

Direct Detection of Dark Matter with DarkSide-20k

Paolo Agnes, GSSI RICAP 2022 Rome, 7th Sept 2022

Expected rate in direct detection

Noble liquids

- Low energy threshold (E < 100 keV)

- Large mass (~ 1 event/tonne/yr @ 10-47 cm2 in noble liquids)

- Background suppression

Deep underground Passive/active shielding Low intrinsic radioactivity ER background discrimination

Noble liquids are suitable targets:

scalable, easy to purify
large ionization/scintillation yields (W~10 eV)
ER recoil background discrimination

Complementarity: great value in case of an excess

. . .

Direct detection of dark matter (SI)

Dual-phase TPCs — DarkSide-50

==> 3D vertex reconstruction (surface events, multi-sited events) !

S1 and S2 Yields:

- S1 Yield ~7.9 pe/keV at null field
- S1 Yield ~7.0 pe/keV at 200 V/cm
- S2 yield ~23 pe / e-

Electron lifetime > 5 ms

Maximum drift time: 376 µs

Pulse Shape Discrimination in Liquid Argon

S1 prompt fraction

Excited dimers decay with two decay constants, $\tau_{fast} \sim 6 \ \text{ns}$ and $\tau_{slow} \sim 1.6 \ \mu\text{s}$

ER and NR excite fast and slow in different proportion

```
==> ER Rejection factor: ~ 10<sup>8</sup> in LAr
```


DEAP-3600: Eur. Phys. J. C 81,823 (2021)

³⁹Ar is produced by cosmic rays in the atmosphere. β-decay with Q = 565 keV; $\tau_{1/2}$ = 269 yr ³⁹Ar activity in atmospheric argon (~ 1 Bq/kg): limiting dual-phase target mass

==> extract argon from underground (CO₂ well in Colorado) !

- ³⁹Ar activity in underground argon (0.73 ± 0.10 mBq/kg)
- Possibly smaller: presence of ⁸⁵Kr indicate possible presence of atmospheric air

Background suppression

- Ultra-low background materials
- Depleted Liquid Argon
- Low background photo-detectors
- Low background material components

Active Shielding

- Active Neutron Veto
- Water Cherenkov against muons (WCD)

Background identification

- Pulse Shape Discrimination (PSD)
- Ionization/scintillation ratio
- Position reconstruction (surface events)
- Multiple scatters within the TPC

DarkSide-50 — High-mass WIMP results

Blind analysis published in 2018

- 524 live-days
- Use first 70 days of UAr dataset to tune cuts
- **Minimise backgrounds** while maximising acceptance to NR

17.10³ kg.d: background free!

Expected backgrounds in ROI, before opening box

NR	surface alphas	0.001
NR	cosmogenic neutrons	<0.00035
NR	radiogenic neutrons	<0.005
ER	electron recoil	0.08
		0.09±0.04

DarkSide-50 low mass

Look at the ionization only spectrum $(W_{ion} = 23.5 \text{ eV}, \text{ gain in the gas: } 23 \text{ PE/e}^-)$ Below 3 keVee: give up the scintillation signal (too small to trigger the detector), and thus - minimal fiducialization (only radial) - no PSD

No more background free

==> Background model for DarkSide-50

First analysis in 2018, recently updated !

- -> WIMP-N 2207.11966 -> Migdal effect 2207.11967 -> WIMP-electron
 - 2207.11968

DarkSide-20k

by the Global Dark Matter Argon Collaboration

DarkSide-20k

- To be installed in Hall C at LNGS
- Hosted inside a 700 t AAr LAr bath, in a cryostat à la ProtoDUNE
- Target: 50 t UAr as WIMP target
- Veto: 35 t UAr + custom developed Gd-PMMA, optimized for radiogenic neutrons
- Novel readout system for the scintillation light, based on grouped SiPM arrays (> 25 m²)

From PMTs to SiPM arrays

PROS

- Cryogenic temp stability
- Better single photon resolution
- Higher photo-detection efficiency
- Low voltage operation
- Lower background (Si intrinsically radiopure)
- Lower cost

CONS

- Small area ≈ cm2 (group them)
- High dark rate (solved, + operated at 87K)
- High output capacitance for large devices (~0.5 us recharge)

2 optical planes for the TPC + 480 channels to instrument the UAr veto

PDU design, results of years of R&D

parameter	spec required	spec achieved			
PDE @ 420 nm	> 40%	> 42%			
DCR (87 K)	250 Hz / tile	~ 20 Hz / tile			
correlated noise probabilities (afterpulses, cross talk)	< 50% + 50%	<10% + 35%			
SiPM gain	> 1E6	> 1E6			
SNR after ARMA filter	> 8	> 15			
time resolution	~ 10 ns	~15 ns			

PDU mass production (and testing) is starting

- Wafer delivery from LFoundry started in 2022.
- Packaging and assembly for TPC sensors: **Nuova Officina Assergi** (NOA), about to start operations
- Packaging and assembly for Veto sensors: RAL and Liverpool, UK
- Several test facilities to qualify production: Naples, Liverpool, Edinburgh, AstroCent...

