

Istituto Nazionale di Fisica Nucleare

The High-Energy Particle Detector (HEPD-01): observations and results after 4 years in orbit

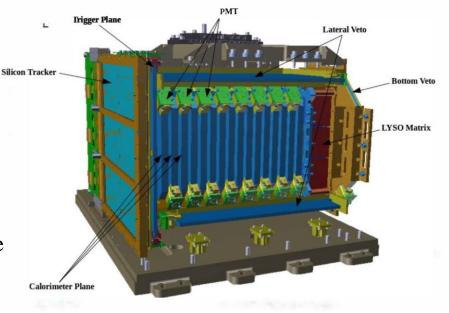
RICAP-2022 September 7th 2022 *Martucci Matteo* on behalf of the Limadou Collaboration matteo.martucci@roma2.infn.it

The CSES-Limadou Collaboration

- Collaboration between China National Space Administration (CNSA) and the Agenzia Spaziale Italiana (ASI)
- *Limadou* refers to the Italian contribution to the mission that includes the realization of High-Energy Particle Detector (HEPD-01) and the participation in the realization of the Electric Field Detector (EFD)
- Several Italian institutes and universities involved together with many sections of the INFN (Roma "Tor Vergata", Bologna, Perugia, LNF, Napoli, TIFPA)

Mission Objectives & Scientific Goals

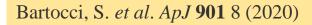
- □ Monitoring of the electromagnetic near-Earth space environment
- □ Analysis of the ionospheric and plasmaspheric fluctuations
- Measurements of iono-magnetospheric perturbations possibly due to seismo-electromagnetic phenomena
- □ Measurements of magnetospheric and solar activity (both on short and long time-scales like solar events and solar modulation)
- Study of fluxes of high- & low-energy charged particles inside the Inner and Outer Van Allen radiation belts in quiet conditions and under the effects of geomagnetic storms
- □ Monitoring of the e.m. anthropic effects at LEO altitude
- Observations of e.m. transient phenomena caused by tropospheric activity

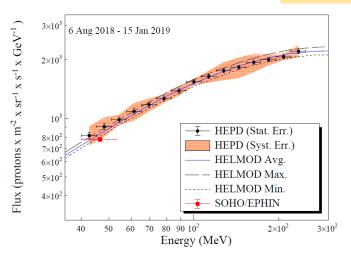

The High-Energy Particle Detector (HEPD-01)

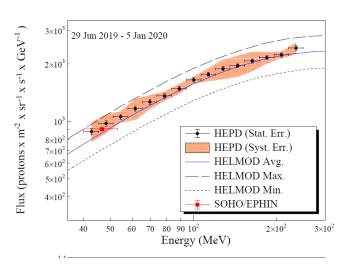
- □ HEPD-01 was launched on **Feb 2, 2018** on a circular LEO orbit onboard the CSES satellite
- Of the 4 instruments detecting particles, the High Energy Particle Detector has been entirely designed and integrated in Italy
- It covers the highest energy threshold of sensitivity of CSES, providing unique opportunities for sub-GeV cosmic-ray physics (below AMS-02 observations) and MeV-range studies of electron/positrons populations

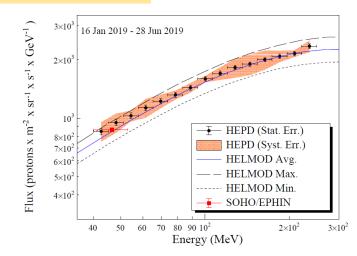
□ HEPD-01 structure:

