
An Introduction to C Programming
Review of Exercises

Francesco Safai Tehrani (INFN Rome)
francesco.safaitehrani@roma1.infn.it

Wednesday, February 16, 2011

mailto:francesco.safaitehrani@roma1.infn.it
mailto:francesco.safaitehrani@roma1.infn.it

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

How I did it: compilation and the like
‣ gcc compiler: “pure C” (with GCC extensions)

‣ all programs compiled with

‣gcc -Wall -pedantic -o <prg_name> prg_name.c

‣ -Wall = -W(arning) all

‣ -pedantic = activates all checks for pure C conformance

‣ no command line argument management

‣ I basically ignore all the command line processing

‣arguments are ʻpassedʼ as #define-s

‣ NO GLOBAL VARIABLES

‣unless theyʼre absolutely needed ;)

‣ yup, I decide when theyʼre absolutely needed... YMMV :)
2

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

Some more observations
‣ The techniques I expect you to have mastered:

‣C program structure

‣ structure and organize your code in functional units

‣Basic debugging

‣ printf-s and the like

‣Basic algorithmic thinking

‣ take an algorithm described in text and turn it into code

‣Basic memory management

‣ variables, arrays and dynamic memory handling

‣Weʼll review how you fared in these areas at the end of
this presentation.

‣Yup, not too bad. No worries there. 3

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

Language, language, language...
‣ Yes: C != C++

‣ even though they look (kinda) alike

‣ There was more than a bit of confusion between C and C++
(intentional and not)

‣ and quite a few requests of code revisions to C-ify C++ code

‣ C++-isms that Iʼve consistently found in the code:

‣ C++ style comments: // comment (C: /* comment */)

‣ C++ memory management: new / delete / delete[]

‣ C++ namespaces (using namespace std;)

‣ definition of variables throughout the code

‣ C wants variable definition strictly at the beginning of a function body

‣ C++ stuff like STL maps and other advanced datatypes

‣ Itʼs fine to mix, as long as you know what youʼre doing. Do you? 4

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

Terminology (from C to C++)
‣A term I will be using often:

‣ function interface (or simply interface) of signature

‣ the set of arguments that a function accepts

‣ int sum(int a, int b)

‣ “int a, int b” is the function signature/interface

‣A header file is a libraryʼs interface

‣or maybe a collection of header files...

‣ Interfaces are going to be very important in C++

‣and in Object Oriented programming in general ...

‣ (much) more on this later 5

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

6

Ex.1 - Factorial
Rewrite both the iterative and recursive factorial functions
using forward counting (from 1 to num).

Not much to say about this exercise. The factorial is a simple iterative algorithm
that can easily be implemented iteratively or recursively.

This time the algorithm was turned around to use forward counting. This caused the
recursive version to require a second argument, thus creating the unpleasant need
to change the function interface, from:

factorial(n)

to

factorial(n, weird_parameter_that_does_not_make_much_sense_for_the_end_user)

Does it matter?
Is it logical?
So how do you solve the issue?

Principle of Least Surprise (a form of...)

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

ex1-factorial.c

7

#include <stdio.h>

int recursive_forward_factorial(int num, int index) {
 if(index==num) return num;
 return index * recursive_forward_factorial(num, index+1);
}

inline int recursive_factorial(int num) {
 return recursive_forward_factorial(num, 1);
}

int iterative_factorial(int num) {
 int i, result=1;
 for (i=1; i<=num; i++) result *= i;
 return result;
}

int main (int argc, const char * argv[]) {
 printf("Iterative 6! :%d\n", iterative_factorial(6));
 printf("Recursive 6! :%d\n", recursive_factorial(6));
 return 0;
}

Utility function: a simple function used to hide the
complexity and publish the expected interface.
Inline: a suggestion to the compiler that this function call
could be replaced by its code.
The compiler is free to accept the suggestion or ignore it.

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

Ex.2 - Fibonacci Numbers

8

The formula to calculate the n-th Fibonacci number Fn is:

Fn = Fn-1 + Fn-2
F0 = 0
F1 = 1

Write a program containing two functions (one iterative and
one recursive) which take n as arguments and return Fn.

Another standard exercise: the calculation of the Fibonacci number is just a little
bit more complex than the factorial, since you need to keep track of the last two
results.

The recursive implementation of Fibonacci instead is an exercise in complexity (in
the computing sense):

each function invocation is transformed into two, so it would look like the
algorithmic complexity is 2n. The real one is ~1.6n. Hence the calculation of F49
takes 49 sums in the iterative implementation and ~1010 in the recursive
implementation.

