

Eleonora Guido on behalf of the Pierre Auger Collaboration

*Universität Siegen, Germany

7th September 2022

Searching for multi-messenger signals with the Pierre Auger Observatory

guido@hep.physik.uni-siegen.de

Multi-messenger astronomy

Combining the *information from any particle and radiation* coming from astrophysical objects \rightarrow complementary insight on the most energetic events in the Universe

 Sources studied through different wavelengths of the electromagnetic spectrum + observation in 1987 of neutrinos coming from a SN

- observed by LIGO and Virgo,
- 2018: IceCube observed a high-energy neutrino (~290 TeV) in coincidence with a flaring gamma-ray blazar.

Eleonora Guido for the Pierre Auger Collaboration

RICAP2022

 Neutrino astronomy & observation of gravitational waves → <u>recent boost of multi-messenger studies</u>

• 2017: measurements of the electromagnetic spectrum emission in coincidence with the first neutron star merger

)	Searching for multi-messenger signals with the Pierre Auger Obs
1	Searching for mala messenger signals with the Fielder Obs

* Messengers providing different information about the potential sources:

• Cosmic rays • Gamma-rays

Eleonora Guido for the Pierre Auger Collaboration

RICAP2022

• Neutrinos

• Neutrons

* Gravitational waves

* Messengers providing different information about the potential sources:

• Cosmic rays • Gamma-rays

Eleonora Guido for the Pierre Auger Collaboration

RICAP2022

• Neutrinos

• Neutrons

* Gravitational waves

* Messengers providing different information about the potential sources:

• Gamma-rays • Cosmic rays

Eleonora Guido for the Pierre Auger Collaboration

RICAP2022

- Neutrinos
- Neutrons

* Gravitational waves

* Messengers providing different information about the potential sources:

• Cosmic rays • Gamma-rays

Eleonora Guido for the Pierre Auger Collaboration

RICAP2022

- Neutrinos

• Neutrons

* Gravitational waves

* Messengers providing different information about the potential sources:

• Cosmic rays • Gamma-rays

Eleonora Guido for the Pierre Auger Collaboration

RICAP2022

• Neutrinos

• Neutrons

* Gravitational waves

<u>Alerts crucial to study</u> transient events

* Messengers providing different information about the potential sources:

Eleonora Guido for the Pierre Auger Collaboration

RICAP2022

* Messengers providing different information about the potential sources:

Eleonora Guido for the Pierre Auger Collaboration

RICAP2022

Very low rate of particles at **ultra-high energies**→ detecti

- UHE particles start interacting with atmospheric nuclei (N, O, Ar)
 - → cascades of ionised particles + electromagnetic radiation
- Cascades observed by ground-based detectors, like the Pierre Auger Observatory \rightarrow the type of primary particle can be inferred from the <u>air shower characteristics</u>

Eleonora Guido for the Pierre Auger Collaboration

RICAP2022

The Pierre Auger Observatory

Located in Argentina, close to Malargüe (~1400 m a.s.l.)

Eleonora Guido for the Pierre Auger Collaboration

RICAP2022

The Pierre Auger Observatory

Surface Detector (SD)

- 1660 water-Cherenkov tanks covering a ~3000 km² area, with a

Eleonora Guido for the Pierre Auger Collaboration

RICAP2022

Fluorescence Detector (FD)

Photon identification at the Pierre Auger Observatory

* The Pierre Auger Observatory is sensitive to **UHE photons** * They can be produced either at the sources or during the propagation of UHE cosmic rays * Neutral particles → used to **study steady and transient sources**

Eleonora Guido for the Pierre Auger Collaboration

RICAP2022

- → constrain specific astrophysical scenarios (e.g. GZK effect, top-down/bottom-up models for UHECRs production)

Searching for multi-messenger signals with the Pierre Auger Observatory

6

The diffuse photon flux

$E < 10^{19} eV$

- FD+SD are used (hybrid measurements)
- Analysis applied also to the low-energy extent Auger \rightarrow limits set above 2 x 10¹⁷ eV
- Zenith angles below 60°