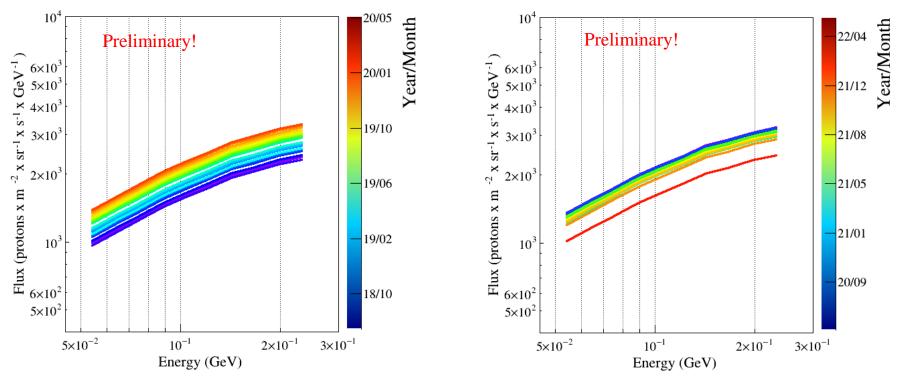
- **<u>Tracker</u>** : particle trajectory
- <u>**Trigger**</u> : starts acquisition
- <u>Calorimeter</u>
 - TOWER : energy deposit, range
 - ★ **LYSO** : enlarge energy threshold
- <u>Veto</u> : rejects secondaries , out of acceptance particles




30 - 250 MeV (protons) 3 - 100 MeV (e⁻/e⁺) 30 - 250 MeV/n (nuclei)


Galactic Cosmic Rays (GCRs)

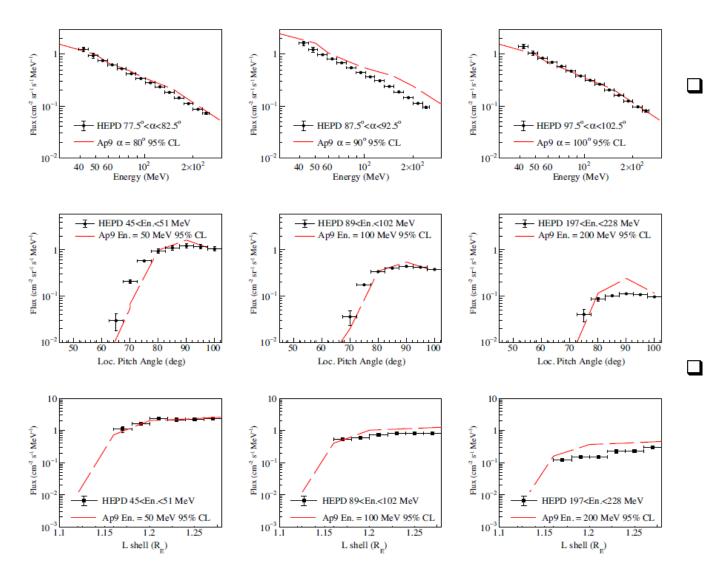

GCR Protons



- New results on GCR spectra between 40 and 250 MeV from 2018 August 6 to 2020 January 5 (6-months bunches)
- Comparison with SOHO/EPHIN proton data shows a good agreement
- □ The predicted HelMod model for GCR protons propagation is also in **good agreement** with HEPD-01 data

GCR Protons

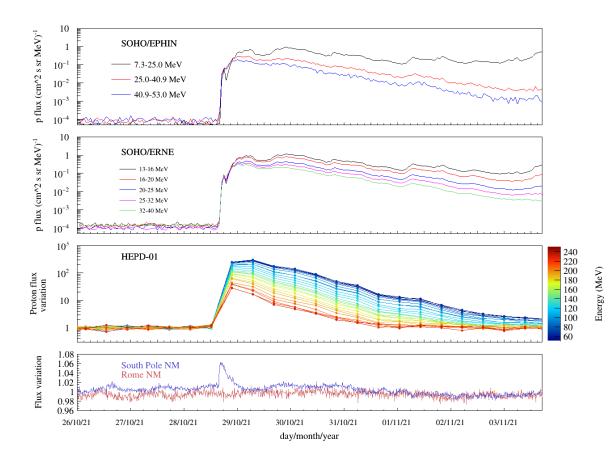
Preliminary results on GCR proton modulation during the end of the minimum (left) and the start of the maximum (right) among solar cycles 24 and 25, measured by HEPD-01 between 50 MeV and 250 MeV (1-month bunch)


