by the ISO,
so that the interfaces are constant between implementations. The actual implementation can
change between different compilers and operating systems, but these details are largely
transparent to the developer.

The C standard library contains 24 headers, largely system independent, which are described
here:

http://en.wikipedia.org/wiki/C_standard_library

In the context of Unix and Linux the standard C library also contains the POSIX standard library
which aims to standardize the infrastructure between different implementations of Unix:

http://en.wikipedia.org/wiki/POSIX
http://en.wikipedia.org/wiki/C_POSIX_library

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 30 of 40

http://www.advancedlinuxprogramming.com
http://www.advancedlinuxprogramming.com
http://lwn.net/Kernel/LDD3/
http://lwn.net/Kernel/LDD3/
http://tldp.org/LDP/lkmpg/2.6/html/index.html
http://tldp.org/LDP/lkmpg/2.6/html/index.html
http://en.wikipedia.org/wiki/C_standard_library
http://en.wikipedia.org/wiki/C_standard_library
http://en.wikipedia.org/wiki/POSIX
http://en.wikipedia.org/wiki/POSIX
http://en.wikipedia.org/wiki/C_POSIX_library
http://en.wikipedia.org/wiki/C_POSIX_library

These Wikipedia pages contain links to the Wikipedia pages of the specific headers which also
describe the functions contained in these libraries.

You can get similar information via the man command. For the stdio.h library:

man stdio.h

and so on. The most common implementation of the standard C library available on Linux
systems is the glibc provided by the GNU Project of the Free Software Foundation. You can find
its documentation (and a lot more) at:

http://www.gnu.org/software/libc/libc.html

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 31 of 40

http://www.gnu.org/software/libc/libc.html
http://www.gnu.org/software/libc/libc.html

Memory
Memory management is one of the most complex task that you will have to handle while

developing C code. Using memory management correctly requires a deep understanding of the
operating system infrastructure and lots of care. Mistakes in memory management can create a
large variety of consequences ranging from slowing down the program over time (e.g. memory
leaks) to complete crashes (e.g. when accessing unallocated memory or releasing memory blocks
that have already been released).

Memory Structure

Computer memory is often organized in the form of a byte addressable memory. The smallest
memory unit is the byte, which in most modern computer is made of 8 bit (short for binary digit, an
entity which can contain a 0 or a 1). Each byte can be identified and accessed via its address, a
number that univocally identifies a memory location.

The Operating System is in charge of memory management and grants/regains resources as
they are needed for running programs. A program can expect the OS to allocate a certain amount
of memory, in which the program has to perform all of its operation. A program can usually also ask
for more memory as needed, and the OS can grant such request or deny it depending on its state.

The memory of a C program comes organized in two main ʻstructuresʼ: the stack and the heap.
The stack is the memory space where functions and their resident data live. Stack is a generic
name for a common type of data structure also known as a LIFO (Last In, First Out), which suits
well the function invocation format of the C language.

At any given time during the execution of a C program there is one single function that is being
executed. This function lives at the top of the stack (TOS). When the current function invokes a
new function, it becomes the new current function, a chunk of memory is allocated for it and placed
upon the stack, at the top. The new TOS function gets executed and when it finishes, its memory
chunk is removed from the TOS and control is returned to the previous function, which is again at
the TOS. A simple drawing should help clear whatʼs going on. Letʼs write a very simple program
and then look at its stack:

int fun0(int n) {
	 return n*2;
}

int fun1(int n) {
	 return fun0(n);
}

int main(int argc, const char * argv[]) {
	 int x = 21;
	 fun1(x);
}

This drawing shows you what happens during the programʼs life:

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 32 of 40

The size of the stack is relatively limited, hence it is possible that under specific conditions the
stack space will be exhausted and the program will crash. Note that structures that are defined on
the stack (variables within a function) stop existing (ʻare releasedʼ) as soon as the relevant chunk
of memory is released. Caution must be exercised to avoid back-propagating memory addresses
that are on the stack as this can create problems to the memory allocation mechanism.

Exercise 4. Crash the stack
Write a program to crash the stack.
As a bonus point, add a counter to check the stack depth.

During the execution of a program, a specific amount of memory could be required. Allocating
memory on the stack can be undesirable due to its relatively limited size (and also if you need to
propagate a memory block or similar situations). In these situations it is preferable to use dynamic
memory allocation, that is request blocks of memory from the OS. These blocks are allocated on
the heap, which is a memory space that can be organized by the OS as needed according to
requests from various programs. The standard lifecycle of an allocated memory block is:

request memory block
use memory block
dispose of/release memory block

Carefully following these steps will ensure that the heap is handled correctly. Once a memory
block on the heap has been assigned, it is not available anymore to other processes until release.
That is why itʼs fundamental to correctly release unneeded resources.

