PROGRAMMING FOR TODAY’S
PHYSICISTS & ENGINEERS

V. Erkcan Ozcan

Bogazici University (& University College London)
With inputs from Ozgiir Cobanoglu

ISOTDAQ’11, February 09, 2011
@00

©
WORK ENVIRONMENT

Todays (astro)particle, accelerator experiments and information
industry: Large collaborations...

Need more than ever:

Code sharing/reuse - object orientation, atomic code, portability,
version control

Use languages/libraries/tools you might not know.
Code binding - framework integration

Usually with a “scripting” language: python, tcl, etc.
Documentation & good visualization

Doxygen, UML, wikis, bug-tracking, histogramming & graphing
Working remotely

Cloud computing/grid, batch systems, remote login/monitoring
Not reinventing the wheel

Finding the right libraries: thread-safe, well-tested, maintained

Open sourcing: Help others not reinvent the wheel

‘ In these side boxes, there will be
ISOTDAQ’11, Rome - V. E. Ozcan 2 tiny tips for more advanced stuff.

©

CorPYy & PASTE, BUT KNOwW WHAT YOU DO

Inheriting code from others is good - sometimes almost
compulsory.

But dont do it before you understand the underlying logic.

Ex: You are asked to write a piece of code in C++ that tells
you how many days there is in a given month, ie.

> howmanydays april
april has 30 days.

Luckily your colleague has a code that does a similar task:
converting the month number into month name, ie.

> whichmonth 6
The 6th month is june.

ISOTDAQ’11, Rome - V. E. Ozcan 3

©
HASH MAPS

#include <iostream
#include <trl/unordered map

const charx suffix{unsigned int nm s :
T Hash map: Convert some identifiers
if (nm==2) return "nd"; 7 :
return "ths) (keys) into some associated values.

using namespace std;

Useful for fast search
algorithms, for cacheing data, for

phb g et implementing associative arrays.
if (mnth<l || mnth>12) return 1;

int main{int argc, charxargv[]){

tdaq software commonly use

trlsiunor dered map(1n+ const charx > months;

Sl Sl B =] hash maps as part of pattern
hoTisk) - el recognition by clusterization or
oot 6 = g i, as part of networking for

o g% gy ., resolving se.rver/clien’r

months[12] = "cecenber’; unordered_map is part of the STL
cout << "The " << mnth << suffix{mnth) in the UPComing C++0x standard.

<" month iz " << months[mnth] << endl;
return 0;

}
ISOTDAQ’11, Rome - V. E. Ozcan 4

©

A SIMPLE DICTIONARY

#include <iostream:
#include *rl ‘unordered_map:

using namespace stds;
int main(int argc, charxargv[]){

o 2 5+ unordered _map< const charx, int > months;

months[" january"] = 31;
months[#FH”] = 28;
months[o h'] = 31;
months[i1"] = 30;
months["n] = 31;
months[‘ju "1 = 30;
months[”juiu] = 31;
months["august"] = 31;
months["septenber"] = 30;
months["octob »rj] = 31;

1;
months["novenber”] = 30
months["december"] = 31

cout << "february : ndays= ° << months[" february”] << endl;
cout << luw : ndays= " << months["june"] << endl;
cout << "december : ndays= " << months["december"] << endl;
return 0,

ISOTDAQ’11, Rome - V. E. Ozcan 5

Modification and testing

Checked from
documentation that
hashes for char* are also
available.

Tested with a few
examples: looks good...

> g++ test.cxx

> ./a.out
february : ndays= 28
june : ndays= 30

december : ndays= 3l

So now final product?

#include <iostream:
#include

using namespace stds;
int main(int argc, charxar

if (argc!=2) return 1;

trls:tunordered_map< const charx, int > months;

months[" january”] = 31;
months["february'] = 28;

months["march"] = 31;
months["april"] = 30;
months[“mag | =313
months[”jumy‘] = 30;
months["] '] = 31;
months["august"] = 31;
months[" »; quer”] = 30;
months["o *ul»v”] =313
months[" nu enber"] = 30;
months["der +Jbe "] = 31;

cout << argv[1] << " has "

< " days" << endl;
return 0;

ISOTDAQ’11, Rome - V. E. Ozcan

FINAL CODE

gv[I{

<< months[argv[1]]

Assume enduser is well-
behaved.

In real-life, never do
that!

