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Challenges when studying AGNs (- blazars)

AGNs (- blazars) emit radiation over a large energy range
Emission at different energies could be due to same particle population
= Need many instruments to fully characterize emission in these objects
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Challenges when studying AGNs (-2 blazars)

AGNs (- blazars) emit radiation over a large energy range
Emission at different energies could be due to same particle population
= Need many instruments to fully characterize emission in these objects
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Spectral energy
distribution (SED) of
the Blazar Mrk 421

Gamma-ray bump of
many sources could only
be accurately measured
with the advent of
Fermi-LAT + modern IACTs
like HESS/MAGIC/VERITAS

- Crucial for the

theoretical modeling of
the broadband emission
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Blazars show SHORT variability timescales
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Sub-hour flux variations bring crucial information to study the

accelerating & cooling, the size of region and their environments
(e.g. high doppler factors needed for short variability + TeV transparency)

40



V magnitude

Blazars show LONG variability timescales
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Large observational challenges when studying blazars

1) Blazar emission extends over a very wide energy range
(from micro-eV to tens of Tera-eV = dynamic range> 10°)

2) Blazar emission is variable on different timescales
(from tens of years down to a few minutes = dynamic range> 10°)

And variability is energy dependent, as well as our instrumental
ability to characterize it

The complete (deep) characterization of the blazar broadband
emission is a very complicated observational challenge, that requires

enormous efforts from the community
- Not surprising that AGNs are not well characterized after 50+ years of observations



Mrk421 and Mrk501 are excellent “blazar probes”

. -> 3 reasons to study these blazars
- Bright blazars

— Easy to detect with IACTs, Fermi, and X-rays, Optical, radio instruments in short times
- “Relatively Easy” to characterize the entire SED in every “shot”
- See things that cannot be seen for other blazars (less bright)
— Can study the evolution of the entire SED

- Nearby blazars (z~0.03; ~140 Mpc)
— Imaging with VLBA possible down to scales of <0.01-0.1 pc (<100-1000 r,)
- Minimal effect from EBL (among VHE blazars), which is not well known
— systematics for VHE blazar science

- No strong BLR effects (another unknown... composition, shape...)
- Fewer additional uncertainties than in FSRQs



Mrk421 and Mrk501 are excellent “blazar probes”

. -> 3 reasons to study these blazars
- Bright blazars

— Easy to detect with IACTs, Fermi, and X-rays, Optical, radio instruments in short times
- “Relatively Easy” to characterize the entire SED in every “shot”
— See things that cannot be seen for other blazars (less bright)
— Can study the evolution of the entire SED

- Nearby blazars (z~0.03; ~140 Mpc)
— Imaging with VLBA possible down to scales of <0.01-0.1 pc (<100-1000 r,)
- Minimal effect from EBL (among VHE blazars), which is not well known
— systematics for VHE blazar science

- No strong BLR effects (another unknown... composition, shape...)
- Fewer additional uncertainties than in FSRQs

In summary:

- Mrk421 and Mrk501 are among the “easiest” blazars to study
It is more difficult to study other blazars that are farther away,
dimmer, or have more complicated structures

They can be used as high-energy physics laboratories to study blazars
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AGNs as our Extreme Particle Accelerators

LHC VS bright AGN
ATLAS/CMS MAGIC/VERITAS/HESS/Fermi, ++

LHCb + Alice X-ray , Optical/radio, IceCube...

BEAM
CLEANING {{

Physics studies with cosmic particle accelerators
Disadvantage: Cannot play with knobs in controlled environment
Advantage: Study extreme processes and environments
Much cheaper (no need to build the accelerator...)

The project requires “observing” over many years in order to integrate
over sufficient data/effects 2 long-term multi-instrument observations.