A demo should clarify this issue...

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

ex2-fibonacci.c

9

#include <stdio.h>

#define FIBNUM 49 /* the highest Fn found on the Wikipedia page */

long recursive_fibonacci(int num) {
 if (num<=1) return num;
 return recursive_fibonacci(num-1)+recursive_fibonacci(num-2);
}

long iterative_fibonacci(int num) {
 int i;
 long f0, f1, tmp;
 if (num<=1) return num;

 f0 = 0;
 f1 = 1;
 for (i=2; i<=num; i++) {
 tmp = f0;
 f0 = f1;
 f1 = f0+tmp;
 }
 return f1;
}

int main (int argc, const char * argv[]) {
 printf("The %d Fibonacci number is (iteratively) :%ld\n", FIBNUM, iterative_fibonacci(FIBNUM));
 printf("The %d Fibonacci number is (recursively) :%ld\n", FIBNUM, recursive_fibonacci(FIBNUM));
 return 0;
}

The culprit: double recursion...

Now... can we still salvage it somehow?
Let’s say we *HAVE* to do it recursively...

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

ex2-fibonacci-memo.c

10

#include <stdio.h>

#define MAXFNS 100
long fns[MAXFNS];

#define FIBNUM 49 /* the last Fn found on the Wikipedia page */

long recursive_fibonacci(long num) {
 if (num<=1) return num;
 if (fns[num] == -1) {
 fns[num] = recursive_fibonacci(num-1)+recursive_fibonacci(num-2);
 }
 return fns[num];
}

int main (int argc, const char * argv[]) {
 int idx;
 for(idx=0; idx<MAXFNS; idx++) fns[idx] = -1;
 printf("The %d Fibonacci number is (iteratively) :%ld\n", FIBNUM, iterative_fibonacci(FIBNUM));
 printf("The %d Fibonacci number is (recursively) :%ld\n", FIBNUM, recursive_fibonacci(FIBNUM));
 return 0;
}

This technique is called memoization.
It implies storing for later use) the results of an expensive calculation. It is
different from a Look-Up Table (which we’ll describe later) in that only actual
calculation results are stored while a Look-Up Table is usually pre-calculated with
all the relevant results that are needed.

To memoize the temporary results we use a global variable. Global variables are
evil, but in this case the use is justified (naturally, you might feel
differently).

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

ex2-fibonacci-struct.c

11

#include<stdio.h>

typedef struct fibpair {
	 long val, prevval;
} fibpair;

fibpair recfib(long num) {
	 float sum;
	 fibpair tmp = { 1, 0 };
	 if (num == 1) return tmp;
	 if (num == 0) { tmp.val = 0; return tmp; }
	 tmp = recfib(num-1);
	 sum = tmp.val + tmp.prevval;
	 tmp.prevval = tmp.val;
	 tmp.val = sum;
	 return tmp;
}

long recursive_fib(long num) {
	 fibpair tmp = recfib(num);
	 return tmp.val;
}

int main() {
	 int i;
	 for(i=0; i<50; ++i)
	 	 printf("The %2ith Fib. number is = %ld\n", i, recursive_fib(i));
	 return 0;
}

A different technique, suggested by Erkcan Özcan, uses a C struct to hold two
values (the current and previous Fibonacci number) and return them at every step of
the iteration. Using a (slightly) more complex data structure we avoid the need of
the double recursion while at the same time retaining the speed and memory
efficiency of the iterative approach.

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

Ex.3 - Unit Conversion Library

12

For this exercise you will implement a set of unit conversion library. You can find the
conversion factors and algorithms online.

Start with a library to convert centimeters to inches, meters to feet and vice versa,
then add miles to kilometers. Add as many as you want.

Now create another library to convert weights, and implement the conversion between
kilograms and pounds. Add as many as you want.

Now create a library to convert between different temperature scales, Celsius to
Fahrenheit and vice versa, Celsius to Kelvin, Kelvin to Fahrenheit and so on.

Create a test program to use these libraries and print various conversions. Check that
the result are correct.
Now, unless you’ve done some design in advance, you will find yourself with a lot of
functions which do exactly the same thing (more or less).

Would it be possible to rewrite your conversion libraries to minimize code repetition,
maybe by implementing some utility functions in a special dedicated library? (Utility
functions are functions which solve a specific problem in a more general way).