FINAL CODE

1
-+

#include <iostream:
e <trl/unordered map

#includ 2
Assume enduser is well-

int main{int argc, chariargv[]){ k)ear\(l\IGBCj-

W (Brg] <2) SRR L In real-life, never do
trls:tunordered_map< const charx, int > months; I

months[" january"] : 1' h 01' .
months["february"] = 28;

using namespace stds;

"
[N
=

monthsE“mevch”% = 31; 2

months| "april” | = 30;

il ot el Final product...
months[" jure"] = 30;

months[" july"] = 31;

months["august"] = 31;

months["september"] = 30;

months["acf[ber“J = 31;

months["novenber”] = 30;
months["decenber"] = 31;

cout << argv[1l] << " haz " << months[argv[1]]

<< " days" << endl;
return 0;

ISOTDAQ’11, Rome - V. E. Ozcan 6

#include aimff =1
#include

using namespace stds;
int main(int argc, charxar

if (argc!=2) return 1;

trl/unordered map’

FINAL CODE

gv[I{

trl::unordeﬁed_map< const charx, int > months;

months[" january"] = 31;
months["+ Ha|j“] = 28;
months["march"] = 31;
months["april"] = 30;
months["nay"] = 31;
months[”jur ‘] = 30;
months[" july"] = 31;
months["august"] = 31;
months ["=ep quer”] = 30;
months["o ul»v”] =313
months["novenber"] = 30;
months["der +Jber“] = 31;

cout << argv[1] << " has "

< " days" << endl;
return 0;

ISOTDAQ’11, Rome - V. E. Ozcan

<< months[argv[1]]

Assume enduser is well-
behaved.

In real-life, never do
that!

Final product...
does NOT work!

> g++ test.cxx
> ./a.out june
june has O days

FINAL CODE 2

#include <iostream>
#include <trl/unordered map’
#include <ext/hashtabhle.h:

using namespace std;

struct stringEqual{
bhool operator()(const charx strl, const chart str2) const {
} return stremp(strl,str2)==0; }

int main{int argc, charxargv[]){
if (argc!=2) return 1;

trlsiunordered_map< const charx, int,
__gnu_cxx s thash<const charx>, stringEqual > months;

months[" january"] = 31;
months["february"] = 28;
months[" march"] :
months["zpril"]
months['nay"] =
months[" june"]
months[" july"]
months["august"
months["septenber
months["october"]
months["novenber"] = 30;
months["decenber"] = 31;

cout << argv[1] << " has " << months[argv[1]]
<< " days" << endl;
return 0;

}

ISOTDAQ’11, Rome - V. E. Ozcan 7

Write a comparison
function between entries...

Template also needs a hash
function.

good news: gcc
extensions have one.

> g++ test.cxx
> ./a.out june
june has 30 days

It works!

©
FINAL CODE 3

kinclude <iostream
=) Lt/

#includ hash map

using namespace std; Mixing trl::ordered_map with

=truct StpingEqual{ _gnU_CXX::hGSh iS a redlly bdd ChOiCe.
bool operator(){const charx strl, const charx str2) const { : :

} return stremp(strl,str2)==0; } Why? Find this out yourself, by

j finding out how many times

int main(int argc, char*argv[]){ SfringEqual IS being called.

pilerec| =2 AL Proper code without mixing - all using

__gnu_cxxsthash_map< const charx, int, i
__gnu_cxx s thash<const charx>, stringEqual > months; gnu extensions.
nonths[[| arary '] = 313 Why? Find this out yourself, by
N e finding out how many times
months['april"] = 30; stringEqual is being called.
months[ul y] = 31;
mgsz % - 30 Finally we have code that works fast,
months[“?;a_u;;[;;-t "] = 34; reliably & correctly.
monthSE 355”] = 30;
months tober"] = 31;
ot e veabert] = 301 We are done...
months[“dec&mbew”] = 31;
> g++ test.cxx
cout << argv[1] << " haz " << months[argv[1]]
<< " days" << endl; > ./a.out december
} return 0; december has 31 days

ISOTDAQ’11, Rome - V. E. Ozcan 8

FINAL CODE 4

#include <iostream
#include tr i
#1include

using namespace std;

int main(int argc, charxargv[]){
if (argc!=2) return 1;
trlsiunordered_map< string, int > months;

months[" january"] = 31;
months["february"] = 28;

months["march"] = 31;
months["april"] = 30;
months["may"] = 31;
months[" june"] = 30;
months[" july"] = 31;
months["august"] = 31;
months["september"] = 30;
months["october"] = 31;

1;
months[‘novenber"] = 30;
months["december"] = 31

Cout <L apgv[l] 'Y I has T

{{ 7 days” <« endi;
return Q;

]
ISOTDAQ’11, Rome - V. E. Ozcan

<< months[argv[1]]

How about a portability?