Extensive MW Campaigns on Mrk421 and Mrk501

A multi-instrument and multi-year project

Since 2009, we have substantially improved TEMPORAL and ENERGY coverage of the sources
in order to obtain SEDs as simultaneous as possible, as well as to be able to perform multi-
frequency variability/correlation studies over a long baseline and correlate with high
resolution radio images and polarizations (to learn about the jet structure)

Radio: VLBA, OVRO, Effelsberg, Metsahovi...

. mm: SMA, IRAM-PV
*More than 25 instruments Infrared: WIRO, OAGH

participate, covering Optical: GASP-WEBT, KVA, Liverpool, Kanata...

frequencies from radio to VHE UV: Swift-UVOT
X-ray: (RXTE), Swift-XRT, NuSTAR

Gamma-ray: Fermi-LAT
VHE: MAGIC, VERITAS, FACT

Monitored regardless of activity (increase coverage during flares)
- observed every few days for about half year (every year !)

David Paneque 10



Large inter-model degeneracy for broadband SEDs

Leptonic scenario Hadronic scenario
- need electrons with E>10'3 eV -> need protons with E>10!8 eV

Abdo et al., ApJ 736 (2011) 131
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Figure 9. Hadronic model fit components: 7%-cascade (black dotted line), 7=
different minimum varisbility timescales: f,,, = 1 day (red curve) and £, = 1 cascade '(green dash-dotted line), u-synchrotron and cascade (plue triple-dot-
hr (green curve). The parameter values are reported in Table 4. See the text for da.shed 11.ne)., an_d proton synchrotro_n a_lnd cascade (red das.hed hne?. The black
forther details. thick solid line is the sum of all emission components (which also includes the
synchrotron emission of the primary electrons at optical/X-ray frequencies).
The resulting model parameters are reported in Table 3.

Figure 11. SED of Mrk 421 with two one-zone SSC model fits obtained with



Large inter-model degeneracy for broadband SEDs

Leptonic scenario Hadronic scenario
- need electrons with E>10'3 eV -> need protons with E>10!8 eV

Abdo et al., ApJ 736 (2011) 131
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Multi-band variability is key to distinguish between models
= models predict different temporal evolutions for the two bumps

But quantifying variability and correlations among enerby bands
(e.g. VHE vs X-rays) is not a simple task either... even for extensive
observations of bright sources like Mrk421.
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Normalized light curves for single night (2013 April 15)

Acciari et al. AplJS 2020, 248, 29
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Normalized light curves for single night (2013 April 15)
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X-ray and VHE Light curves for single night (April 15t")
Acciari et al. ApJS 2020, 248, 29
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The red curve shows a fit with a two-component function, applied to
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— Close relation between X-ray and gamma-rays = Leptons !!
- But complex X-ray vs VHE variability and correlation pattern




Acciari et al. AplJS 2020, 248, 29

Table 3. Parameters resulting from the fit with Eq. 3 to the X-ray and VHE multi-band light curves from 2013

April 15.
Band Of fset® Slope Flare Flare Flare x*/d.o.f
(h=1] Amplitude A | flux-doubling time” [h] to [h]

15 April 2013
3-7 keV 0.71 £ 0.01 | 0.153 £ 0.006 | 0.49 £ 0.07 0.30 £+ 0.04 2.35 £ 0.06 | 836/24
7-30 keV | 0.78 £ 0.02 | 0.199 £ 0.009 | 0.59 £+ 0.11 0.30 £+ 0.04 2.41 £ 0.06 | 889/24
30-80 keV | 0.21 4+ 0.01 | 0.241 4+ 0.018 | 0.56 4+ 0.18 0.32 £+ 0.09 2.50 £ 0.10 | 111/24
0.2-0.4 TeV | 6.60 £ 0.17 | 0.031 £ 0.008 | 0.40 £ 0.09 0.23 £ 0.07 2.41 £ 0.09 | 96.9/38
0.4-0.8 TeV | 2.99 + 0.07 | 0.042 + 0.008 | 0.72 £ 0.09 0.19 £+ 0.03 2.47 £ 0.04 | 68.1/42
>0.8 TeV | 1.68 £ 0.05 | 0.103 £ 0.010 | 0.82 £ 0.08 0.27 £+ 0.03 2.41 £ 0.04 | 90.0/45

For VHE bands in 107'° ph cm™2 s~ !, for X-ray bands in 10™? erg ecm 2 s~ 1.

bPara,meters trise and tgay) in Eq. 3 are set to be equal, and correspond to the Flare flux-doubling time in the
Table.

