Probing Hadronic Interactions with Cosmic Rays

RICAP 2022

Dennis Soldin

Karlsruhe Institute of Technology & University of Delaware

Karlsruher Institut für Technologie

UNIVERSITY OF DELAWARE **BARTOL RESEARCH** INSTITUTE

• CR properties are inferred from the (secondary) particles measured at the ground

What happens between here and **here**?

• CR properties are inferred from the (secondary) particles measured at the ground

What happens between here and **here**?

• CR properties are inferred from the (secondary) particles measured at the ground

What happens between here and here?

Plays an important role, transferring energy from the hadronic to the electromagnetic cascade!

• CR properties are inferred from the (secondary) particles measured at the ground

EAS measurements probe particle physics at the highest energies!

Plays an important role, transferring energy from the hadronic to the electromagnetic cascade!

electrons and photons (messengers of em cascades)

Example: Proton-Air Cross-Section

- Proton-air cross-section measured by Auger and TA
- Complementary to collider measurements:
 - EAS particles: Nuclei, mesons, ...
 - CM energies: GeV to hundreds of TeV
 - Forward direction
 - Non-perturbative regime
- Crisis for high-energy physics?
 - No new particles found at LHC
 - Nature of Dark Matter is still unknown
- <u>**Deportunity for cosmic ray physics!**</u>

[R. Ulrich (Pierre Auger Collaboration), PoS(ICRC2015)401 (2016)]

Muon Measurements in EAS

- Muons are messengers of the hadronic interactions in EAS
- Significant discrepancies in the number of muons in EAS observed between MC and data!
- Comparison to model predictions using z-values:

$$z = \frac{\ln(\rho_{\mu}) - \ln(\rho_{\mu,p})}{\ln(\rho_{\mu,Fe}) - \ln(\rho_{\mu,p})}$$

- Data agrees with proton composition: z = 0
- Data agrees with iron composition: z = 1
- z-values depend on hadronic models

[A. Aab et al. (Pierre Auger Collaboration), Phys. Rev. D91 (2015)] [A. Aab et al. (Pierre Auger Collaboration), Eur. Phys. J. C 80 (2020)]

Muon Measurements in EAS

- Muons are messengers of the hadronic interactions in EAS
- Significant discrepancies in the number of muons in EAS observed between MC and data! data
- Comparison to model predictions using z-values: $\ln(\rho_u) - \ln(\rho_{\mu,p})$

$$\ln(\rho_{\mu,\text{Fe}}) - \ln(\rho_{\mu,\text{p}})$$

- Data agrees with proton composition: z = 0
- Data agrees with iron composition: z = 1
- z-values depend on hadronic models

[A. Aab et al. (Pierre Auger Collaboration), Phys. Rev. D91 (2015)] [A. Aab et al. (Pierre Auger Collaboration), Eur. Phys. J. C 80 (2020)]

Muon Measurements in EAS

- Muons are messengers of the hadronic interactions in EAS
- Significant discrepancies in the number of muons in EAS observed between MC and data! data
- Comparison to model predictions using z-values:

z =

- Data agrees with proton composition: z = 0
- Data agrees with iron composition: z = 1
- z-values depend on hadronic models

 $In(\rho_{u,Fe})$

MC

[A. Aab et al. (Pierre Auger Collaboration), Phys. Rev. D91 (2015)] [A. Aab et al. (Pierre Auger Collaboration), Eur. Phys. J. C 80 (2020)]

Combined Muon Measurements

• Muon lateral density in EAS as reported by 9 experiments (known energy offsets)