Not portable in time: trl::xxx has a
chance of becoming part of C++, while
__gnu_cxx are likely to disappear.

Not portable in space: No chance of your
code working with any other compiler.

Need a simple, clean implementation.
Know and use STL consistently.

Steep learning curve, but STL containers
& classes saves you a lot of effort.

They are also MUCH safer - resistance to
buffer overflows, thread-safety, etc.

Finally we have code that works fast, reliably
& correctly &
it is short and portable.

Or at least this is what you might believe.

©
DOCUMENTATION

#include <iostream
#include <string.h Internal and external documentation!
// Might need to remove trl when C++X0 finalises
#include <trl/unordered_map It helps the POOF' s’rranger who
using namespace stds; inherits your code, i.e. be kind to
int main(int argc, charxargyv[]){ maintainers.
f/ Don't do anything if number of arguments != 1 3 years not USiI"Ig your code: you will

if (argc!=2) return 1; be a poor s’rranger'

f/ Might need trl removed, when C++X0 finalises i ¢
/4 Using unordered_map - should be scalahle Documentation genera’rors like

/4 This would not work if string => char* array
trlsiunordered_map< string, int > months; Doxygen are handy. www.doxygen.org

months[" january"] = 31; | For large projects, consider using UML
mggmz%l]]31;28; // have not considered leap years (unified modelling language) from start,
months['zpril'] = 30 l.e. during design.
months[?gag““ = 31;
o i E PS: For you own benefit, it also helps to
monms%j‘é:_ ust"] = 31;30 keep a history of how you compiled/ran
months ["septenber"] = 30;
months["october" 31; your code.
nonths["november”] = 303 ; . :
months["decenber"] = 31; Even just dumping your shell history
£/ not implemented any catches for non-existing month names (hIS'|'OI"y > mys’reps.’rxﬂ will be
cout << argv[1] << " has " << months[argv[1]] qquing[y useful.

<< " days" << endl;

} return 0;

speaking of histories, do you know of pushd /popd?
nicely aliasing cd with pushd can be powerful.

ISOTDAQ’11, Rome - V. E. Ozcan 10

http://www.doxygen.org
http://www.doxygen.org

©
KEEPING TRACK

Version control systems are a must while collaborating.
But also excellent for personal use if you want fo keep track of what you do.
The “basic” ones are CVS and Subversion.

Particularly for your private repositories, distributed management systems are a
must.

Your instance is the full repository with history.

My favorite is git : git-scm.com (but others like mercurial, bazaar, etc. around)

FOSS initially developed for Linux kernel code management.

Linus Torvalds: "The slogan of Subversion for a while was "CVS done
right”, or something like that, and if you start with that kind of slogan,
there's nowhere you can go. There is no way to do CVS right.”

git: (v) to go. [Turkish to English translation.]

That is what you will soon say to cvs/svn-users: “please git”!

ISOTDAQ’11, Rome - V. E. Ozcan 11

http://git-scm.com
http://git-scm.com

GIT EXAMPLE

do everything with trl::unordered_map and stl strings. Erkcan Ozcan <erk
all gnu extension version Erkcan Ozcan <erks
introduce a stringEqual() function and use __gnu_cxx::hash Erkcan Ozcan <erk
code to read command line argument and use char* to int unordere | Erkcan Ozcan <erk |
dictionary from char* to int. static examples Erkcan Ozcan <erk
zeroth version. takes number of month and print out the month's n | Erkcan Ozcan <erk

SHALID: ef7d337833187c42b610602f08558a54a3e33d04 | €= | = Ro,

‘ind (next \1./ prev \: commit ' containing: %'5
s - B v 4

(Search \}
, orm—

8 Diff O Old version Q New version Lines of context: 3 @ []
Juthor: Erkcan Ozcan <{erkcanfErkcans-MacBook.local> 20818-81-31 4
‘ommi tter: Erkcan Ozcan <erkcanlfErkcans-MacBook.local?> 2018-81 ¢
arent: d9ebd9bd668c9631 fH27429d6198003929131f944 (introduce a s ~
hild: 627cbdSela8e88ch3784475c8aBbeBb1 2444951 (do everything
iranch: master