Large energy-dependence difference between the
slow and the fast components

David Paneque 18



Blazar flares powered by plasmoids in relativistic
reconnection

Maria Petropoulou %, Dimitrios Giannios, Lorenzo Sironi

Monthly Notices of the Royal Astronomical Society, Volume 462, Issue 3, 1 November 2016,
Pages 3325-3343, https://doi.org/10.1093/mnras/stw1832

Considered that the large X-ray/VHE
activity is produced in a magnetic
reconnection layer

\

Figure 9. Sketch of a reconnection layer (of half-length L")
forming in the jet at a distance zsiss (not in scale). The
layer forms an angle 6’ (as measured in the jet’s rest frame)
with respect to the jet axis. Plasmoids of different sizes and
velocities move towards the sides of the layer while radiating.

The jet has an opening angle 6; and a bulk Lorentz factor

19
T;.



Blazar flares powered by plasmoids in relativistic
reconnection

Maria Petropoulou %, Dimitrios Giannios, Lorenzo Sironi

Monthly Notices of the Royal Astronomical Society, Volume 462, Issue 3, 1 November 2016,
Pages 3325-3343, https://doi.org/10.1093/mnras/stw1832

Considered that the large X-ray/VHE
activity is produced in a magnetic
reconnection layer

Acciari et al. ApJS 2020, 248, 29

Fast (sub-hour) flares may be understood
as dominated by a single plasmoid,
possibly small and highly relativistic

Slow (multi-hour) but more

_ luminous component of the
Figure 9. Sketch of a reconnection layer (of half-lengt __
forming in the jet at a distance zgiss (not in scale). I|ght curve, may be understood
layer forms an angle ' (as measured in the jet’s rest fr as dominated by superposition

with respect to the jet axis. Plasmoids of different size . .
velocities move towards the sides of the layer while radi: of ma ny plasm0|d5 of different
Ehe jet has an opening angle #; and a bulk Lorentz f sizes and SpEEdS
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Multi-Instrument study of
Mrk421 during 2017 showed a
decreased in the gamma-ray
emission by factor ~3,
without substantial change in
the X-ray emission

Could be described within a
one-zone leptonic scenario
with an adiabatic expansion of
the emitting region:

R~1x10® cm —=> R~2x10'°cm

Acciari et al 2021, A&A 655, 89



GeV-radio correlation in Mrk421 (2007-2016)

Acciari et al 2021, MNRAS 504, 1427
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Correlation in the flux variations is particularly important with radio because the
radio instruments have the best angular resolution, and hence they can help
locating the regions responsible for the electromagnetic emission that we measure.

= If correlation exists, the two emission bands must be connected



Radio-GeV correlation in Mrk421 (2007-2016)

The correlation GeV-radio and Optical-radio, with a time lag of
~45 days is an intrinsic characteristic in the multi-year emission of

Mrk42T;and not a particularity of a rare flaring activity.
Acciari et al 2021, MNRAS 504, 1427

Observer
_ I'D Bc At 0.2 pc \{~
(1 + Z) tg y-rayS "
U t //‘-

d_core ~ 2pc far from BH, as
: dy % d | measured with radio instruments
: dcore {So GeV also far from BH

Emission may be produced by plasma (or jet disturbance) moving along the
jet of Mrk421, first crossing the surface of unit gamma-ray opacity and then,
about 0.2 pc down the jet, crossing the surface of unit radio opacity




Radio-GeV correlation in Mrk421 (2007-2016)