Rewrite your libraries to maximize code reuse. Is it simpler now to add new conversions?
Discuss your solution.

This is by and large the exercise you’ve been most creative about. What I had in
mind was a lot simpler but most of you created rather complex structures...

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

ex3-conversion_library.c

13

#include <stdio.h>
#include "weight.h"
#include "temperature.h"
#include "length.h"

int main (int argc, const char * argv[]) {
 printf("1 cm in inches: %7.3f\n", cm_to_in(1.));
 printf("1 inch in cms: %7.3f\n", in_to_cm(1.));
 printf("1 pound in kgs: %7.3f\n", lb_to_kg(1.));
 printf("1 kg in pounds: %7.3f\n", kg_to_lb(1.));
 printf("60F in Celsius: %7.3f\n", C_to_F(60));
 printf("60Celsius in F: %7.3f\n", F_to_C(60));
 return 0;
}

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

ex3 library [v1]

14

#include "weight.h"

double kg_to_lb(double kgs) {
 return kgs/0.45359237;
}

double lb_to_kg(double lbs) {
 return lbs*0.45359237;
}

#ifndef WEIGHT_H
#define WEIGHT_H

double kg_to_lb(double);
double lb_to_kg(double);

#endif

#include "temperature.h"

double C_to_F(double cdeg) {
 return cdeg*9./5.+32.;
}

double F_to_C(double fdeg) {
 return (fdeg-32)*5./9.;
}

#include "length.h"

double cm_to_in(double cms) {
 return cms/2.54;
}

double in_to_cm(double ins) {
 return ins*2.54;
}

#ifndef TEMPERATURE_H
#define TEMPERATURE_H

double C_to_F(double);
double F_to_C(double);

#endif

#ifndef LENGTH_H
#define LENGTH_H

double cm_to_in(double);
double in_to_cm(double);

#endif

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

ex3 library [v2]

15

#ifndef WEIGHT_H
#define WEIGHT_H

#include "utility.h"

double kg_to_lb(double);
double lb_to_kg(double);

#endif

#ifndef TEMPERATURE_H
#define TEMPERATURE_H

#include "utility.h"

double C_to_F(double);
double F_to_C(double);

#endif

#ifndef LENGTH_H
#define LENGTH_H

#include "utility.h"

double cm_to_in(double);
double in_to_cm(double);

#endif

#include "weight.h"

double kg_to_lb(double kgs) {
 return reverse_conversion(kgs, 0.45359237, 0.);
}

double lb_to_kg(double lbs) {
 return direct_conversion(lbs, 0.45359237, 0.);
}

#include "temperature.h"

double C_to_F(double cdeg) {
 return direct_conversion(cdeg, 9./5., 32.);
}

double F_to_C(double fdeg) {
 return reverse_conversion(fdeg, 9./5., 32.);
}

#include "length.h"

double cm_to_in(double cms) {
 return reverse_conversion(cms, 2.54, 0.);
}

double in_to_cm(double ins) {
 return direct_conversion(ins, 2.54, 0.);
}

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

utility.h/c

16

#ifndef UTILITY_H
#define UTILITY_H

double direct_conversion(double, double, double);
double reverse_conversion(double, double, double);

#endif

#include "utility.h"

double direct_conversion(double value, double m_factor, double a_factor) {
 return value*m_factor + a_factor;
}

double reverse_conversion(double value, double m_factor, double a_factor) {
 return (value-a_factor)/m_factor;
}

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

ex4-crash_stack.c

17

#include<stdio.h>

void crash_stack(int index) {
 printf("%d ... ", index);
 crash_stack(index+1);
}

int main() {
 crash_stack(0);
 return 0;;
}

Ex.4 - Crash the Stack
Write a program to crash the stack.
As a bonus point, add a counter to check the stack depth.

Surprisingly this is one of the exercises you all managed to get right... ;)

Not much to say about it. This works as expected, layering new function calls one
on top of the other until the stack is finished and the program crashes.

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

Ex.5 - Return multiple values

18

Write a function that accepts two positive numbers, and
returns their sum, their difference and their mean value. Also
make it so that the function returns something indicating an
error if one of the arguments is negative.
Write a program to use this function and print its results.

This exercise had two possible kinds of solution:
- write a function with a longer signature that contains three dummy arguments
passed by pointer that the function can then use to store the calculated values
- write a function that returns an array containing the results of the calculation

Both approaches were used, but most of you did not manage correctly (= as requested
by the text of the exercise) the error condition.
In general printf-ing an error message is not really useful, especially if your
function is used in a library by somebody else. It would be preferable for your
functions to produce meaningful (=documented) error values.