How to distinguish hybrid photon events:

- FD measurements:
 - \rightarrow Larger depth of shower maximum X_{max}
- SD measurements:
 - \rightarrow Smaller number of triggered SD stations N_{SD}
 - \rightarrow Steeper LDF (less muons) \rightarrow observable S_b
- The observables are combined to obtain a discriminant

[The Pierre Auger Collaboration, ApJ 933 125]

Eleonora Guido for the Pierre Auger Collaboration

RICAP2022

Photon search

<u>Cut set at 50% of the photon distribution</u>

Searching for multi-messenger signals with the Pierre Auger Observatory

8

No photon has been unambiguously detected so far but upper limits have been set above 2 x 10¹⁷ eV

RICAP2022

Photon search

Feldman-Cousins upper limit for 0 background

Integrated exposure for $E^{-\Gamma} = E^{-2}$

- Auger set the most stringent limits in that energy region
- Top-down models are already disfavoured
- GZK predictions still not constrained

<u>Upper limit on the integral flux at 95% C.L.</u>

- → slightly lowering the limits would put some constraints
- Improvement are expected in the next future (AugerPrime)

[The Pierre Auger Collaboration, ApJ 933 125]

 $\Phi_{UL}^{0.95}(E_{\gamma} > E_0)$

[The Pierre Auger Collaboration, JCAP04(2017)009]

[The Pierre Auger Collaboration, *PoS(ICRC2019)398*]

Photons from point-like sources

- * Goal: Identifying the first UHE photon point sources (or c
- * Photons are attenuated by the interactions with backgrou

 \rightarrow sources within few Mpc (including Centaurus A)

- * Atmospheric Cherenkov telescopes (e.g. HESS) observed region
 - \rightarrow the continuation of such spectra to EeV energy coul
- Sources grouped in 12 target sets to have more significant sets to have more sets t source candidates)
- Selected events: hybrid events, $\theta < 60^{\circ}$, $10^{17.3} \, \text{eV} < E$
- 5 mass-sensitive observables used to train a BDT
- A combined p-value P is associated to each target → no evidence of EeV photon (statistical significance a \rightarrow upper limits are set \rightarrow constraints on the extrapolation
 - energies (e.g. E_{cut} < 2 EeV for the Galactic center)

RICAP2022

Photon search

	Class	No.	\mathcal{P}_w	${\cal P}$
onstraining their characteristic	s)			
	msec PSRs	67	0.57	0.14
und radiation	γ -ray PSRs	75	0.97	0.98
	LMXB	87	0.13	0.74
	HMXB	48	0.33	0.84
· · · ·	H.E.S.S. PW	N 17	0.92	0.90
d gamma-ray sources in the le	H.E.S.S. othe	er 16	0.12	0.52
	H.E.S.S. UN	ID 20	0.79	0.45
d ha abcorvad by Augar	Microquasars	5 13	0.29	0.48
id be observed by Auger	Magnetars	16	0.30	0.89
	Gal. Center	1	0.59	0.59
	LMC	3	0.52	0.62
cant signals (364 individual	Cen A	1	0.31	0.31
$< 10^{18.5} {\rm eV}$ lways lower than 3σ) tion of TeV spectra to EeV	10 ⁻¹¹ 10 ⁻¹² 10 ⁻¹³ 10 ⁻¹⁴ 10 ⁻¹⁵ H.E.S.S. measure 10 ^c confidence bar Auger photon GC H.E.S.S. extrapola	Galac ment of the best- limit (Γ =2.32 ± ation (Γ =2.32 ±	fit spectra ± 0.11) and E _{cut} =	enter a 2.0 EeV)
	10^{-16} 10^{-1} 1 10 10^{-1} 1 10 10^{-1}	² 10 ³	10 ⁴	10 ⁵ 10 ⁶ E