The correlation GeV-radio and Optical-radio, with a time lag of
~45 days is an intrinsic characteristic in the multi-year emission of

Mrk42Tand not a particularity of a rare flaring activity.
Acciari et al 2021, MNRAS 504, 1427

Observer
I'D ,BC At 0.2 pc N‘%
(1+2) te y-rays )
/1 .
Q d_core ~ 2pc far from BH, as
: dy % d  measured with radio instruments

dcore {So GeV also far from BH

VHE/X-ray may be produced in a small region with very high energy particles close to
the central engine, very far away from the radio/optical/GeV emission. This would
explain naturally the (typical) lack of correlation between VHE/X-ray and optical/GeV



Besides all the observational and theoretical
(modeling) challenges mentioned before, we
have the additional difficulty that, occasionally,

AGNs show peculiar (rare) behaviours




Intra-night Optical-TeV correlation in Mrk421 during

unprecedented flaring activity (February 17t", 2010)
Abeysekara et al. ApJ 2020, 890, 97

Largest TeV flare of Mrk421 to date (27 x Crab Nebula above 1 TeV)
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Intra-night Optical-TeV correlation in Mrk421 during
unprecedented flaring activity (February 17th, 2010)

Abeysekara et al. ApJ 2020, 890, 97

Correlation at 3 sigma, with a time lag of about 40 minutes

— TeV and eV emission co-spatial (at least partially) during this flare
- Very atypical event, suggesting distinct processes during this flare
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Mrk421 has shown X-ray and VHE spectral variability during flares

X-ray and VHE spectra becomes harder when flaring
— SED bumps shift to high energies
- highest variability at X-ray and VHE Flare from MW 2010
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Mrk421 suffers a personality crisis (in 2013)

Peak position at ~1016 Hz (~40 ev) _-Abdoetal, 2011, ApJ 736, 131
(typical state)

Factor 10 lower than typical
- “HBL moving towards IBL”
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Typically: Mrk501 shows X-ray & VHE spectral hardening during flares

(Historical) flare in 1997 (fast variability) flare in 2005
Tavecchio et al., 2001, ApJ 554,725 Albert et al., 2007, ApJ 669,862
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Hard|spectra in Mrk501 not observed during low states,

|
<1 keV

This is the typical behaviour of
Mrk501, what we have seenin . 1 Tev
20+ years of observations
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But... in year 2012, Mrk501 suffered a personality crisis
VERY hard spectral index in X-rays and VHE gamma rays,
regardless of activity (during entire observing campaign in 2012)
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But... in year 2012, Mrk501 suffered a personality crisis
VERY hard spectral index in X-rays and VHE gamma rays,
regardless of activity (during entire observing campaign in 2012)

Ahnen et al., 2018 A&A 620, 181
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= Mrk 501 behaved as Extreme HBL! |Being "extreme HBL" may be a

Similar X-ray/VHE spectra as [; temporal state, rather than
1ES 0229+200, 1ES 0347-121 intrinsic blazar characteristic

(Peaks at ~10 keV and ~1TeV)




But... in year 2012, Mrk501 suffered a personality crisis
VERY hard spectral index in X-rays and VHE gamma rays,
regardless of activity (during entire observing campaign in 2012)

Ahnen et al., 2018 A&A 620, 181
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Similar quality spectra need

Being "extreme HBL" may be a
observations 100 time longer than
those needed for Mrk501

Precision on 1ES 0229 needs CTA !!

temporal state, rather than
intrinsic blazar characteristic
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10} MD 56854.91 fJUiy I—G 1° MJD 56855.91 jUiy 17
” | | Acciari et al

A&A 2020, 637, 86

©’F M)D 56856.91 j“ly 1 'l MJD 56857.98 Narrow feature at ~3 Tev
found in the VHE spectrum of
MJD 56857.98 (July 19th, 2014),

when X-ray flux was highest

10’ MJD 56858.98

This feature is inconsistent at
more than 30 with the classical
functions for VHE spectra
(power law, log-parabola, and

e, T,
Hz) v [Hz]
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JUIV 0'F MJD 56859.97 .IUIy 21
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statistical fluctuation (>30)
or new component ?

