Revealing time-resolved hadronic particle acceleration in the recurrent nova RS Ophuichi

A. Mitchell, J.-P. Ernenwein, D. Khangulyan, R. Konno, J. Mackey, S. Ohm, E. de Oña Wilhelmi, B. Reville, S. Steinmaßl, T. Unbehaun

for the H.E.S.S. collaboration

RICAP22 08/09/22

Deutsche Forschungsgemeinschaft German Research Foundation

Introduction to Novae

- Novae outbursts from accreting binary systems (White Dwarf + massive donor):
 - (Classical) Novae → outbursts from cataclysmic variables
 - Symbiotic Novae → red giant / "evolved" donor star
 - Recurrent Novae → multiple observed outbursts
 - Dwarf Novae → mini-outbursts (not thermonuclear)
- Thermonuclear explosion ignited on surface of white dwarf
- Increase in optical brightness $\Delta m_v \sim 8$ to 15
- Typical optical duration weeks to months

Evolution of a nova outburst

Chomiuk L, et al. 2021 Annu. Rev. Astron. Astrophys. 59:391–444

Novae in gamma-rays

- Particle acceleration at shocks → interaction with dense wind (external) or of fast ejecta with slower material (internal)
 - V407 Cyg V1324 Sco Gamma-Ray Flux [10^{.6} photons s⁻¹ cm⁻²] V959 Mon V339 Del V5668 Sgr 1369 V407 Lup V5855 Sar 0.2 . V5856 Sgr V357 Mus V392 Per V906 Car 1.5 1.0 0. 05 0.0 20 30 40 10 20 0 10 0 30 40 Time from Optical Peak [days]

Chomiuk et al, Ann. Rev. A&A 59, 112420 (2021)

- 17 novae detected in gamma-rays by Fermi-LAT so far
- Typical duration days to weeks
- Typical spectral cut-off ~1-10 GeV

4

DESY/H.E.S.S. Science Communications Lab

Introducing RS Ophiuchi

- Binary system comprised of white dwarf and red giant at ~1.4 kpc distance
- Quiet state $m_v = 12.5$
- Semi-regular explosions observed since 1898 most recently in 12th February 2006 and 8th August 2021 reaching m_v = 4.6
- Post-2006: asymmetric expansion at 5.5 days from infrared interferometric observations Chesneau et al. A&A 464, 119 (2007)

Introducing H.E.S.S.

Array of five IACTs in Khomas Highlands, Namibia

- CT1-4: operational since 2004
- 108m² mirror area
- 5° field-of-view

- CT5: constructed in 2012
- 614m² mirror area
- 3.2° field-of-view

- 50 GeV 50 TeV range
- ~0.1° angular resolution

Instrument performance

- Fermi-LAT satellite and IACTs as highly complementary facilities
- Cross-over energy depends on exposure

Funk & Hinton, Astropart Phys 43 (348-355), 2013

H.E.S.S. Nova ToO program

- Trigger criteria for novae:
 - Optical magnitude, $m_v \le 9$
 - Fast ejecta velocity ≥ 1500 km/s
 - Associated Fermi-LAT detection
- Known recurrent novae also to be observed whenever they enter outburst
- Most novae only match 1-2 criteria
- RS Oph \rightarrow fulfilled **all** criteria (rare)

- RS Oph in 2021:
 - $m_v \sim 5$ (AAVSO, 8th Aug 22:20 UTC)
 - ≥ 2600 km/s (Atel #14838, 9th Aug 15:00 UTC)
 - ~6 sigma (ATel #14834, 9th Aug 05:00 UTC)
- Is a known recurrent nova

Observations of RS Oph

- Restricted by:
 - Elevation above horizon
 - Ambient sky brightness
 (e.g. background moonlight)
 - Time of year (luck)

- Observations commenced 18:17 UTC on 09/08/21
- Continued nightly until 13/08/21
 Enforced break due to high moonlight
- Observations resumed from 17:48 UTC 25/08/21

Detection of VHE gamma-ray emission from the recurrent nova RS Ophiuchi with H.E.S.S.