“ollows:

Precedes:

all gnu extension wversion

test.oxx
index fd28911..6c8b3ec 106644
@@ _1’6 +1 ,5 @@
#include <{iostream?
-#include <tr1/unordered_map’
-#include <ext/hashtable.h?
+#include <ext/hash_map>
w

using namespace std;

W -13,7 12,7 BR int main{int arge, char*argv[]){

——

if {argc!=2) return 1;

E—

ISOTDAQ’11, Rome - V. E. Ozcan

Start empty repository:

> git init

Add a new file and commit each
version:

> git add fest.cxx
> git commit test.cxx

Check differences to committed code:
> git diff test.cxx

tk-based GUI (among others):

> gitk &

clean/compress repository:

> git gc --aggressive

git makes a powerful collaboration tool when
combined with a web-based file hosting service.

©
USE THE RIGHT TOOL

Do not use a sledge hammer to crack a nut!

For quick and not-so-dirty solutions, use inferpreted languages, like
python, perl, tcl...

These languages are also commonly used as part of binding frameworks:
fast C/C++ modules instantiated, executed and their results bridged.

Personal favorite Python: Very expressive language with largest standard

“brary affer Java. from sys import argy

20 : if len(argv)!=2:
Our dictionary example is a exi(t(§ :

treat with the built-in

et > months={' january':31, 'february':28, 'march 5

dlC"'IOI'\ClI”y fYPei dict. april’ :30, ‘may 31, Jjune tals
: : : July” 31, ‘august’ 31, ‘“september 130,

Realise that using the I"Igh'l' '‘october':31, 'november':30, 'december' :31}
tool might mean convincing .
colleagues/boss who like the “ prt‘-int argyv[1], "haz", months[argv[1]], "daus’
) 54 except:

old Wor print "0 days”

ISOTDAQ’11, Rome - V. E. Ozcan 13

©
SWISS ARMY KNIFE

Your swiss army knife in the *nix world is awk!
Named after Aho, Weinberger, Kernighan.

A full-fledged (Turing-complete) interpretted (compilers
also exist) programming language hidden inside one single
command, and present in ANY *nix environment.

Ex: browse all pictures from your camera - haphazardly
distributed in a directory and resuffix all .mp4 files to .3gp.

find . | awk -F. '{if ($NF=="mp4") print "mv",$0,$0}' |
sed s/'\.mp4'/'\.3gp'/2 | awk ‘{system($0)}

In the *nix world small gears make big machines...

awk goes best with sed, head, tail, sort, find, grep.

If you prefer a leatherman tool instead of a swiss

ISOTDAC 1L Rome - V. E. Ozean 14 army knife, there is perl, python, ruby, etc.

ORGANIZE YOUR CODE

Have a meaningful directory structure.
Do not create all your projects at the root of your home directory.
When installing from source:

./configure --help is your friend. Use it to learn how to direct your
installation to non-default (/usr/local/) directories.

Choose directory names wisely - put version numbers.

Softlinks are your friends. Use them to define hide different
versions of code. Ex:

lruxr-xr-x 1 erkcan admin 12 May 3 2010 -> rooth,26,00b

dr-xr-xr-x 29 erkcan admin 986 Oct 21 20093
dr=xr-xr-x 30 e admin 1020 May 3 2010

Exercise permission features properly. Minimum rights principle as
usual in all *nix.

©
BACK TO PORTABILITY

Use makefiles. all: a,out

Makefiles that come with many modern test.o: test.cxx

packages might look complex at first. kS S T 5T 30 3<

Write your own once, and it will be all Sk

clear. JPHONY: clean all
clean:

Parallel compilation: make -j4 rn -f test.o ./a.out

Learn about autoconf, automake, CMake, etc.

Even if you dont know how to write configurations, learn how to
use them.

For Java + parallel compilation, try Antf, Maven.
ant.apache.org maven.apache.org

ISOTDAQ’11, Rome - V. E. Ozcan 16

http://ant.apache.org
http://ant.apache.org
http://maven.apache.org
http://maven.apache.org

©
DEBUGGING, PROFILING

Injecting printf/cout statements for debugging your code becomes
unmanageable when your code becomes too much integrated in a
framework.

gdb, GNU Debugger, is the way to go.