David Papeque
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Pile-up in the electron energy distribution due
to stochastic acceleration  pccjari et al A&A 2020, 637, 86
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Additional component produced via an Inverse Compton
pair cascade induced by electrons accelerated
in @ magnetospheric vacuum gap close to the Black Hole

Acciari et al A&A 2020, 637, 86 Model by
Mrk501 Christoph Wendel

. | | (for details, see
| MD56857.98

Wendel et al A&A
2021, 646, 115)

Based on
Zdziarski 1988,
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Levinson&Rieger 2011,
Ptitsyna&Neronov 2016
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Wendel et al 2017
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Swift BAT excess in X-ray spectrum of Mrk421 in low state

10" 10! 10° E(e) 10° 10/ 10°

L 57422 57424 57425 57426 57428 57422-57429' Acciari et al 2021,
| MNRAS 504, 1427

[—

Single spectra (colors)
during a 7-day time
interval in
. 2016 Feb. 4—11

N And also 7-day
Mrk421 (Feb 2016)

average spectra (blue)

vF, (ergcm 2 s 1)

10711 -

104 101 1016 107 10! 10"
v (Hz)



Swift BAT excess in X-ray spectrum of Mrk421 in low state

10" 10! 102 E(e) 10 10/ 10°

L 57422 57424 57425 57426 sus 4 sunsu | AcCciari et al 2021,
' MNRAS 504, 1427

10710 -

Single spectra (colors)
during a 7-day time
interval in

2016 Feb. 4—11

And also 7-day
average spectra (blue)

(ergcm2s!)

vEF,

. Mrk421 (Feb 2016)

1M 10" 1016 1017 10" 10"
What is this Swift-BAT ekt(:Hé)ss ?7??
Onset of IC component (as suggested Kataoka&Stawrz 2016 using NuSTAR hint) ?
OR
Inverse-Compton produced by high-energy electrons from the spine region
up-scattering the synchrotron photons from the layer (as proposed by Chen 2017) ?

OR
new narrow component, as in Mrk501 in 2014 (Acciari et al 2020, Wendel etal 2021) ?




Conclusions

Accurate AGN studies require wide broadband (radio to gamma-rays)
AND temporal (years down to minutes) coverage

- Variability in the multi-band emission can break degeneracies

AGNs are complicated “cosmic animals“
This complexity can be hidden when the observations suffer from
limited sensitivity, and limited energy & time coverage
- Extensive MWL campaigns on Mrk421 & Mrk501 benefit
from bright sources and high sensitive instruments, and
wide energy coverage and dense time coverage




Conclusions

Multi-instrument data from Mrk421&Mrk501 show complexity in
the temporal evolution of the broadband (radio to VHE y-rays) SED.

— One-zone SSC model can be used to approximately model the

most prominent & variable segments of the SED (X-ray and VHE).
— BUT accurate modeling of the broadband SED would require
additional components
- Complex (and variable !!) variability patterns

— These sources have complicated “cosmic personalities”:
Mrk421: HBL trying to become IBL (in 2013)
Mrk501: HBL became EHBL (in 2012)
— during non-flaring activity
Mrk501: hints of a narrow spectral feature at 3 TeV
Mrk421: hints of extra (narrow) component at 20 keV
= Are these recurrent episodes ? Occur on other blazars ?

- Next generation of gamma-ray instruments, e.g., CTA, will allow to
perform these studies on many other AGNs (x10 dimmer at VHE)



Backup



Large intra-model degeneracy for broadband SEDs

Broadband emission (solid lines) described with a “quiescent” region
(black dot-dashed line) responsible for the average state reported in
Abdo et al. 2011 (ApJ 727, 129), plus a second emission region

(dashed lines) modelled with grid-scan strategy using 102 realizations.