More about functions

An important issue is how parameters are passed to functions. Unless we specify otherwise,
parameters are passed ʻby valueʼ, that is the value of the argument is copied onto the formal
argument, and that value is used in the context of the function. Modifying that value within the
function does not affect the value of the parameter in the calling function. Still sometimes we need
to be able to modify the value of the actual argument that we passed to a function and have this
modification propagated to the calling function. Letʼs try to define the swap function:

a = 42; b = 21;
swap(a,b);

main:
 x=21
 fun1(x)

fun1:
 n=21
 fun0(n)

main:
 x=21
 fun1(x)

fun1:
 n=21
 fun0(n)

main:
 x=21
 fun1(x)

fun0:
 n*2

fun1:
 n=21
 fun0=42

main:
 x=21
 fun1(x)

main:
 x=21
 fun1=42

fun1 fun0 returnreturn

STACK STACK STACK STACK

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 33 of 40

a -> 21; b -> 42;

Letʼs try by writing:

#include <stdio.h>

void swap(int as, int bs) {
 int tmp = as;
 as = bs;
 bs = tmp;
 printf("swap: a -> %d - b -> %d\n", as, bs);
}

int main(int argc, const char * argv[]) {
 int a = 42;
 int b = 21;
 printf("a -> %d - b -> %d\n", a, b);
 swap(a, b);
 printf("a -> %d - b -> %d\n", a, b);
 return 0;
}

swap_by_value.c

Testing this code will immediately show that it is not doing what we would like it to. The function
swap is swapping the content of a and b, but the new values are not being propagated to the main
function. Whatʼs happening is that the function call is creating a copy of the values of a and b and
passing them to the swap function, where the formal parameters as and bs now contain the copied
values. Swapping the content of as and bs has the expected effect, but the values of the original
parameters are unaffected.

Before describing the solution to our problem, we need to go back to the variables. You might
remember that we mentioned that variables have four important properties. Three we have already
described:

• a name, a type and a value

and now we can add:

• an address: the memory address where the variable is stored

The address of a variable can be extracted using the & operator and it can be stored in a special
variable called a pointer. A pointer is simply an address to a variable. The pointer has to be of the
same type of the variable it points to and is indicated with a * appended to the variable type. So for
example:

int a = 42;
int* pa = &a;

In addition to this a pointer can be used to access the variable content, via the dereference
operation. So to get the content of a, via pa:

*pa

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 34 of 40

and to modify the content of a, always via pa:

*pa = 21;

Needless to say, it is perfectly legal to create a pointer to a pointer and so on. Pointers are
simply variables.

Now we can write the real swap function, passing the arguments by reference instead of by
value:

#include <stdio.h>

void swap(int* as, int* bs) {
 int tmp = *as;
 *as = *bs;
 *bs = tmp;
 printf("swap: a -> %d - b -> %d\n", *as, *bs);
}

int main(int argc, const char * argv[]) {
 int a = 42;
 int b = 21;
 printf("a -> %d - b -> %d\n", a, b);
 swap(&a, &b);
 printf("a -> %d - b -> %d\n", a, b);
 return 0;
}

swap_by_reference.c

Compiling and running this program will show that this is a correct solution to the problem, but
why does this work? The issue here is what we are passing. The arguments are still being passed
by value, that is the address returned by &a is simply copied into as, but now instead of working on
the value of as we work on the value contained in the memory location pointed to by the content of
as (which is a pointer, hence it contains a memory address). Since the address contained in as is
the address of a, modifying the content of memory location pointed to by as, does in fact modify
the content of a.

This technique is also often used to return multiple values from a function. Pass some variables
to the function by reference and store the return values in them. Often the function value (the one
returned via the return keyword) is used to indicate anomalous situations and errors, hence the
calling function would check the return value and used the other returned values only if no error
condition is signaled.

Exercise 5. Return multiple values
Write a function that accepts two positive numbers, and returns their sum, their difference and their
mean value. Also make it so that the function returns something indicating an error if one of the
arguments is negative.
Write a program to use this function and print its results.

So far we have mentioned arrays, but never really used them. To pass an array to a function,
we need to specify that the specific argument is an array. Similarly to what we do with pointers,
where we add the * specification to the variable type, for arrays we add the [] specification (without

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 35 of 40

specifying any array dimension). Letʼs write a function that takes an array of ints and returns its
sum:

#include <stdio.h>
#define LEN 10

int sum(int ints[], int len) {
	 int index, result=0;
	 for(index=0; index<len; index++) {
	 	 result += ints[index];
	 }
	 return result;
}

int main(int argc, const char * argv[]) {
	 int index;
	 int ints[LEN];
	
	 for(index=0; index<LEN; index++) {
	 	 ints[index] = index;
	 }
	
	 printf("The sum of the first %d integers is %d\n", LEN, sum(ints, LEN));
	 return 0;
}

sum_array.c

A few highlights about the program: the sum function accepts an array as indicated by its
signature. Since we have no other way of doing this, we also need to explicitly pass the array size
as an argument to the function.