Follow-up of gravitational wave events

- * Goal: search for UHE photons from the sources of gravitational waves (GW)
- * The SD data are used
- * Same method used for the search of the diffuse photon flux above 10¹⁹ eV
- Two time windows: Δ =1000 s starting 500 s before the GW event * Δ =24 h starting 500 s after the GW event
- * Selection of GW events based on **localization quality and distance** (events) within the photon horizon, farther events but very well localised, ...) → only 4 GW events overlap with the field of view of the SD during the **1 day time window** (including a BNS merger event identified as hosted by the galaxy NGC 4993)
- No photon candidate has been observed
- For each GW event upper limit on the photon spectral fluence at 90% C.L.

Photon search

Neutrino identification at the Pierre Auger Observatory

- * The Pierre Auger Observatory is sensitive also to **UHE neutrinos**
- * As UHE photons, they are probes to specific astrophysical scenarios and can be used to study transient and steady sources
- * They rarely interact with matter \rightarrow can travel very long distances

How to distinguish neutrino-induced air showers? (from the background of hadron-induced ones)

- Neutrinos may interact <u>very deep in atmosphere</u> 1.
- 2. ν_{τ} may interact in the Earth crust producing a τ

Eleonora Guido for the Pierre Auger Collaboration

RICAP2022

- \rightarrow even very inclined shower are still "young" at the ground **level** (electromagnetic component still present)
- \rightarrow the lepton decays in the atmosphere and **an upward-going** shower can be observed

The neutrino diffuse flux

Eleonora Guido for the Pierre Auger Collaboration

RICAP2022

The neutrino diffuse flux

No neutrino candidate has been identified so far but **upper limits have been set above 10**¹⁷ eV

Eleonora Guido for the Pierre Auger Collaboration

RICAP2022

Neutrino search

Assuming a differential flux $\phi = k \cdot E_{\nu}^{-2}$, the upper limit to k at 90% C.L. is given by:

$$k_{90} = \frac{2.39}{\int_{E_{\nu}} E_{\nu}^{-2} \mathcal{E}_{tot}(E_{\nu}) dE_{\nu}}$$
Exposure

Feldman-Cousins factor in absence of background

The integrated upper limit is:

$$k_{90} < 4.4 \times 10^{-9} \,\mathrm{GeV \, cm^{-2} \, s^{-1} \, sr^{-1}}$$

- Auger sets limits comparable with the IceCube ones
- Maximum sensitivity at ~EeV (peaks of most cosmogenic models)
- Some cosmogenic models are already disfavoured

[The Pierre Auger Collaboration, JCAP10(2019)022]

Neutrinos from point-like sources

- * The same sets of inclined events as in the diffuse flux search are considered
- * At each instant, only neutrinos from a specific region of the sky corresponding to $60^{o} < \theta < 95^{o}$ can be detected.
- * Same exposure calculation as in the analysis for diffuse neutrinos except for the solid angle integration over the sky
- * <u>A blind search is performed and no neutrino candidate is</u> <u>observed</u>
- Assuming a differential flux $\phi = k_{PS} \cdot E_{\nu}^{-2}$, the upper limit to $k_{PS}(\delta)$ at 90% C.L. according to Feldman-Cousins is computed

RICAP2022

Neutrino search

[The Pierre Auger Collaboration, JCAP 11 (2019) 004]

Searching for multi-messenger signals with the Pierre Auger Observatory

15

Follow-up of gravitational waves

- * The regular neutrino search with the SD is used
- * The same time windows used for the photon follow-up are chosen
- * Only periods when the GW event localisation is in the field of view of the UHE neutrino search of the Pierre Auger Observatory
- * No neutrinos have been found \rightarrow limits calculated as for the flux from point-sources

RICAP2022

Neutrino search

Upper limits on the radiated energy in UHE v per flavour from the source of GW151226 (BBH merger) as a function of the declination

- Energies above the lines are excluded at the 90% CL from the non-observation of UHE neutrinos in Auger.
- Limits for luminosity distance Ds = 410Mpc (and for the 90% CL interval of possible distances to the source).
- Horizontal line is the inferred energy radiated in gravitational waves from GW150914