H+ H+ data
— Dbest fit, P = 0.066

10—9 i best fit with HE component, P = 0.045

P > 0.9 x P_best
P > 0.5 x P_best
P > 0.1 x P_best

=

<
[
o

=

°
=
-

vF, [ergcm™2 s71]
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N

— best fit with =5, P = 0.012
- average emission model (Abdo et al. 2011)

Mrk 501

1df3 1615 10‘17

10° 102
v [Hz]

1623

Ahnen et al 2017
A&A 603, A31

The SED plot shows in
different shades of grey all
model curves (1684) with
a data-model agreement
better than 10% of that of
the best model.
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Large intra-model degeneracy for broadband SEDs

Broadband emission (solid lines) described with a “quiescent” region
(black dot-dashed line) responsible for the average state reported in
Abdo et al. 2011 (ApJ 727, 129), plus a second emission region

(dashed lines) modelled with grid-scan strategy using 102 realizations.

H- H+ data

— best fit, P = 0.066

10°° | best fit with HE component, P
— best fit with =5, P = 0.012
P > 0.9 x P_best

P > 0.5 x P_best

P > 0.1 x P_best
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Mrk 501

- average emission model (Abdo et al. 2011)
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The SED plot shows in
different shades of grey all
model curves (1684) with
a data-model agreement
better than 10% of that of
the best model.
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Full VHE and X-ray LCs for Mrk421 activity 2013 April

About 45 hours of strictly simultaneous VHE and hard X-ray data
Acciari et al. ApJS 2020, 248, 29
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Flux (>800 GeV)
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Flux measurements
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Acciari et al. ApJS
2020, 248, 29
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0:2-0.4 TeV

7

VS

There is not such thing as a

generic X-ray vs VHE

correlation in a given AGN,
it can have a strong energy

dependence

Several

flavours of
X-ray vs VHE "
correlation o
when moving

across bands

and timescales:
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®  NuSTAR 3-7 keV
e MAGIC >800 GeV
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15 April 2013
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. © %
e 3

.+ "30-80 keV & 0.2-0.4 TeV
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Hours from MJD 56397

The variability in a given energy
band, and its relation with the
other bands, can strongly depend
on the probed timescale
(sub-hours, hours, days, months)

Dynamics in AGN broadband emission is very complex

— Important to cover many energy bands and timescales




Comparison of variability between the two
archetypical TeV blazars: Mrk421 vs. Mrk501

Balokovic et al., 2016 ApJ 819, 156 Ahnen et al 2017 A&A 603 , A31
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Typically:

Fvar (Mkr421): clear double-peaked structure, Fvar (X-rays) ~ Fvar(VHE)

Fvar (Mrk501): general increase with energy, Fvar(X-rays) < Fvar(VHE)
Fundamental difference in variability of these two "sister sources”

David Paneque 49



GeV-optical correlation in Mrk421 (2007-2016)

Clear correlation between HE and optical over a wide range of
time-lags of about 60 days, and centered at a time-lag of zero

Acciari et al 2020, MNRAS in press (arXiv:2012.01348)
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GeV-optical correlation in Mrk421 (2007-2016)

HE-optical correlation over a large range of time-lags was also reported in
another long-term (2007-2015) Mrk421 study, that also used 15 days time bins

Carnerero et al. 2017, MNRAS, 472, 3789
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Radio-GeV correlation in Mrk421 (2007-2016)

Correlated behaviour with a time lag of ~45 days (Radio lags ) reported by:
Max-Moerbeck et al 2014, MNRAS 445, 428
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Figure 2. Light curves (left) and cross-correlation (right) for Mrk 421. The\ most significant peak is at —40 &= 9d with 98.96 per cent significance. Colours

and line styles as in Fig. 1.
40 +/- 9 days

Back then, the correlated behaviour was\marginally signifincant (~3 sigma)
and strongly dominated by the large flare in 2012