Most crashes are due to accessing memory locations that are not to be
accessed: dereferencing NULL pointfers, overflowing arrays,... gdb can
give you a stack trace at the minimum - your core files become
meaningful.

Basic gbd commands: run, bt, info <*>, help

However gbd is missing a major functionality: Large piece of code
frequently means memory leaks.

Try the smart pointers, as they become more common (part of C++x0
standard, you can also try BOOST libraries, www.boost.org).

Use a profiling tool like Valgrind (now also on MacOSX)! valgrind.org

ISOTDAQ’11, Rome - V. E. Ozcan ;i

http://www.boost.org
http://www.boost.org
http://valgrind.org
http://valgrind.org

©
WORKING REMOTELY

ssh is a way of life.

Dont write your password all the time, by using public key
authentication.

Generate keys with 'ssh-keygen -t dsa'. Use a passphrase.
Don't copy id_dsa, only copy id_dsa.pub. Use ssh-agent to
save repeatedly entering passphrase. Append your public

key to ~/.ssh/authorized_keys on machines that you want
to log in to.

sshfs is a nice way to mount ssh-accessible space.
But does not offer the goodies in using AFS.

When you want to share files with other users on AFS,
remember that simple UNIX file permissions are not enough.

ISOTDAQ’11, Rome - V. E. Ozcan 18

©

PROTECTING YOUR WORK TERMINAL

screen is GNUs hidden gem.

Part of the GNU base system: Present by default on almost
all *nix machines around.

Creates virtual terminals - that do not die when
connection is lost, X crashes, efc.

Your processes can Keep on working affer you log-off.
(Alternative is nohup, but has a lot fewer features and
quite often it is blocked from users.)

screen cannot be described, it is lived!

Try it. Tip: CTRL+A then ? fo see shortcut keys.

Warning: It can be addictive...

If you want a colorful visualisation of your

ISOTDAQ’11, Rome - V. E. Ot 19 screens, try a program like byobu.

https://launchpad.net/byobu
https://launchpad.net/byobu

©

PROTECTING YOUR WORK DESKTOP

VNC, Virtual Network Computing, is the equivalent of screen, but for
full-fledged graphical desktops.

You can create virtual desktops that live without you being logged
on.

You need a vnc client on your side, and a vnc server on the remote
machine. (Mac OSX 10.5+ screen sharing is VNC compatible.)

NEVER use VNC directly - your desktop can/will be watched by
men-in-the-middle.

ssh port forwarding is the right way to go! Ex:

ssh -L5902:<VNCserverlIP>:5902 <user>@<remoteMachine>
vncserver :2 -geometry 1024x640 -localhost -nolisten tcp

Additional bonus: VNC communication is/can-be made much faster
than X forwarding.

ssh port forwarding can allow you to go behind
2 i i v
SOTHAONE Rowe 2 VR Oscda 20 firewalls by connecting remote ports too!

©

GETTING THE MOST OUT OF YOUR MACHINE

Nowadays even the laptops are multicore.

However most physics-code authors dont know anything
about threading, etc.

Task spooler - vicerveza.homeunix.net/~viric/soft/ts/

Extremely light-weight batch system.

Pure C, no dependencies, compiles and works easily on
GNU systems with gcc (Linux, Mac OSX, Cygwin, etc.).

export TS_MAXCONN=20

export TS_SLOTS=<#cores>
ts

ts <job>

If you don’t set TS_MAXCONN, you might reach
ISOTDAQ'11, Rome - V. E. Ozcan 1 the OS’s limit for maximum number of open files.

http://vicerveza.homeunix.net/~viric/soft/ts/
http://vicerveza.homeunix.net/~viric/soft/ts/

©
BATCH SYSTEMS

PBS or LSF are common in HEP institutions.

Good practice to learn about your resources as early as possible.
GRID is the future. Get your certificate.

Beware! Getting a certificate can be time consuming.