ATel #14844; Stefan J. Wagner, for the H. E.S. S. collaboration

on 10 Aug 2021; 18:34 UT

Credential Certification: Stefan J. Wagner (swagner@lsw.uni-heidelberg.de)

Subjects: Gamma Ray, >GeV, TeV, VHE, Binary, Nova

Referred to by ATel #: 14845, 14846, 14848, 14849, 14851, 14855, 14857, 14858, 14860, 14882, 14885, 14886, 14894, 15169

H.E.S.S. detection of RS Oph

- Detection at > 6 sigma on each night of first five nights
- Signal at ~3 sigma level in ~15 hours of data accumulated between 17 and 31 days post-outburst

Night	$T_{ m obs}$ (UTC)	Livetime (hours)	Significance (σ)
09 Aug. 2021	18:17:40	3.2	5.8 (6.4)
10 Aug. 2021	17:53:46	3.7 (2.8)	9.0 (7.1)
11 Aug. 2021	17:44:08	3.7	9.8 (9.6)
12 Aug. 2021	18:17:12	2.3	13.6
13 Aug. 2021	17:44:43	2.8	10.5 (9.4)
25 Aug 07 Sep. 2021	17:48:03; 19:47:31	14.6 (13.4)	3.3 (2.3)

Atmospheric correction

- Challenging data quality
- Variable and degraded atmospheric transparency
- Correction based on scaling instrument response for the atmospheric transparency Hahn et al Astropart. Phys 54 25-32 (2015)
- Validated on Crab Nebula data
 → reproduces the correct flux

Night	$T_{ m obs}$ (UTC)	Livetime (hours)	Significance (σ)	Atmospheric transparency	NSB noise level
09 Aug. 2021	18:17:40	3.2	5.8 (6.4)	0.90	1.0
10 Aug. 2021	17:53:46	3.7 (2.8)	9.0 (7.1)	0.80	1.0
11 Aug. 2021	17:44:08	3.7	9.8 (9.6)	0.65	1.0
12 Aug. 2021	18:17:12	2.3	13.6	1.00	1.5
13 Aug. 2021	17:44:43	2.8	10.5 (9.4)	1.10	2.5
25 Aug 07 Sep. 2021	17:48:03; 19:47:31	14.6 (13.4)	3.3 (2.3)	0.96	1.0

Gamma-ray flux decay

- Optical peak occurred at T₀ = 59435.25 (MJD)
- Fermi-LAT gamma-ray peak flux
- VHE gamma-ray flux peak seen by H.E.S.S. is delayed by ~ 2 days
- Consistent decay slope after peak flux is attained

Spectral evolution

- Over the first five days, Fermi-LAT flux reduces and HESS flux hardens
- It takes time to reach the theoretical maximum energy
- Either: cooling limited (leptonic)
- Or: confinement limited (hadronic)

until particles become sufficiently energetic to escape the shock

$$E_{\rm max} = 1.5 \left| Z \right| \left(\frac{\xi_{\rm esc}}{0.01} \right) \left(\frac{\dot{M} / v_{\rm wind}}{10^{11} \text{ kg m}^{-1}} \right)^{1/2} \left(\frac{u_{\rm sh}}{5000 \text{ km s}^{-1}} \right)^2 \text{ TeV}$$

 For RS Oph: E_{max} ~10 TeV for 1% efficiency and

$$\dot{M} / v_{wind} = 6 \times 10^{11} \text{ kg m}^{-1}$$

Shock expansion

- Asymmetric expansion (images and interferometric observations post-2006 outburst)
- Fast shock velocities from spectroscopy.
 From HST images post-2006 outburst, consistently several 1000 km/s over several months