Using the second approach, returning an error condition is much more complex, hence
I favour (and implement) the first approach.

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

ex5-multiple_values.c

19

#include <stdio.h>

int calc_data(int op1, int op2, int* sum, int* diff, float* mean) {
 if((op1<0) || (op2<0)) { return -1; }
 *sum = op1+op2;
 *diff = op1-op2;
 *mean = *sum / 2.0;
 return 0;
}

int main (int argc, const char * argv[]) {
 int op1 = 40;
 int op2 = 2;

 int sum, diff;
 float mean;

 if(calc_data(op1, op2, &sum, &diff, &mean) == -1) {
 printf("Whoops! One of the operands of calc_data is negative!\n");
 } else {
 printf("Calc data results: \n");
 printf(" %5d + %5d = %5d\n", op1, op2, sum);
 printf(" %5d - %5d = %5d\n", op1, op2, diff);
 printf("Mean value of %5d, %5d = %8.2f\n", op1, op2, mean);
 }
 return 0;
}

Handling the error condition

Dummy arguments

The printf formatting works like this:
%[-c]n[.m]X
The - specifies that the field is left justified
The [c] is a padding character: %05d, 42 = 00042
The n is the field length in characters
The [.m] only for float/double fields, indicates the number of digits after the ‘.’
X is the format specifier [d = integers, f = floats/doubles, ...]

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

Ex.6 - Numerical integration

20

Write a program to calculate a numeric integral using the the composite
trapezoidal rule (http://en.wikipedia.org/wiki/Trapezoidal_rule).
The program should define a function that accepts an array containing the
values of the function to integrate and any other relevant parameter: float
integrate(float values[], ...)

The main part of the program should fill the values array, with values
calculated from the function to be integrated. Ideally this function
should also be stored in a function (okay, the mathematical function to be
integrated should be stored in a C function).

This logical separation allows you to write the integration code and reuse
it as needed, while making it also possible to easily implement other
integration algorithms and reuse the same mathematical functions.

You should be careful when defining the integration interval, the
integration steps and all the relevant parameters. You might also want to
define some utility function to map the integer indexes of the values array
onto the integration step.
The math.h header contains a number of mathematical functions which might
be useful.

Now... this was a hard one to crack for most of you. Let’s examine the algorithm in
detail.

Wednesday, February 16, 2011

http://en.wikipedia.org/wiki/Trapezoidal_rule
http://en.wikipedia.org/wiki/Trapezoidal_rule

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

Ex.6 - Numerical integration (2)

21

Take f(x), an interval [a, b] and divide it in N
subintervals of length step_len = (b-a)/N

x1 = a...
xi = a + i*step_len
...
xN = b

Now the area of the integral can be approximated
as:

Area = ∑ ½(f(xi)+f(xi+1))*step_len -0.25 0 0.25 0.5 0.75 1 1.25

0.25

0.5

0.75

1

1.25

1.5

A few observations from the code I’ve seen:
- it’s best to analyze the algorithm and implement it faithfully

(premature optimization is the root of all evil)
- it’s also best to analyze the algorithm and implement it correctly

In this case there’s a constant operation (multiplication by ½step_len) that can be
factored out the summation. Also a bit of simple manipulation shows that the formula
can be rewritten:

Area = [½(f(a)+f(b)) + ∑f(xi)]*step_len

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

ex6-integration.c

22

#include <stdio.h>
#include <math.h>

#define STEPS 1000

double function(double x) {
 return exp(x)*pow(x,2);
}

void calculate_function(double a, double b, int steps, double* values) {
 int idx;
 double step_len = (b-a)/steps;
 for(idx=0; idx<=steps; idx++) {
 values[idx] = function(a+idx*step_len);
 }
}

double integrate_function(double a, double b, int steps, double* values) {
 int idx;
 double step_len = (b-a)/steps;
 double result = 0;

 for(idx=1; idx<steps; idx++)
 result += values[idx];

 result = (result + (values[0]+values[steps])/2.0) * step_len;
 return result;
}

int main (int argc, const char * argv[]) {
 double a, b;
 double result;
 double values[STEPS+1];

 a = 1;
 b = 2;

 calculate_function(a, b, STEPS, values);
 result = integrate_function(a, b, STEPS, values);

 printf("Integration of e^x*x^2 between %7.2f and %7.2f yields %7.2f\n", a, b, result);
 return 0;
}

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

Ex.7 - Endianness

23

Figure out the endianness of the computer you are using using
a C program.

ex4-endianness.c

#include<stdio.h>

int main() {
 short a = 1;
 char* x = (char*) &a;
 if (x[0] == 1) { printf("Little endian\n"); }
 else { printf("Big endian\n"); }
 return 0;
}

And this is the other exercises most of you managed to get right... ;)
[Maybe it’s because you like to break things apart and peek inside? Perfect
scientific mindset, if I may say so...]