You will also need to join a virtual organization.

ts wrapper script to make it behave like PBS's gsub command [FEE’
Last modified 16/11/09 veo -
Currently understood command-line options: -N {name of joh) -o (stdout location)

Known issues:

1-always takes the last string as the name of the process to be run

Z2-only bash scripts are properly handled, other shell scripts will need trivial modifications

echo $% |
awk '{nid=0; soid=0;

gtl="file "$NF; gtl | getline filetype;

split(filetype,fta);

for (i=1;i<NF;++i) { if ($i=="-N") nid=i+l; if ($i=="-0") soid=i+l; }

print "ts", (nid?"-L "$nid:""), (soid?"sh -c "\'"'":""){(fta[2]=="Bourne-Again"7"bash ":"")3INF, (so
id?">"$80_i_d"'\' Ill:llll);}l | awk I{qutem($0)}l

ISOTDAQ’11, Rome - V. E. Ozcan 22

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html

©
NOT REINVENTING THE WHEEL

GNU Scientific Library (GSL) - www.gnu.org/software/gsl/
thread-safe numerical C library for many applied math topics
pros: no dependencies, extensive test suite, 1000+ functions

complex numbers, special functions, differential equations, FFT,
histograms, n-tuples, random distributions, linear algebra, root-finding,
minimization, least-squares fitting, physical constants,...

cons: many of these are done better/faster by specialized packages.

Ex: FFTW, Fastest Fourier Transform in the West - www.fftw.org

C library district Fourier transform, competitive even with commercial
codes. Threading support.

Ex: GMP, GNU Multi-PRecision library - gmplib.org
C library used in GCC, GNU Classpath, in Mathematica, Maple, SAGE...

Ex: Complex numbers are already in C99 standard. #include<complex.h>

ISOTDAQ’11, Rome - V. E. Ozcan 23

http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/
http://www.fftw.org
http://www.fftw.org
http://gmplib.org
http://gmplib.org

©
KNOWING YOUR REAL NEEDS

DN0EERBINGD N = e = e e
A0 ™ o
£0n /\
B> g—e—Ng o ! ! ’
G D N T} - JaxoDraw -
‘Z-'J‘S- ["\ jaxodraw.sourceforge.net
#1238 f \ - — L — g
33 4| T e —— — .
dou e Can export to postscript but also to latex
= |o| 20 => uses axodraw latex package
Covent Gwaitony | hame prihe Comrowt mnde LU RE ReSal J -j

UNU.RAN, Universal Non-Uniform RANdom number generators - statistik.wu-
wien.ac.at/unuran

Pseudo-random number generation is the core of a good Monte Carlo generator.

Mersenne twister MT19937 has period of 2'9%°"—1. It is fast. It passes many of
the statistical tests, ex. DieHard tests. www.stat.fsu.edu/pub/diehard

Excellent for physics MC. Default generator in many modern libraries/languages,
like python.

But if you want to use it from crypting your data, it is useless!!!

ISOTDAQ’11, Rome - V. E. Ozcan 24

http://statistik.wu-wien.ac.at/unuran/
http://statistik.wu-wien.ac.at/unuran/
http://statistik.wu-wien.ac.at/unuran/
http://statistik.wu-wien.ac.at/unuran/
http://www.stat.fsu.edu/pub/diehard
http://www.stat.fsu.edu/pub/diehard
http://jaxodraw.sourceforge.net
http://jaxodraw.sourceforge.net

OTHER FOSS PACKAGES

GNU R - www.r-project.org

"lingua franca among statisticians” - including people in finance,
genetics

Interpreted programming language + software environment for
statistical data analysis and graphical representation

Java Analysis Studio - jas.freehep.org
Part of Freehep - JAVA based HEP & related software

GNU Octave - www.gnu.org/software/octave/

Open-source Matlab alternative

SAGE - www.sagemath.org

Open-source alternative to Maple, Mathematica, Matlab

An excellent list for more good stuff:

Andy Buckley's website www.insectnation.org/
howto/academic-software

ISOTDAQ’11, Rome - V. E. Ozcan 25

http://www.r-project.org
http://www.r-project.org
http://jas.freehep.org
http://jas.freehep.org
http://www.gnu.org/software/octave/
http://www.gnu.org/software/octave/
http://www.sagemath.org
http://www.sagemath.org
http://www.insectnation.org/howto/academic-software
http://www.insectnation.org/howto/academic-software
http://www.insectnation.org/howto/academic-software
http://www.insectnation.org/howto/academic-software

©
ROOT

Among other packages, one is 8_ . ':53
(unfortunately?) almost compulsory: 3 Overtow o
ROOT - root.cern.ch 6 Consant 4696177
Covers everything needed for 5 Sigma__0.5267 0.1999
statistical data analysis: Graphing, ar
fitting, histogramming, ... 3f-
Has bindings/wrappers for many other 2
libraries: GSL, UNU.RAN, various MC 12 ~—

-
p—
-
b
-
-
-
-
-
-
=

programs, TMVA, Roofit, etc. i

o
—
N
w
s
ol
o
~
o
©

Comes with a C++ inferpreter for quick and DIRTY jobs.