David Paneque 52



Function used to parameterize the main trends in
the multi-hour X-ray& VHE Light curves

Flux(t) = Slow(t) + Fast(t)
Slow(t) = Offset(1 + Slope * t)

2
Fast(t) = —— i X (Flare Amplitude) x (Slow(to))
2_ rise —|— 2 fall

Parameters: . . _ _
Simplification: rise=fall 2 timescale

e offset = starting flux
e amplitude = max. strength of the flare relative to slow(t0) flux
e timescale = flux doubling time scale

¢ slope = (slow component) flux would increase by this factor in 1 day

This parameterization provides normalized slopes and amplitudes,
which allows for a direct comparison of the values among different
various X-ray and VHE bands



X-ray and VHE Light curves for single night (April 15t")
Acciari et al. ApJS 2020, 248, 29
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The red curve shows a fit with a two-component function, applied to
the time interval with simultaneous X-ray and VHE observations
— Close relation between X-ray and gamma-rays = Leptons !!
- But complex X-ray vs VHE variability and correlation pattern




Acciari et al. AplJS 2020, 248, 29

Table 3. Parameters resulting from the fit with Eq. 3 to the X-ray and VHE multi-band light curves from 2013

April 15.
Band Of fset® Slope Flare Flare Flare x*/d.o.f
(h=1] Amplitude A | flux-doubling time” [h] to [h]

15 April 2013
3-7 keV 0.71 £ 0.01 | 0.153 £ 0.006 | 0.49 £ 0.07 0.30 £+ 0.04 2.35 £ 0.06 | 836/24
7-30 keV | 0.78 £ 0.02 | 0.199 £ 0.009 | 0.59 £+ 0.11 0.30 £+ 0.04 2.41 £ 0.06 | 889/24
30-80 keV | 0.21 4+ 0.01 | 0.241 4+ 0.018 | 0.56 4+ 0.18 0.32 £+ 0.09 2.50 £ 0.10 | 111/24
0.2-0.4 TeV | 6.60 £ 0.17 | 0.031 £ 0.008 | 0.40 £ 0.09 0.23 £ 0.07 2.41 £ 0.09 | 96.9/38
0.4-0.8 TeV | 2.99 + 0.07 | 0.042 + 0.008 | 0.72 £ 0.09 0.19 £+ 0.03 2.47 £ 0.04 | 68.1/42
>0.8 TeV | 1.68 £ 0.05 | 0.103 £ 0.010 | 0.82 £ 0.08 0.27 £+ 0.03 2.41 £ 0.04 | 90.0/45

For VHE bands in 107'° ph cm™2 s~ !, for X-ray bands in 10™? erg ecm 2 s~ 1.

bPara,meters trise and tgay) in Eq. 3 are set to be equal, and correspond to the Flare flux-doubling time in the
Table.

Large energy-dependence difference between the
slow and the fast components

David Paneque 55



Quantification of the VHE vs X-ray correlations

Positive correlation exists (and very significant) for all the energy bands

Table 5. Correlation coefficients and slopes of the linear fit to the VHE vs X-ray flux (in log scale) derived with the 9-day
flaring episode of Mrk421 in April 2013.

Acciari et al. ApJS 2020, 248, 29

VHE band  Xray band Pearson coeff. Nsigma in Pearson DCF Slope from linear fit | Chi2/d.o.f
200-400 GeV 3-7 keV | 0.920 + 0.011 - 0.013 20.2 0.928 + 0.117 0.61 £ 0.02 1183 / 162
7-30 keV | 0.871 + 0.018 - 0.020 17.0 0.879 + 0.111 0.45 £+ 0.03 1891 / 162

30-80 keV | 0.790 + 0.028 - 0.032 13.6 0.805 £+ 0.108 0.35 + 0.02 2277 / 162

400-800 GeV 3-7 keV | 0.946 4 0.007 - 0.009 23.4 0.955 + 0.114 0.79 £+ 0.03 1038 / 170
7-30 keV | 0.909 + 0.012 - 0.014 19.8 0.918 + 0.108 0.58 £+ 0.03 1725 / 170