I chose a short because it only contains two bytes so that:

0x1 in little endian would look like 01 00
0x1 in big endian would look like 00 01

If you read the material suggested for the exercise, you should also know a little
bit more about how C represents integer numbers internally.

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

Ex.8 - Monte Carlo integration

24

Write a program to implement the 1D Monte Carlo integration.

The Monte Carlo integration is a numerical integration algorithm that uses
random numbers.

The algorithm works as follows:
inscribe your function in a rectangle whose left and right sides are the same
as the integration limits, and whose lower side lays on the x axis
generate a random point within this rectangular area
if the point is under the curve, increment a counter

Repeat 2. and 3. N times. With N large enough, the integral of the curve is
~= (counter/N)*rectangle_area

See: http://en.wikipedia.org/wiki/Monte_Carlo_integration and man rand for
information about random number generation in C.

Monte Carlo methods are members of the family of random algorithms. Random algorithms
use random number to tackle complex problems unapproachable by deterministic methods.
MC algorithms are time bound: they end in a fixed amount of time, with a small error.
Las Vegas algorithms are not time bound, but always find the correct answer (altough the
algorithm not terminating does not give indication regarding the existance of such an
answer).

http://en.wikipedia.org/wiki/Random_algorithm

Wednesday, February 16, 2011

http://en.wikipedia.org/wiki/Monte_Carlo_integration
http://en.wikipedia.org/wiki/Monte_Carlo_integration

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

25

The complexity of this exercise was similar to that of the integration one. In fact some
code and logic could be reused.

Most of your solutions took two rather major simplification hypotheses:

1. monotonic function: f(a) and f(b) are absolute minimum/maximum for the function
2. f(x) > 0 for x∈[a,b]

This is not a problem, but it would been nice to have it explicitly noted in the code,
so that I know you know what you’re doing.

This is always true: you need to document what you are doing so that the end user of
your code/library knows what (s)he’s getting (always the Principle of Least Surprise).

Another detail that affects deeply the MC methods in general is the quality of the
pseudo-random number generator. I suggested the use of rand, even though it’s well known
to be a poor generator. Many of you used other alternatives which makes me think that
you’re somewhat familiar with the issue.

Those of you who are not should take a few minutes to read this page:
http://en.wikipedia.org/wiki/Pseudorandom_number_generator

My code looks for the function max and min values, and uses them like this:
if min < 0 the integration rectangle y-axis goes between [min, max]
otherwise it goes between [0, max]
That’s equivalent to translating the x axis to min.
If max<0, the program returns 1 (which in Unix-speak usually indicates an error)

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

ex8-monte_carlo_integration.c

26

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>
#define STEPS 1000
#define SAMPLES 10000000
double function(double x) { return exp(x)*pow(x,2); }
void min_max(double a, double b, int steps, double* min, double* max) {
 int idx;
 double value;
 double step_len = (b-a)/steps;
 *min = function(a);
 *max = function(a);

 for(idx=0; idx<=steps; idx++) {
 value = function(a+idx*step_len);
 if(value > *max) *max = value;
 if(value < *min) *min = value;
 }
}
double mc_integrate_function(double a, double b, double min, double max, int samples) {
 int idx, counter = 0;
 double xr, yr;
 double lenH = b-a;
 double lenV = (max - min);
 srand(time(0));
 for(idx=0; idx<samples; idx++) {
 xr = a + lenH * (rand()/(double)RAND_MAX);
 yr = min + lenV * (rand()/(double)RAND_MAX);
 if(function(xr) > yr) counter++;
 }
 return lenH*lenV*counter/samples;
}
int main (int argc, const char * argv[]) {
 double a, b, min, max, result;
 a = 1;
 b = 2;
 min_max(a, b, STEPS, &min, &max);
 if(min > 0) min = 0;
 if(max < 0) return 1;
 result = mc_integrate_function(a, b, min, max, SAMPLES);
 printf("Integration of e^x*x^2 between %7.2f and %7.2f yields %7.2f\n", a, b, result);
 return 0;
}