Try its python interface: pyroot root.cern.ch/drupal/content/how-use-
use-python-pyroot-interpreter

Lecture by Dr. Cobanoglu next Monday will have the details.

ISOTDAQ’11, Rome - V. E. Ozcan 26

http://root.cern.ch
http://root.cern.ch
http://root.cern.ch/drupal/content/how-use-use-python-pyroot-interpreter
http://root.cern.ch/drupal/content/how-use-use-python-pyroot-interpreter
http://root.cern.ch/drupal/content/how-use-use-python-pyroot-interpreter
http://root.cern.ch/drupal/content/how-use-use-python-pyroot-interpreter
http://agenda.infn.it/materialDisplay.py?contribId=25&materialId=slides&confId=2987
http://agenda.infn.it/materialDisplay.py?contribId=25&materialId=slides&confId=2987

©
CLOSING ADVICE

Before doing any TDAQ programming, please make sure you know the following
concepts by heart:

Compiler, interpreter, representation of objects in a computers memory,
pointers, passing by reference, etc., ie. what is under the hood.

If you feel you are not as comfortable with these concepts as you like, have
a look at the excellent video lectures on the web.

Personal recommendation: Stanford CS107 lectures by J. Cain. It also
contains some more interesting stuff like functional programming.

Please think, then implement.

For a really smart solution for a tough programming problem, you can even
think for days before implementing. (Take the problem on the backburner, do
other things but brainstorm in the breaks.)

Consider reading “basic stuff” before bugging people you dont know (like on
mailing lists.)

Browse through readme files, use wikipedia, google, etc.

When you bug them, provide code snippets, software versions, etc.

ISOTDAQ’11, Rome - V. E. Ozcan 27

CONCLUSION

This “lecture” is full of starting points, it needs you to follow up...

It is full of stuff that will make your life easy. After you start using
them, you might get surprised how you lived without them before.

But there is no “free lunch”. They need a minimum amount of investment
from you.

So pick some of the leads from this falk and start playing with them.
If you start testing them today, you can get direct help from us!

Examples to fry: download and compile ts and fry to push the CPU
utilisation of your n-core machine to 100%:; install git and start a
repository; run screen on a remote terminal, Kkill the connection,
reconnect and continue from where you left; do the exercise mentioned
on slide “Final Code 3”; create a few fake .mp4 files and run the example
command on slide "Swiss Army Knife” up to one pipe (I) at a time to
understand what it does,...

ISOTDAQ’11, Rome - V. E. Ozcan 28

R AN e AT
E o LIS PR e : R e

B el SO cpa]

o o - g \ - X A e o Lo =t -'.___,A i AP I o - - o ek e b -
5 e 4o WAL o i AT T e Gl g R et z gt R e

HISTOGRAMS

Mathematically speaking: an array of numbers which
indicate the frequency/count of observations that fall
into disjoint categories (bins).

Computer representation: a simple array
But, histograms are useful when they are plotted...

If you dont already, please learn what is the difference
between a distribution and a histogram.

Like with anything else in this presentation, you can
refer to http://en.wikipedia.org/wiki/Histogram

ISOTDAQ’11, Rome - V. E. Ozcan 30

http://en.wikipedia.org/wiki/Histogram
http://en.wikipedia.org/wiki/Histogram

©
NOTES & LICENSES

PS: I am aware of the small “problem” in the suffix()
function shown on slide number 4. :-)

The ts wrapper script on slide number 22 is hereby
licensed under GPLv3. Everything else in this presentation
(including the images) is hereby released under Creative
Commons Attribution-ShareAlike 3.0, except for the
Bogazi¢i University logo and the screenshot shown on
slide number 24, which has been taken from the jaxodraw
website - it has been reduced in resolution and I believe
its use like this falls under fair use conditions.

These lectures have been prepared for the ISOTDAQ
schools in Ankara and Rome.

@00

ISOTDAQ’11, Rome - V. E. Ozcan 31

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

