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Combined fit above the ankle: ingredients

✴ Assuming  point-like sources identical and uniformly distributed;

A.Aab et al. (The Pierre Auger Collaboration), JCAP04(2017)038
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Combined fit above the ankle: ingredients

✴ Assuming  point-like sources identical and uniformly distributed;


✴ Acceleration of five representative masses:  Hydrogen, Helium, Nitrogen, Silicon and Iron.


✴ The injected flux for each mass is a power law with a broken-exponential cutoff.

✴ The injected flux are propagated through the extra-galactic space and fitted to the Auger energy spectrum and 
composition.


✴ Free parameters of the fit are:   and  .


✴ The total deviance is considered as the sum of the deviance of the spectrum and the deviance of the 
composition.

J0, γ, Rcut (N − 1) fk

A.Aab et al. (The Pierre Auger Collaboration), JCAP04(2017)038



Astrophysical interpretation of Auger data
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Fitting both the spectrum and composition, one can infer 
information about the source scenarios which are compatible to 
data.

A.Aab et al. (The Pierre Auger Collaboration), JCAP04(2017)038

✴Nuclei are accelerated at the sources.


✴ A hard injection spectrum at the sources is  
required.


✴ Suppression due to photo-interactions and by limiting 
acceleration at the sources, while the ankle feature is not 
easy to accomodate.



The extended combined fit

15E.Guido for The Pierre Auger Collaboration, PoS ICRC2021 (2021) 311

✴Duplicating the combined fit 
structure using two extra-galactic 
components;


✴The free parameters are duplicated 
with respect to the previous case.
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✴ Hard injection spectrum at high energies vs soft injection at low energies.

✴ Intermediate nuclei required at low energies.

✴ Impossibility to distinguish between a galactic and an extra-galactic contribution at low energies.


✴ Iron Galactic flux is strongly disfavoured.

E.Guido for The Pierre Auger Collaboration, PoS ICRC2021 (2021) 311

The extended combined fit

Prelim
inary!
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Fitting the proton spectrum

Quentin Luce et al 2022 ApJ 936 62

How can we get information 

without extending the model?


Fitting the proton spectrum in 

the energy below the ankle !
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Comparison

Quentin Luce et al 2022 ApJ 936 62
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Interactions at the source
✴ Accelerated particles 

confined in the environment 

surrounding the source;


✴ Presence of photon and gas 

density;


✴ High energy particles—> 

escape with no interaction;


✴ Low energy particles —> 

Pile-up of nucleons at lower 

energies.
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Interactions at the source

Interactions at the source already discussed in:

✓Unger, M., Farrar, G. R., & Anchordoqui, L. A. 2015, PhRvD, 92, 123001

✓Globus, N., Allard, D., & Parizot, E. 2015, PhRvD, 92, 021302

✓Biehl, D., Boncioli, D., Fedynitch, A., & Winter, W. 2018, A&A, 611, A101

✓Zhang, B. T., Murase, K., Kimura, S. S. Et al., P. 2018, PhRvD, 97, 083010

✓Fang, K., & Murase, K. 2018, Nature Phys., 14, 396

✓Supanitsky, A. D., Cobos, A., & Etchegoyen, A. 2018, PhRvD, 98, 103016

✓Boncioli, D., Biehl, D., & Winter, W. 2019, ApJ, 872, 110

✓Condorelli, A., Boncioli, D., Peretti., E.,  & Petrera, S., PoS ICRC2021 (2021) 959

✴ Accelerated particles 

confined in the environment 

surrounding the source;


✴ Presence of photon and gas 

density;


✴ High energy particles—> 

escape with no interaction;


✴ Low energy particles —> 

Pile-up of nucleons at lower 

energies.



Improvements and discussion
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✴The CF of energy spectrum and composition could shed light of the features observed in the 
UHECR measurements;

✴Below the ankle a mix of protons and intermediate nuclei is required, while the presence of a 
heavy component is strongly disfavoured;

✴Secondary fluxes increase the constrain capability of the model;

✴Future analysis (ongoing) including arrival direction measurements will thus provide elements 
helping to understand the origin of UHECRs.




Improvements and discussion

22

✴The CF of energy spectrum and composition could shed light of the features observed in the 
UHECR measurements;

✴Below the ankle a mix of protons and intermediate nuclei is required, while the presence of a 
heavy component is strongly disfavoured;

✴Secondary fluxes increase the constrain capability of the model;

✴Future analysis (ongoing) including arrival direction measurements will thus provide elements 
helping to understand the origin of UHECRs.


Thanks fo
r your attention!



Back-up slides!
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UHECRs measurements

24The European Physical Journal C
volume 81, Article number: 966 (2021)

J. Bellido for the Pierre Auger collaboration,

ICRC2017

https://link.springer.com/journal/10052
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Combined fit above the ankle: ingredients

A.Aab et al. (The Pierre Auger Collaboration), JCAP04(2017)038
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Fit of the distribution
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The expected   distributions are parametrized in 
terms of generalised Gumbel functions:

Xmax



Fraction fit

27J. Bellido for the Pierre Auger collaboration,

ICRC2017

✴Define the Gumbel 
distribution of a set of four 
masses (H, He, N, Fe);


✴Including detector effects;


✴Find the best fit fractions 
with respect to the chosen 
set of Gumbel distributions;


✴Analysis independent bin to 
bin.
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Defining the proton spectrum

Use the fraction fit to define 
the proton spectrum—> 
total spectrum multiplied by 
the best fit proton fractions




Discussion
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Methodology of source-propagation model



Combined fit above the ankle: results

32A.Aab et al. (The Pierre Auger Collaboration), JCAP04(2017)038



Second extra-galactic component

33

18 18.5 19 19.5 20 20.5(E/eV)
10

log

3610

3710

3810]
-1

 y
r

-1
 s

r
-2

 k
m

2
J 

[e
V

3 E

 A = 1
 A = 4
 A = 14
 A = 28
 A = 56

18 18.5 19 19.5 20
(E/eV)

10
log

600

650

700

750

800

850

900]
-2

 [g
 c

m
〉

m
ax

X〈

H
He
N
Fe

EPOS-LHC

 

18 18.5 19 19.5 20
(E/eV)

10
log

0

10

20

30

40

50

60

70

]
-2

) [
g 

cm
m

ax
(X

σ

H

He

N
Fe

 

18 18.5 19 19.5 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 mass group ratio18 18.5 19 19.5 20 20.5(E/eV)
10

log

3610

3710

3810]
-1

 y
r

-1
 s

r
-2

 k
m

2
J 

[e
V

3 E

 A = 1

 4≤ A ≤ 2 

 22≤ A ≤ 5 

 28≤ A ≤ 23 

 A > 28