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

ex8-monte_carlo_integration.c [1/2]

27

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>

#define STEPS 1000
#define SAMPLES 10000000

double function(double x) { return exp(x)*pow(x,2); }

void min_max(double a, double b, int steps, double* min, double* max) {
 int idx;
 double value;
 double step_len = (b-a)/steps;

 *min = function(a);
 *max = function(a);

 for(idx=0; idx<=steps; idx++) {
 value = function(a+idx*step_len);
 if(value > *max) *max = value;
 if(value < *min) *min = value;
 }

The min_max function uses again the trick of dummy arguments passed by pointers to
return multiple values... ugly, but necessary.

This would need to be explicitly stated in your library documentation.

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

ex8-monte_carlo_integration.c [2/2]

28

double mc_integrate_function(double a, double b, double min, double max, int samples) {
 int idx, counter = 0;
 double xr, yr;
 double lenH = b-a;
 double lenV = (max - min);

 srand(time(0));

 for(idx=0; idx<samples; idx++) {
 xr = a + lenH * (rand()/(double)RAND_MAX);
 yr = min + lenV * (rand()/(double)RAND_MAX);

 if(function(xr) > yr) counter++;
 }
 return lenH*lenV*counter/samples;
}

int main (int argc, const char * argv[]) {
 double a, b, min, max, result;

 a = 1;
 b = 2;

 min_max(a, b, STEPS, &min, &max);
 if(min > 0) min = 0;
 if(max < 0) return 1;

 result = mc_integrate_function(a, b, min, max, SAMPLES);

 printf("Integration of e^x*x^2 between %7.2f and %7.2f yields %7.2f\n", a, b, result);
 return 0;
}

The srand(time(0)) is a standard trick to reinitialize the RNG to a new seed. With
rand once the seed is known the entire sequence is known.

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

Ex.9 - 1D Cellular Automata

29

Implement a program to generate 1D Cellular Automata. A Cellular
Automaton is a discrete model of a system which evolves over time.

A 1D Cellular Automaton consists of ‘cells’ living on a line. Each
cell can be dead (0) or alive (1).

Each cell has two neighbors and its evolution is determined by the
state of the two neighbors, its own state and a set of evolution
rules, which determine the new state at the next iteration.

Write a program that evolves a cellular automaton given an initial
configuration and a set of evolution rules.

See: http://en.wikipedia.org/wiki/Cellular_automaton and http://
www.stilldreamer.com/mathematics/1d_cellular_automaton/

Probably the most complex exercise in the set. This required quite a bit of
algorithmic thinking compared to the previous ones.

Your solutions have been ... creative. Which is good.

Most of you have chosen to specialize the program to a specific rule writing ad-hoc
code, rather than attempting a generic implementation.

Wednesday, February 16, 2011

http://en.wikipedia.org/wiki/Cellular_automaton
http://en.wikipedia.org/wiki/Cellular_automaton
http://www.stilldreamer.com/mathematics/1d_cellular_automaton/
http://www.stilldreamer.com/mathematics/1d_cellular_automaton/
http://www.stilldreamer.com/mathematics/1d_cellular_automaton/
http://www.stilldreamer.com/mathematics/1d_cellular_automaton/

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

1D CA

30

I will use this example in the C++ lecture, hence the longer description.

Let’s give some nomenclature.

The cellular automaton lives on a playground of N spaces.
The playground is circular (its leftmost element and its rightmost element are next to
each other).
Each ‘space’ in the playground is called a cell.
A cell can be dead (0) or alive (1).
Time flows in discrete steps. At each given step the cell state can change or remain
the same.
The cell state changes depending on its own state and the state of its first neighbors
(usually known as a neighborhood).

Each automaton is completely defined by its initial state and its evolution rules.

Since there are eight possible configurations for a neighborhood, each with a possible
outcome of 0 or 1 in the next state, there is a total of 256 possible evolution rules.

State

Outcome

111 110 101 100 011 010 001 000

0 0 1 1 0 1 0 0

As an example, this is rule 52 (2^2 + 2^4 + 2^5).