□ White spaces in the right panel refer to the periods of high solar activity (SEPs) and data were removed because of contamination

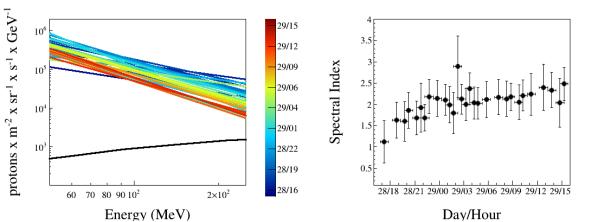
Particles Inside SAA

Protons in SAA

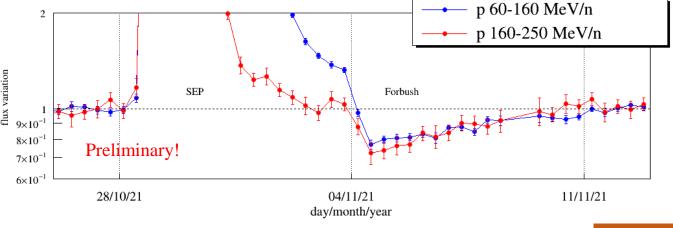
Martucci, M. et al. Phys. Rev. D 105, 062001 (2022)

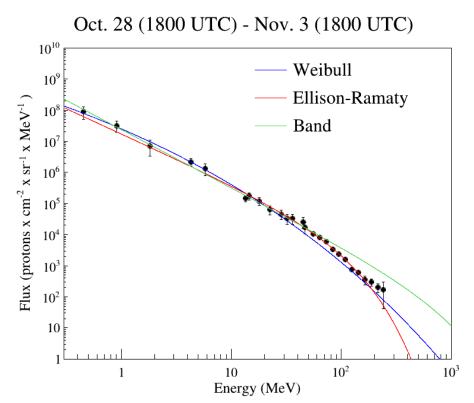

- South Atlantic Anomaly (SAA) proton fluxes as a function of energy (top panels), local pitch angle (middle panels) and Lshell (Earth radii, bottom panels) obtained by HEPD-01 (black squares) between August 2018 and December 2020
- Comparison with predictions from the AP9 model at 95% C.L. (red dashed line)

SEP and Forbush Decrease



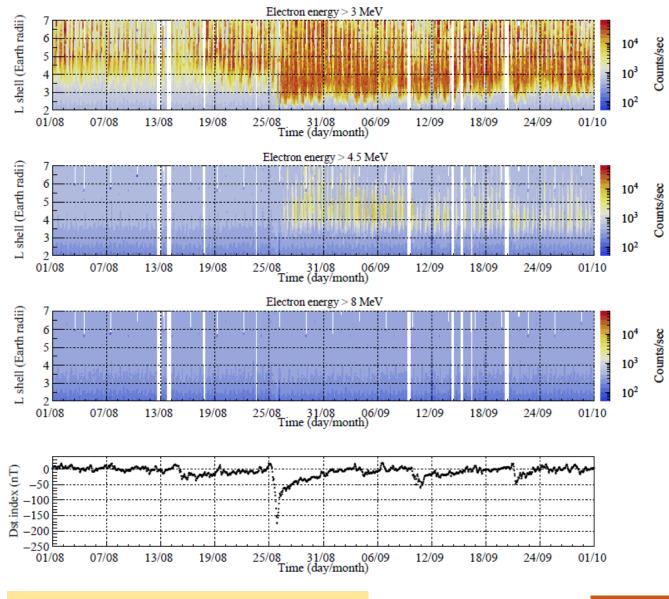
- After a series of C- and M-class flares a long duration X1 Solar
 Flare was emitted at 1535 UTC on October 28th, 2021, either triggered by or triggering the filament eruption
- A Coronal Mass Ejection (CME) associated with the filament eruption
- □ First SEP of the current solar cycle within the range of the HEPD detector (p+ with E > 40 MeV)
- □ The event also triggered a Ground Level Enhancement (GLE) detected minutes later by the Neutron Monitor network → GLE#73 is the first GLE of solar cycle 25