30-80 keV | 0.838 + 0.021 - 0.024 15.8 0.855 4+ 0.105 0.45 £+ 0.03 2160 / 170

>800 GeV 3-7 keV | 0.964 + 0.005 - 0.006 26.0 0.971 4+ 0.108 1.11 = 0.03 704 / 170
7-30 keV | 0.947 + 0.007 - 0.008 23.5 0.955 4+ 0.105 0.81 + 0.03 1245 / 170

30-80 keV | 0.892 + 0.015 - 0.017 18.6 0.908 £+ 0.103 0.61 + 0.03 1736 / 170

Many different trends in the VHE vs X-ray correlation
when moving across “nearby” energy bands

David Paneque
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Quantification of the VHE vs X-ray correlations

Positive correlation exists (and very significant) for all the energy bands

Table 5. Correlation coefficients and slopes of the linear fit to the VHE vs X-ray flux (in log scale) derived with the 9-day
flaring episode of Mrk421 in April 2013.

Acciari et al. ApJS 2020, 248, 29

VHE band  Xray band Pearson coeff. Nsigma in Pearson DCF Slope from linear fit | Chi2/d.o.f

200-400 GeV 3-7 keV | 0.920 + 0.011 - 0.013 20.2 0.928 £+ 0.117 0.61 £+ 0.02 1183 / 162
0.879 £ 0.111 0.45 + 0.03 1891 / 162
30-80 keV 0.805 = 0.108
400-800 GeV 3-7 keV | 0.946 + 0.007 - 0.009 23.4 0.955 £ 0.114 0.79 £ 0.03 1038 / 170
7-30 keV | 0.909 + 0.012 - 0.014 19.8 0.918 £ 0.108 0.58 £+ 0.03 1725 / 170
0.855 4+ 0.105 0.4 0.0 60 0

>800 GeV 0.964 + 0.005 - 0.006 0.971 £ 0.108
7-30 keV | 0.947 + 0.007 - 0.008 23.5 0.955 £ 0.105 0.81 = 0.03 1245 / 170
30-80 keV | 0.892 + 0.015 - 0.017 18.6 0.908 + 0.103 0.61 = 0.03 1736 / 170

Many different trends in the VHE vs X-ray correlation

when moving across “nearby” energy bands

The combination > 0.8TeV and 3-7 keV shows the highest
degree of correlation, highest slope, and less scattering
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Figure 7. VHE flux vs. X-ray flux in three X-ray and three VHE energy bands for April 15. The black line is the track
predicted by Slow-+Fast component fit from Eq. 2. The lightness of symbols follows time: for MAGIC data lightness decreases
with time, and for VERITAS data it increases in time, so that the central part of the night, where MAGIC and VERITAS
observations overlap, is plot using darker symbols.

Gamma-ray
vs X-ray
flux-flux plot
(April 15th)

Curves depict
the expectation
from the
envelopes from
the fit function
(slow+fast) to
the light curve
at the 3x3
energy bands
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Figure 9. VHE flux (> 800 GeV) versus X-ray flux (3—7
keV) of a plasmoid-powered light curve, computed for a
“vanilla” model of a BL Lac source (see model BL10 in
Christie et al. 2019). The fluxes are extracted from a 4-hr
time window of the total light curve (see purple line in the
inset plot) and are normalized to their time-averaged values.
The loop-like structure in the flux-flux plot is produced dur-
ing a fast flare of duration ~ 0.3 hr (see orange points). Lines
with slopes 1 (dashed) and 0.5 (dotted) are overplotted to
guide the eye.

Flux-flux plot for a
nortion of a LC
oroduced by
slasmoids
(simulation)

The loop is
produced by a fast
flare, dominated
by a single
plasmoic

Similar shape to
that found in the
data