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

ex9-ca1d.c [1/2]

31

#include <stdio.h>
#include <stdlib.h>

#define PLAYGROUND_SIZE 80
#define GENERATIONS 1
#define RULE 30

void init_rules(int rule, int* evolutionTable) {
 int idx;
 for(idx=0; idx<8; idx++) {
 evolutionTable[idx] = (rule & (1 << idx)) / (1 <<idx);
 }
}

void init_playground(int size, int* playground) {
 int idx;
 for(idx=0;idx<size; idx++) { playground[idx] = 0; }
 /* impulse */
 playground[size/2] = 1;
}

void print_playground(int size, int* playground) {
 int idx;
 for(idx=0; idx<size; idx++){
 if(playground[idx]==1) { printf("o"); }
 else { printf(" "); }
 }
 printf("\n");
}

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

ex9-ca1d.c [2/2]

32

void evolve_automaton(int size, int generations, int* evolutionTable, int* playground) {
 int* tmp;
 int idx, cell_idx;
 int c0, c1;
 int* tmp_playground = malloc(PLAYGROUND_SIZE*sizeof(int));

 print_playground(size, playground);

 for(idx=0; idx<generations; idx++) {
 for(cell_idx=0; cell_idx<size; cell_idx++) {
 c0 = cell_idx==0?size-1:cell_idx-1;
 c1 = playground[c0] * 4 + playground[cell_idx] * 2 + playground[(cell_idx+1)%size];
 tmp_playground[cell_idx] = evolutionTable[c1];
 }

 tmp = tmp_playground;
 tmp_playground = playground;
 playground = tmp;

 print_playground(size, playground);
 }
 free(tmp_playground);	
}

int main (int argc, const char * argv[]) {
 int evolutionTable[8];
 int* playground = malloc(PLAYGROUND_SIZE*sizeof(int));

 init_rules(RULE, evolutionTable);

 init_playground(PLAYGROUND_SIZE, playground);
 evolve_automaton(PLAYGROUND_SIZE, GENERATIONS, evolutionTable, playground);

 return 0;
}

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

Ex.10 - The Sieve of Eratosthenes

33

The Sieve of Eratosthenes is a simple iterative algorithm to generate a table
of prime numbers.

Take the list of the first 100 numbers, and start by removing the multiples
of 2. Then proceed to remove the multiples of 3. Then the multiples of 5 (4
has been removed when we removed the multiples of 2) and so on. At the end of
this process, what’s left are only the prime numbers between 1 and 100.

Write a program to implement this algorithm and use it to calculate the prime
factors of an integer number.

See:
http://en.wikipedia.org/wiki/Prime_factor
http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

This is the exercise where I saw the most ‘creativity’ in the algorithm
interpretation. Rather than implementing the Sieve most of you implemented a direct
visit method where rather than decimating the array removing the multiples
“directly”, you selected the prime and then iterated against every outstanding
element of the array and checked (via the modulo operator) if it was a multiple
before removing it.

Same result but different algorithm... I’m kind of curious as to why most of you used
this particular approach.

Wednesday, February 16, 2011

http://en.wikipedia.org/wiki/Prime_factor
http://en.wikipedia.org/wiki/Prime_factor
http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

34

My implementation of the algorithm follows the standard route, but adds a little bit
of fun but performing a zero suppression on the list of primes.

I generate the list of primes ‘sieving’ the array. This leaves me with an array
containing the prime numbers and a lot ot zeroes.

To produce a compact list I perform a zero-suppression creating a new list and
copying the non-zero numbers in it. The only ‘innovative’ trick is that rather than
doing it iteratively, I do it recursively using a technique which is typical of
functional programming where a list is split into a first element (which is operated
upon) and a list containing the rest of the elements which is then recursively fed to
the function itself. Recursion ends when the function receives the empty list.

The only additional trick is that to support my technique I’ve used a simple self-
describing array, that is an array which carries informations about itself (its
length in this particular case, which is stored in its first element). A better
approach would be to use a struct that holds the array itself and an integer
containing its lenght. This would also work for non-integer arrays.

I’ve split the program in functional blocks to make it a little more readable (even
though they’re not in the same order you would find in the actual program).

Don’t worry if the zero-suppression code looks a bit unfamiliar.