The UAr target: URANIA & ARIA

1) UAr extraction at the URANIA plant. Industrial CO₂ extraction plant in Cortez, Colorado; Plant ready to be shipped; Expected argon purity at outlet: 99.99%; UAr extraction rate: 250-330 kg/day;

URANIA

3) Qualification at Canfranc, DArT in **ArDM**

A single-phase LAr detector with active volume ~1L, capable of measuring UAr to AAr 39Ar depletion factors of the order of 1000 with 10% precision in weeks

2) Cryogenic distillation at the ARIA facility Installed in the shaft of a coal mine Chemical purification rate: 1 t/day

First module operated according to specs with nitrogen Run completed with Ar at the end of 2020: results to be published soon. Full assembly about to start

(Eur. Phys. J. C (2021) 81:359)

28 m

350 m

Radiogenic neutron veto

• TPC surrounded by a single phase (S1 only) detector in UAr (35 tonne)

- Neutrons are captured by the Gd-loaded acrylic
- From the capture gamma ray shower up to 8 MeV
- Scintillation light is shifted by PEN wls and detected by SiPMs (400 channels) in both buffer and TPC

 ~90% tagging efficiency from simulation, acceptable accidental lifetime loss

R&D(s) for Gd-loaded acrylic concluded. Radioactivity assay satisfactory. Moving to production

Gadolinium oxide nanograins (Gd O) mechanical dispersion in MMA.

 $Gd(MAA)_3$ doped acrylic sheet (5 cm thick)

Projected sensitivity

Projected sensitivity based on bg-free exposure (<0.1 events in 200 t.yr) using the FV (innermost 20 tonnes of UAr) AND using the full active volume (PLR approach, bg pdfs known) Main backgrounds (in 200 t.yr): CEvNS (3.2 ev), radiogenic and cosmogenic neutrons, ER+Cherenkvov, S1+S2 accidental coincidence...

Conclusions

- R&D phase for the DS-20k detector completed, construction is starting!
- Production of SiPMs started and PDU mass test facility is ready
- Underground Ar procurement and characterisation project is ongoing (URANIA & ARIA & DArT-ArDM)
- Underground Argon cryogenic system has been successfully tested at CERN and is being relocated at INFN-LNGS
- Construction of the DS-20k cryostat will start soon in Hall C
- Mechanical mockup testing scheduled to take place at INFN-LNGS starting this year
- Data taking expected in 2026
- <u>Wide range of physics</u>:
 - most sensitive WIMP search of the next decade
 - potential at **lower WIMP masses** being assessed (dedicated detector?)
 - sensitivity to supernova v bursts

- ...

P Agnes, RICAP 2022

Full background budget obtained thanks to:

- Massive material screening (Jagiellonian University, CIEMAT, SNO, Canfranc, LNGS, Boulby) and strict material selection (+ account for broken equilibrium)

- Independent tools for (α, n) emission probability (SaG4n: http://win.ciemat.es/SaG4n/)

- Full simulation of detector geometry, particle tracking, UAr scintillation, detector response and analysis strategy

Irreducible CEvNS: 3.2 evts in ROI in 200 t.yr		Š	is election	ing and p	urflication opology	` Ċ	anumentation veto
Background type Bg	events in ROI $[200 \mathrm{tyr}]^{-1}$	Mater	Clear	"Event	psp	PAYIN	Neuti
(α, n) neutrons from U and Th	9.5×10^{-2}	V ,		<i>.</i>			\checkmark
Fission neutrons from U-238	${<}2.3 imes10^{-3}$	V,		V,			\checkmark
Neutrons from Rn-222 diffusion and surface plate-o	out $< 1.4 \times 10^{-2}$	\checkmark	\checkmark	\checkmark			
Cosmogenic neutrons (stat limited)	$< 6.0 \times 10^{-1}$			•		\checkmark	
Neutrons from the lab rock	$1.5 imes 10^{-2}$	V .		.			
Random surface α decay + S2 coincidence	${<}5.0 imes10^{-2}$	<i>.</i>	\checkmark	<i>.</i>			
Correlated $ER + Cherenkov$	${<}1.8\times10^{-2}$	<i>.</i>					
Uncorrelated ER + Cherenkov	${<}3.0 imes10^{-2}$			\checkmark			
ER	$< 1.0 \times 10^{-1}$				\checkmark		

TABLE 26. Nuclear recoil (NR) backgrounds expected during the full DS-20k exposure, based on current data and Monte Carlo simulations. The right column is the total number of events surviving the veto cut, fiducial volume cut, and PSD.

DarkSide-LowMass

Design optimization:

— to reduce gamma background:

- material choice
- geometry
- active veto
- fiducialization

- to increase single electron sensitivity:

- high extraction field

R&D needed to understand/reduce the single electron bg that dominates < 4 ne