SEP and Forbush Decrease


- Differential solar proton evolution during the SEP of Oct. 28 2021 w.r.t. a quiet GCR background
- The spectral shapes seem to vary during the first hours of the SEP itself
- Investigation of > 1 GeV energies is not possible, still HEPD-01 data could bridge a very interesting gap between low-energy and high-energy measurements

- After a few days from the Oct. 28, 2021 SEP,
 around Nov.4 – a CME reached the Earth causing a FD
- Study on charge sign dependence are ongoing

SEP and Forbush Decrease


- □ Using also data from other experiments like ACE, EPHIN and ERNE we were able to construct an extended pure-solar, time-integrated energy proton spectrum of the GLE event
- A fit with various model functions (see legend in the Figure) has shown that the Weibull is the best choice to reproduce some characteristics of this event
- This favours the mechanism of acceleration from CME, even if transport inside the heliosphere could still play an important role and modify the spectral shape

□ Other SEPS are being currently studied

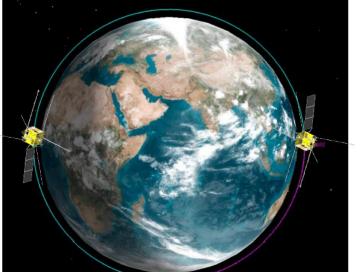
The Geomagnetic Storm of August 27, 2018

- HEPD-01 is also sensitive enough to measure the effects of geomagnetic storms NOT associated with SEPs
- A slow CME (caused by a filament eruption) observed on August 20, 2018 affected the Earth's environment starting on late August 25, 2018 and gave rise to the G3-class and third largest geomagnetic storm of Solar Cycle 24
- □ The hit of the ICME gave rise to a compression of the magnetopause from ~10 R_E before the storm down to ~7.7 R_E and a backward motion of the plasmapause from ~5 R_E down to ~3.8 R_E

Palma, F. et al. Appl. Sci. 11, 12 (2021)

The future: CSES-02 & HEPD-02

CSES-02


□ Same model platform of CSES-01 with some upgrades

- Earth oriented 3-axis stabilization system 0 with orbit maneuver capability
- X-Band Data Transmission 150 Mbps Ο
- Storage 512Gb Ο
- Peak Power Consumption: ~900W Ο
- **Identical Orbit Plane**
- 180° Phase Difference \bigcirc
- Track interval: $5^{\circ} \rightarrow 2.5^{\circ}$ \cap
- Operation mode: Full time operational Ο

HEPD-02

- first silicon-pixel tracker ever designed for space
- ~biggest LYSO scintillators ever produced for space
- increased energy resolution
- concurrent trigger system allowing for lower energy measurements over the poles and on the SAA
- sensitivity to gamma-rays

Launch scheduled by 2023

Conclusions

- The CSES initiative is a successful cooperation between China National Space Administration (CNSA), China Earthquake Administration (CEA) and Italian Space Agency (ASI)
- Limadou is the Italian collaboration **led by INFN** which designed and constructed HEPD for CSES-01
- □ HEPD-01 obtained important results in cosmic ray physics: measurements of cosmic rays down to 40 MeV, where solar modulation can be studied in detail
- □ Measurements of protons inside the SAA, strongly constraining available models
- □ Measurements of SEPs at the beginning of the 25th solar cycle
- □ The Limadou Collaboration is currently committed to construct the HEPD-02 payload for the CSES-02 satellite, expected to be launched in 2023

□ CSES-01 and CSES-02 will provide the first opportunity for multi-site observations of the upper ionosphere