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

ex10-eratosthones_sieve.c [4/4]

35

int main (int argc, const char * argv[]) {
 int* primeNumbers;
 int* factors;
 int idx;

 primeNumbers = produce_sieve(SIEVE_SIZE);
 for(idx=1; idx<primeNumbers[0]; idx++) printf("%d ", primeNumbers[idx]);
 printf("\n");

 factors = prime_factors(NUMBER, primeNumbers);

 if(!factors[0]) {
 printf("It wasn't possible to fully calculate the prime factors of %d with ", NUMBER);
 printf("a table containing %d primes.\n", primeNumbers[0]);
 printf("This is the best I could do:\n");
 printf("%d ~= ", NUMBER);
 } else {
 printf("%d = ", NUMBER);
 }

 for(idx=1; idx<primeNumbers[0]; idx++) {
 if(factors[idx]!=0) {
 printf("%d^%d ", primeNumbers[idx], factors[idx]);
 }
 }
 printf("\n");

 return 0;
}

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

ex10-eratosthones_sieve.c [2/4]

36

/* The Sieve of Eratosthenes */

int* produce_sieve(int size) {
 int* data = (int*)malloc(size*sizeof(int));
 int idx, done, base;

 for(idx=0; idx<size; idx++) data[idx] = idx;

 done = 0;
 idx = 2; /* skip 0 and 1 */
 data[1] = 0; /* remove 1 from the sieve */
 do {
 if(data[idx] != 0) {
 for(base=2*data[idx]; base < size; base += data[idx]) data[base] = 0;
 }
 if(++idx>size) { done=1; }
 } while(!done);

 return zero_suppress(data, size);
}

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

ex10-eratosthones_sieve.c [1/4]

37

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define SIEVE_SIZE 100
#define NUMBER 53139008 /* 13^2 * 17^3 * 2^6 */
/* #define NUMBER 101 */

/* zero suppression */
int* append(int* list, int datum) {
 list[list[0]++] = datum;
 return list;
}

int* zero_suppress_me(int* data, int size, int* outcome) {
 if(size==0) return outcome;
 if(data[0]) return zero_suppress_me(++data, --size, append(outcome, data[0]));
 return zero_suppress_me(++data, --size, outcome);
}

int* zero_suppress(int* data, int size) {
 int* outcome = (int*)malloc(size);
 outcome[0] = 1;
 outcome = zero_suppress_me(data, size, outcome);
 outcome = realloc(outcome, outcome[0]);
 return outcome;
}

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

ex10-eratosthones_sieve.c [3/4]

38

/* Brute force prime factors calculation */

int divideAll(int value, int factor) {
 if(value%factor==0) return 1+divideAll(value/factor, factor);
 return 0;
}

int check_factorization(int value, int* primes, int* factors) {
 int cvalue, idx;
 for(idx=1; idx<primes[0]; idx++) {
 cvalue *= (int)pow(primes[idx], factors[idx]);
 }
 if(cvalue==value) return 1;
 else return 0;
}

int* prime_factors(int value, int* primes) {
 int table_size = primes[0];
 int* factors = (int*)malloc(table_size*sizeof(int));
 int idx;

 for(idx=1; idx<table_size; idx++) {
 factors[idx] = divideAll(value, primes[idx]);
 }

 if(check_factorization(value, primes, factors)) factors[0] = 0;
 else factors[0] = 1;

 return factors;
}

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

In the end...

39

‣ The exercises:

‣ I still have a significant number of exercises to correct

‣ If you didnʼt already, expect to hear from me in the next few days

‣ ALL exercise blocks will be corrected. Be patient.

‣ Iʼve looked at most of them, but didnʼt have the time to comment yet.

‣ Thanks for the time and effort youʼve put toward your implementations

‣ For some of you, these exercises were way too simple... sorry :)

‣ ʻYet another Fibonacci calculator...ʼ

‣ For some were way too difficult... sorry :)

‣ All in all, it was expected...

‣ ... but! If youʼve found these exercises difficult, you *NEED* to work
on practicising your programming skills and algorithmic thinking.

‣ It doesnʼt get any easier

‣ If you have questions, ask them...

Wednesday, February 16, 2011

International Trigger and D
A

Q
 School - 9-16 February 2011- R

om
e, Italy

A
n Introduction to C

 Program
m

ing - R
eview

 of Exercises

In the end (this time for real)

40

‣ A programming language is just a tool to an end.

‣ Thereʼs not a “right” or a “wrong” tool, just a lot of
different tools.

‣We stole a number of techniques (memoization,
catamorphisms, recursion, ...) from functional programming...

‣ Theyʼre tools.

‣The larger your toolset and your skill in using them, the
higher your expressive power and ability to tackle complex
problems.

‣ And remember:
A language that doesnʼt affect the way you think about programming, is not worth knowing.
(Alan J. Perlis, Epigrams on Programming)

Wednesday, February 16, 2011