Summary

The Pierre Auger Observatory is sensitive to UHE photons, neutrinos and neutrons

Photons

- \rightarrow they are searched with both the SD and the FD
- events \rightarrow stringent upper limits

Neutrinos

- * Their showers develop deep in atmosphere \rightarrow large electromagnetic component at the ground ("young" showers)
- events \rightarrow stringent upper limits

Eleonora Guido for the Pierre Auger Collaboration

RICAP2022

* They can be discriminated from hadrons because they initiate showers with reduced muon content and deeper X_{max}

* No candidate events for diffuse photon flux, photons from point-like sources and photon follow-up of gravitational wave

→ search for inclined events with the SD (electromagnetic component of hadron showers is almost completely absorbed)

* No candidate events for diffuse neutrino flux, neutrinos from point-like sources and neutrino follow-up of gravitational wave

Auger with its unique sensitivity will continue to monitor the UHE sky and contribute to multi-messenger studies

Thank you for your attentions

Eleonora Guido for the Pierre Auger Collaboration

RICAP2022

Neutron search for source targets

- * Also UHE neutrons are not deflected by magnetic fields and may point back to their sources
- * Mean travel distance before decaying is 9.2 kpc $E_n/EeV \rightarrow$ neutrons above 1 EeV from sources in the Galactic disk can be detected
- * Neutron-induced air showers cannot be distinguished from proton-initiated ones \rightarrow search for an excess in given directions (as in the targeted search of EeV photon sources)

- No evidence for a neutron flux from any target sets of sources \rightarrow upper limits
- Upper limits below the energy fluxes detected from TeV gamma ray sources in our galaxy \rightarrow E⁻² Fermi-acceleration of protons up to EeV energies from these sources is excluded (the flux in TeV gamma rays would be exceeded)
- Limits on the flux of neutrons from the Galactic plane → constraints on models for continuous production of EeV protons in the Galaxy

17

The Pierre Auger Observatory

SD: water-cherenkov tanks (WCD) : 1661 covering 3000 km²

- ~100% duty cycle
- 3 PMT looking into the water collect the Cherenkov light produced by the particles (mainly electrons and muons)

• AugerPrime: additional plastic scintillator on each tank →improved information on the primary particles

[The Pierre Auger Collaboration, AugerPrime: the Pierre Auger Observatory Upgrade, EPJ Web of Conferences, 2019]

The Pierre Auger Observatory

FD: fluorescence telescopes

- Each FD site covers 180° x 30° in azimuth and elevation
- They collect the nitrogen fluorescence light produced in the atmosphere
- ~15% duty cycle (FD operate only on clear moonless nights)

• 24 in 4 sites overlooking the SD, covering an elevation up to $30^{\circ} \rightarrow E > 10^{18} \text{ eV}$ • 3 additional telescopes covering the elevation range between 30° and 58° (**HEAT**) \rightarrow E>10¹⁷ eV

The Pierre Auger Observatory

Surface Detector (SD)

- Sampling the secondary particles reaching the ground
- Duty cycle: ~100%

Fluorescence Detector (FD)

- Measuring the fluorescence light produced by the de-excitation of atmospheric nuclei
- Duty cycle: ~15%

Eleonora Guido

UHECRs propagation

* Consider the propagation effects \rightarrow infer source properties from the measured fluxes

<u>Energy loss processes occurring for $E > 10^{18} \text{ eV}$:</u>

- Adiabatic energy losses (expansion of the Universe)
- Interactions of nuclei with background photons (EBL, CMB)

Eleonora Guido

$$-\left(\frac{1}{E}\frac{dE}{dt}\right)_{ad} = H_0\sqrt{(1+z)^3\Omega_m + \Omega_\Lambda}$$