Combined Muon Measurements

• Muon lateral density in EAS after cross-calibration of the energy-scales

Combined Muon Measurements

• Muon lateral density in EAS after cross-calibration of the energy-scales

The Muon Puzzle in EAS

- Muon Puzzle:
 - Up to ~30% discrepancies in N_{μ}
 - N_{μ} vs. X_{\max} and $X_{\mu,\max}$ vs. X_{\max}
 - ► WHISP: excess towards high energies
 - slope in $z z_{mass}$ significant at $\sim 8\sigma$
 - Origin remains unknown!
 - Severe discrepancies in our understanding of hadronic interactions
- <u>Challenge for accelerators:</u>
 - Interactions of EAS particles
 - CM energies: GeV to hundreds of TeV
 - 1 10 0 Forward direction
- Models need to be able to describe both EAS and accelerator measurements!
- Zmass N ∇^2

The Muon Puzzle in EAS

- Accelerator measurements:
 - ALICE, CMS/CASTOR, LHCf, LHCb/SMOG, NA61/SHINE
 - Inelastic cross-sections
 - Hadron multiplicity
 - Elasticity
 - Hadron composition (ratio e.m. to hadr. energy flow)
 - Different
 - energies
 - rapidity ranges
 - particle types
- EAS data needed!

Outlook into the Next Decade

- Large variety of new high-precision data:
 - EAS detector upgrades will become fully operational, e.g. AugerPrime, IceCube upgrade
 - Precise muon measurements of multiple observables by multiple EAS experiments, e.g. N_{μ} , X_{max} , $X_{\mu,max}$, zenith angle evolution, spectral information (IceCube)
 - New accelerator data, e.g. Run 3 at LHC (Oxygen data)
- Strong constraints on hadronic interaction models (muon enhancement models)
 - Precise characterization (solution?) of the Muon Puzzle within the next decade expected!

New Generation of UHECR Observatories

- New large-scale EAS observatories with particle detectors (GCOS, IceCube-Gen2, GRAND?) will provide large aperture and thus unprecedented event statistics
- Possibly new EAS observables and analysis techniques to test hadronic interaction models New era of high-precision measurements with EAS!

Multi-hybrid

	_	2.	.2	
		2		<u>_</u>
		1.	.8	facto
		1.	.6	nerit
· - ·		1.	.4	-Fe
		1.	.2	Ō.
		1		
00		•		

Outlook beyond the Next Decade

- Precise measurements in the forward region at the High-Luminosity LHC (including new proposed experiments, e.g. Forward Physics Facility, Very Forward Hadron Spectrometer) will further constrain hadronic models
- Hadronic models have to describe both EAS and LHC measurements
 - <u>Tests of hadronic models at energies much higher than the LHC (far-forward region)!</u>
- Once the hadronic interaction models can successfully describe all details they will become reliable tools for the development of the proposed Future Circular Collider (FCC)
 - Validation of EAS models at the (HL-)LHC / FPF / FCC
- If LHC data is reproduced but Muon Puzzle remains:
 - Tests of beyond SM physics / exotic scenarios, e.g.
 - Lorentz-invariance violation, super-heavy Dark Matter, macroscopic Dark Matter, ...

11

Summary & Conclusions

- EAS measurements probe hadronic interactions at the highest energies
- Large discrepancies between model predictions and data observed in multiple muon measurements
- Origin of the Muon Puzzle unknown
- Tests of SM predictions at energies beyond the LHC
- Expectation: Muon Puzzle solved by the end of decade
- High-precision particle measurements with EAS!
- Provides event generators for future collider experiments
- If the Muon Puzzle remains unsolved

Tests of beyond SM physics / exotic scenarios!

Next generation experiments

Submitted to the US Community Study on the Future of Particle Physics (Snowmass 2021) Jul 2022 **Ultra-High-Energy Cosmic Rays** The Intersection of the Cosmic and Energy Frontiers _ [astro-ph.HE] arXiv:2205.05845v3 Abstract: The present white paper is submitted as part of the "Snowmass" process to help inform the long-term plans of the United States Department of Energy and the National Science Foundation for high-energy physics. It summarizes the science questions driving the Ultra-High-Energy Cosmic-Ray (UHECR) community and provides recommendations on the strategy to answer them in the next two decades.