Exercise 6. Numeric integration
Write a program to calculate a numeric integral using the the composite trapezoidal rule (http://
en.wikipedia.org/wiki/Trapezoidal_rule).
The program should define a function that accepts an array containing the values of the function to
integrate and any other relevant parameter: float integrate(float values[], ...)

The main part of the program should fill the values array, with values calculated from the function
to be integrated. Ideally this function should also be stored into a function (okay, the mathematical
function to be integrated should be stored in C function).

This logical separation allows you to write the integration code and reuse it as needed, while
making it also possible to easily implement other integration algorithms and reuse the same
mathematical functions.

You should be careful when defining the integration interval, the integration steps and all the
relevant parameters. You might also want to define some utility function to map the integer indexes
of the values array onto the integration step.
The math.h header contains a number of mathematical functions which might be useful.

Arrays and pointer algebra

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 36 of 40

http://en.wikipedia.org/wiki/Trapezoidal_rule
http://en.wikipedia.org/wiki/Trapezoidal_rule
http://en.wikipedia.org/wiki/Trapezoidal_rule
http://en.wikipedia.org/wiki/Trapezoidal_rule

Arrays are always passed by reference, this is because the array name is really a pointer to the
first element of the array, hence passing as array simply passes a pointer to its first element:

int values[256];
values[0] = 42;
*values -> 42;

Whatʼs even more interesting is the way this pointer behaves. Letʼs write a small program and
then discuss it:

#include<stdio.h>
#define LEN 10

int main() {
	 int index;
	 int ints[LEN];
	
	 for(index=0; index<LEN; index++) {
	 	 ints[index] = index;
	 }
	 for(index=0; index<LEN; index++) {
	 	 printf("Array element %d = %d\n", index, *(ints+index));
	 }
	 return 0;
}

array_pointer.c

So while *ints points to the first element of the array, *(ints+1) points to the second, *(ints
+2) to the third and so on. Incrementing a pointer does ʻthe right thingʼ, that is it produces a pointer
to the next element of an array. In fact we could write that:

array[n] == *(array+n)

Notice that this works even for modification:

*(array+n) = 42; == array[n] = 42

This works because C is doing some work behind the scenes, so that “incrementing the
memory address by 1” does not in fact increment the actual address by one. This behavior is
usually described by saying that the memory access is aligned. This is extremely important when
we want to use dynamic memory.

Data types and memory

Letʼs go back to variables and in particular to variable types. The type of a variable indicates
what kind of entities can be stored in it. This is related to the amount of space allocated to the
variable. Since the base unit of allocation is the byte, the ʻsizeʼ of a variable is simply the number of
bytes that it uses to store its value.

An unsigned short is 2 bytes long (16 bit) so it can store values from 0 to 216-1 (65535), an
unsigned int is 4 bytes long (32 bit) so it can store values from 0 to 232-1 (4,294,967,295) and so
on. C provides an operator to discover the size of a variable type: sizeof. This is necessary when

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 37 of 40

requesting dynamic memory blocks. The main facility for dynamic memory allocation is the malloc
function contained in stdlib.h. The signature of malloc is:

void *malloc(size_t size);

This call returns a pointer to a memory block which is long size bytes. The special data type
void guarantees that access to this memory block is unaligned, so it is accessible byte by byte.

So letʼs create a dynamic array of 10 ints:

#include<stdio.h>
#include<stdlib.h>

int main() {
	 int index;
	 int* data_block = (int*)malloc(sizeof(int)*10);
	
	 for(index=0; index<10; index++) {
	 	 *(data_block+index) = index;
	 }
	
	 for(index=0; index<10; index++) {
	 	 printf("%d -> %d... ", index, data_block[index]);
	 }
	
	 free(data_block);
	 return 0;
}

array_on_heap.c

The core part of the program is the memory allocation requested via malloc. The memory block
we request on the heap is long 10 times the size of an int, thus allowing us to use it as an int
array of 10 elements. The only important issue is that the pointer returned by malloc (which
returns a null pointer if the allocation fails) is unaligned, so before using it to store ints we need to
align it. To do that we cast it into an int pointer (int*). After this data_block behaves exactly like
an array, and we use both common array access syntaxes to store and retrieve values from it.

To clean up and be good citizens we take care of explicitly releasing the allocated memory block
using the free function. Be very careful as free-ing the same memory block twice will cause your
program to crash.

So, to go back to the access syntax *(array+index) what is happening from the memory
standpoint is that C knows the type of the array pointer, so the actual address is incremented by
index*sizeof(array_pointer) thus realizing an aligned memory access.

