Dark matter indirect detection limits including complete annihilation patterns

<u>Céline Armand</u>, Björn Herrmann

RICAP 2022, Rome, Italy Sept 8th, 2022

Its identification would reveal new Physics Proving its existence and nature would improve our understanding of the Universe

85% of the total matter of our Universe **Relic density** observed experimentally by Planck:

$\Omega_{\gamma} h^2 \simeq 0.1200 \pm 0.0012$

Ref: Ade et al. 2016, Astrophys. 594, A13

GGALS

Study of the impact of a more complete particle model New prediction of DM upper limits with CTA mockdata of Sculptor

- complex and more complete model

 Previously: use of individual annihilation channels • This work: Collaboration with a theoretician to include a more

Dark Matter (DM) annihilation

Standard Model particles (bosons, quarks, leptons)

Final state products such as y rays

INDIRECT SEARCHES

Expected y-ray flux from DM annihilation

 $\frac{d\Phi\left(\langle\sigma v\rangle,J\right)}{dE} = \frac{1}{4\pi} \frac{\langle\sigma v\rangle}{2m_{\chi}^2} \sum_{f} \mathsf{BR}_{f} \frac{\mathsf{d}N_{f}}{\mathsf{d}E} \times \int_{\Delta\Omega} \int_{\mathrm{los}} \rho_{\mathrm{DM}}^2 ds d\Omega$ **Particle Physics** factor

where

<ov> = annihilation cross-section
m_x = DM particle mass
BR_f = branching ratio **dN_f/dE** = differential spectrum **р**_{DM} = DM density

STATISTICAL ANALYSIS **LOG-LIKELIHOOD RATIO TEST STATISTICS**

Global minimization

Constrained minimization

 $\Lambda = -2\ln\frac{\mathscr{L}_{H_0}}{\mathscr{L}_{H_1}} = -2\ln\frac{\mathscr{L}(\langle\sigma v\rangle_0|\hat{N}_B,\hat{J})}{\mathscr{L}(\langle\hat{\sigma v}\rangle,\hat{N}_B,\hat{J})}$

Λ

Ref: Cowan et al, 2010 Eur.Phys.J.C71:1554,2011

2.71 at 95% Confidence Level

UPPER LIMITS

Each annihilation channel treated independently

Corresponding to a branching ratio of 100%

Simplest model possible where all DM particles annihilate through the same channel

We change the particle physics model?

Standard model extended by an additional scalar field (DM)

$$V_{\text{scalar}} \supset 2\lambda_H v^2 h^2 + \frac{1}{2} \mu_S^2 S^2 + \frac{1}{4} \lambda_{SH} v^2 S$$

$$DM \text{ mass}$$

$$m_S^2 = \mu_S^2 + \frac{1}{2}\lambda_{SH}v^2$$

 $S^2 + \frac{1}{4}\lambda_{SH}vS^2h + \lambda_{SH}S^2h^2$ **DM – Higgs** interaction ("Higgs portal")

Possible dark matter annihilation channels (DM relic density + indirect detection)

DM coupling vs DM mass

Relic density and branching ratio grid computed using micrOMEGAs

Ref: Bélanger, Pukhov et al. 2003 - 2022

Branching Ratio according to the relic density constraint

None of the annihilation channels are at 100% branching ratio over the full mass range

For the remaining part, we focus on the case where the relic density constraint is satisfied (black line in previous figure):

 $\Omega_{\gamma} h^2 \simeq 0.1200 \pm 0.0012$

Even in such a simple setup, the "100% hypothesis" is not justified...

More complex models invoke an even richer phenomenology...

TARGET SOURCE

Dwarf galaxy selected for the CTA dark matter program

South Hemisphere l = 287.62°, b = -83.16°

Ref: Bonnivard et al, 2015 ApJ 808 L3

Sculptor

Mock data prepared with Gammapy 0.18.2

Simulated events for 500h of observation at 20° zenith angle

NEW UPPER LIMITS

Computation of the predicted DM cross section DM particle mass

Mean expected limits 2 Mean of the derived $\langle \sigma v \rangle$ distribution

Expected limits - Sample of 300 Poisson realizations of the simulated background events

Statistical uncertainty bands Standard deviation at 1 and 2σ

RESULTS

Predicted upper limit and uncertainties Assuming a singlet scalar DM model γ-ray spectra taken from Cirelli et al. *JCAP* 03 (2011) 051

Inflection point

Due to the Higgs resonance

Sudden increase

Due to the opening of the WW channel

SINGLET SCALAR MODEL VS 100% W+W-

More conservative limit with the singlet scalar DM model

Below the W mass

No upper limit for 100% WW since the WW channel does not exist

~0.1-1 TeV

Slight difference between 100% WW and singlet scalar DM model

Additional contributions: ZZ, hh, tt

Above 1 TeV

Stability with ~50% WW - 25% ZZ - 25% hh Limits similar to the 100% WW case since WW, ZZ, hh lead to **similar y-ray spectra**

SINGLET SCALAR MODEL VS 100% т+т-

100% τ⁺τ⁻ produces more γ rays Leads to more constraining upper limits

However, in the singlet scalar model, this T⁺T⁻ channel is never dominant

 $100\% T^{+}T^{-} = over estimation of the$ contribution

CONCLUSION & PERSPECTIVES

- Use of a more complex and more complete particle physics model
- Takes into account the full phenomenology with all annihilation channels at once
- Change of dominant annihilation channel(s) along with the DM particle mass
- Affects the predicted upper limits
- Feature can be expected in any particle physics model
- Derivation of a predicted upper limit and its 1σ and 2σ uncertainty bands over the

energy range of CTA

- Particle physics model could be used as well on the future data of CTA
 - Paper in preparation

Thanks for your attention

STATISTICAL ANALYSIS

Total likelihood

$\mathscr{L}(\langle \sigma v \rangle, N_B, J) = \prod_{i=1} \mathscr{L}_{P_i}(\langle \sigma v \rangle, N_{B_i}, J | N_{\text{ON}_i}, N_{\text{OFF}_i}, \alpha) \mathscr{L}^J(J | \bar{J}, \sigma_J)$

Poisson likelihood for each energy bin

Poisson likelihood

Log-normal likelihood

Log-normal likelihood to model the uncertainties of the J factor

$$\mathscr{L}^{J} = \frac{1}{\ln(10)\sqrt{2\pi\sigma_{J}J}} \exp -\frac{(\log_{10}J - \log_{10}J)}{2\sigma_{J}^{2}}$$

COMPARISONS

γ primary spectra

ectra

 \overline{p} primary spectra

γ primary spectra

 $\frac{x = K/M_{\rm DM}}{p \text{ primary spectra}}$

 $V \rightarrow \mu$