Leptonic scenario

- Inverse Compton scattering
- Need efficient acceleration and scattering
- Need > 1% efficiency
 - \rightarrow cannot be realised
 - (e^{-} to ion ratio << 10⁻²)

Hadronic scenario

- Neutral pion decay
- Need ~10% of energy into accelerating protons

Interpretation: implications

- Particle acceleration in dense wind environments → ~ a factor 100 x higher energy than seen in previous novae with E_{max} ~1-10 TeV
- Hadronic scenario preferred via energy efficiency arguments
- Resulting local cosmic ray density is ~0.1 eV/cm³
 → for recurrent novae, quasi-continuous injection could lead to local cosmic ray enhancement
 - \rightarrow provided diffusion coefficient is suppressed compared to Galactic average
- Theoretical limit for maximum energy via diffuse shock acceleration reached.
- If results scale up to supernovae, findings support that PeV cosmic rays originate in supernova remnants

Summary & outlook

- https://www.science.org/doi/10.1126/science.abn0567
- The first nova event detected at TeV energies \rightarrow won't be the last
- Strong signal enables time-resolved analysis
- Rich multiwavelength and multi-instrument dataset
- → Swift, Fermi-LAT, HESS, MAGIC, LST...
- \rightarrow see e.g. next talk by David Green
- Looking forward to images and results on RS Oph from many facilities in the near future
- Looking forward to many more novae in future, including with CTA...

Thanks for your attention

Any Questions?

Video released for 1 year anniversary:

https://youtu.be/XE3mapcBboc

Deutsche Forschungsgemeinschaft German Research Foundation

Interpretation: leptonic scenario

- Efficient acceleration close to Bohm limit required (radiative losses)
- Efficient scattering → strong self-generated magnetic fluctuations
 → an energetic hadronic component.
- Peak delay due to energy-dependent cooling rates in time-dependent photon fields

Interpretation: hadronic scenario

- Expanding shock in decreasing density profile
- ~10% of energy goes into accelerating protons
- Peak delay due to finite acceleration time of > 1 TeV protons
- cf > 1% energy into electrons but e⁻ to ion ratio << 10⁻²
- >1% efficiency cannot be realised

H.E.S

💡 night 1

night 2

10⁻⁹

night 3

Spectral evolution

Gamma-gamma attenuation

- For the adopted distance of 1.4 kpc
- Attenuation due to nova photon fields is insufficient to account for the observed spectral hardening (minor below ~ 1TeV)

 Visuals motivated by: Booth et al. MNRAS 457 822-835 (2016)

H.E.S.S.

CDF III Rubriken 🛱 Barrierefrei 🖵 Live-TV ⊙ Sendung verpasst (L. Q. Suche ⓒ Mein ZDF

Neuartige Teilchenbeschleuniger gefunden!

Teilchenbeschleuniger liefern uns auf der Erde grundlegende Erkenntnisse in der Teilchenphysik. Aber auch im kosmischen Labor gibt es Phänomene, die uns einen tiefen Einblick in die Physik vom Allerkleinsten liefern – und uns vor ganz neue Rätsel stellen.

22 min | 31.08.2022

https://www.zdf.de/dokumentation/terra-x/lesch-undco-neuartige-teilchenbeschleuniger-gefunden-100.html#xtor=CS5-95#xtor=CS5-95

DESY/H.E.S.S. Science Communications Lab

248 Harman et al.

Figure 1. HST ACS/HRC narrow-band Epoch 1 images of RS Oph. (a) PSF-subtracted [O III] λ 5007 Å image clearly showing extended emission at subarcsecond size scales particularly in the east-west direction; (b) results of deconvolution of the [O III] λ 5007 Å RS Oph PSF-subtracted image with the PSF star, showing a double ring structure; (c) same as (b), but for [Nev] λ 3426 Å and using a TinyTim PSF; (d) deeper, larger area view of (b), showing an arc-like feature to the east and a southern blob of emission.