Notice that just like we cast the malloc return value from void* to int*, it is always possible to
cast a memory block to void*, thus allowing unaligned access. This is sometimes useful for more
complex operations that require reorganizing the internal representation of a variable. One such
case can be due to the endianness, that is the way a processor internally represents numbers.
Two main approaches are known: little endian and big endian.

Letʼs look at the way an int can be represented. Letʼs use the number 1,937,425,042.

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 38 of 40

In little endian representation the values of the four bytes are 146 194 122 115
In big endian representation they are 115 122 194 146

In little endian representation the first byte is the least significant, while in big endian it is the
most significant.

To obtain the original number: 115 * 224 + 122 * 216 + 194 * 28 + 146

Exercise 7. Endianness
Figure out the endianness of the computer you are using using a C program.

For more about endianness:

http://en.wikipedia.org/wiki/Endianness

Structs and pointers

It is also possible to define pointers to structs and to dynamically allocate them via the malloc
function. The sizeof operator applied to a struct will return the correct value to use with malloc.

One important difference is in the access operation to structure members. Letʼs retrieve the
definition of the sample_s struct:

typedef struct sample_s {
	 int index;
	 float value;
	 float error;
} sampleType;

Now we can define a pointer to a sampleType struct like this:

sampleType* aSample = (sampleType*)malloc(sizeof(sampleType));

Now to access the fields of the sampleType structure pointed to by aSample we can simply
dereference (the parentheses are needed since the dereference operator has lower priority than
the . operator):

(*aSample).index = 255;
(*aSample).value = 3.14;
(*aSample).error = 0.03;
float maxValue = (*aSample).value + (*aSample).error;

or we can use the arrow operator (->) to directly access the fields without the need to explicitly
dereference:

aSample->index = 255;
aSample->value = 3.14;
aSample->error = 0.03;
float maxValue = aSample->value + aSample->error;

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 39 of 40

http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/Endianness

More exercises
Now that you have been exposed to some parts of C, it is important to take the time and

actually write some code with it. In this section you will find a few more exercises to play with. Note
that these exercises are somewhat complex and will require a bit of work to be implemented.

Exercise 8. Integration with Monte Carlo method
Write a program to implement the 1D Monte Carlo integration.

The Monte Carlo integration is a numerical integration algorithm that uses random numbers.

The algorithm works as follows:
1. inscribe your function in a rectangle whose left and right sides are the same as the integration

limits, and whose lower side lays on the x axis
2. generate a random point within this rectangular area
3. if the point is under the curve, increment a counter

Repeat 2. and 3. N times. With N large enough, the integral of the curve is
~= (counter/N)*rectangle_area

See: http://en.wikipedia.org/wiki/Monte_Carlo_integration and man rand for information about
random number generation in C.

Exercise 9. 1D Cellular Automata
Implement a program to generate 1D Cellular Automata. A Cellular Automaton is a discrete model
of a system which evolves over time.

A 1D Cellular Automaton consists of ʻcellsʼ living on a line. Each cell can be dead (0) or alive (1).

Each cell has two neighbors and its evolution is determined by the state of the two neighbors, its
own state and a set of evolution rules, which determine the new state at the next iteration.

Write a program that evolves a cellular automaton given an initial configuration and a set of
evolution rules.

See: http://en.wikipedia.org/wiki/Cellular_automaton and http://www.stilldreamer.com/mathematics/
1d_cellular_automaton/

Exercise 10. The Sieve of Eratosthenes
The Sieve of Eratosthenes is a simple iterative algorithm to generate a table of prime numbers.

Take the list of the first 100 numbers, and start by removing the multiples of 2. Then proceed to
remove the multiples of 3. Then the multiples of 5 (4 has been removed when we removed the
multiples of 2) and so on. At the end of this process, whatʼs left are only the prime numbers
between 1 and 100.

Write a program to implement this algorithm and use it to calculate the prime factors of an integer
number.

See:
http://en.wikipedia.org/wiki/Prime_factor
http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

International School of Trigger and Data Acquisition 2011

Introduction to C Programming - version 0.2 40 of 40

http://en.wikipedia.org/wiki/Monte_Carlo_integration
http://en.wikipedia.org/wiki/Monte_Carlo_integration
http://en.wikipedia.org/wiki/Cellular_automaton
http://en.wikipedia.org/wiki/Cellular_automaton
http://www.stilldreamer.com/mathematics/1d_cellular_automaton/
http://www.stilldreamer.com/mathematics/1d_cellular_automaton/
http://www.stilldreamer.com/mathematics/1d_cellular_automaton/
http://www.stilldreamer.com/mathematics/1d_cellular_automaton/
http://en.wikipedia.org/wiki/Prime_factor
http://en.wikipedia.org/wiki/Prime_factor
http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