The diffuse photon flux

$E < 10^{19} eV$

- FD+SD are used (hybrid measurements)
- Analysis applied also to the low-energy extensions of Auger \rightarrow limits set above 2 x 10¹⁷ eV
- Zenith angles below 60°

How to distinguish hybrid photon events:

- FD measurements:
 - \rightarrow Larger depth of shower maximum X_{max}
- SD measurements:
 - \rightarrow Smaller number of triggered SD stations N_{SD}
 - \rightarrow Steeper LDF (less muons) \rightarrow observable S_b
- The observables are combined to obtain a discriminant

[The Pierre Auger Collaboration, ApJ 933 125]

Eleonora Guido for the Pierre Auger Collaboration

RICAP2022

Photon search

$$S_b = \sum_i^N S_i \left(rac{R_i}{R_0}
ight)^b$$

- $R_0 = 1000 m$
- b=4

Photons from point-like sources

- * Goal: Identifying the first UHE photon point sources (or cc
- * Photons are attenuated by the interactions with backgrou

 \rightarrow sources within few Mpc (including Centaurus A)

- * Atmospheric Cherenkov telescopes (e.g. HESS) observed region
 - \rightarrow the continuation of such spectra to EeV energy could
- Sources grouped in 12 target sets to have more signific source candidates)
- Selected events: hybrid events, $\theta < 60^{\circ}$, $10^{17.3} \,\mathrm{eV} < E < 10^{18.5} \,\mathrm{eV}$
- 5 mass-sensitive observables used to train a BDT
- A combined p-value P is associated to each target \rightarrow no evidence of EeV photon (statistical significance always lower than 3σ) \rightarrow upper limits are set \rightarrow constraints on the extrapolation of TeV spectra to EeV
 - energies (e.g. $E_{cut} < 2$ EeV for the Galactic center)

RICAP2022

Photon search

		Class	No.	\mathcal{P}_w	${\cal P}$
onstraining their characteristics	5)				
		msec PSRs	67	0.57	0.14
nd radiation		γ -ray PSRs	75	0.97	0.98
		LMXB	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.74	
		HMXB	48	0.33	0.84
· –	N /	H.E.S.S. PWN	17	0.92	0.90
d gamma-ray sources in the Te	έΛ	H.E.S.S. other	16	0.12	0.52
		H.E.S.S. UNID	20	0.79	0.45
gamma-ray sources in the TeV be observed by Auger		Microquasars	13	0.29	0.48
a be observed by Auger		Magnetars	16	0.30	0.89
		Gal. Center	1	0.59	0.59
		LMC	3	0.52	0.62
cant signals (364 individual		Cen A	1	0.31	0.31
			f.	<i>C</i> .	

 $p_i \equiv [\text{Poisson}(n_i, b_i) + \text{Poisson}(n_i + 1, b_i)]/2$

 $w_i = \frac{f_i \cdot c_i}{\sum f_i \cdot \epsilon_i}$

$$\mathcal{P}_w = \operatorname{Prob}(\prod_i p_{i,iso}^{w_i} \leq \prod_i p_i^{w_i})$$

No photon has been unambiguously detected so far but upper limits have been set above 2 x 10¹⁷ eV

RICAP2022

10²⁰

<u>Upper limit on the integral flux at 95% C.L.</u>

$$\Phi_{UL}^{0.95}(E_{\gamma} > E_0) = \underbrace{\frac{N_{\gamma}^{0.95}(E_{\gamma} > E_0)}{\mathcal{E}_{\gamma}(E_{\gamma} > E_0 | E_{\gamma}^{-\Gamma})}}$$

Feldman-Cousins upper limit for 0 background

Integrated exposure for $E^{-\Gamma} = E^{-2}$

 $\mathcal{E}_{\gamma} = \frac{1}{c_E} \int_{E_{\gamma}} \int_T \int_S \int_{\Omega} E_{\gamma}^{-\Gamma} \epsilon(E_{\gamma}, t, \theta, \phi, x, y) \, dS \, dt \, dEd\Omega$

$$c_E = \int E^{-\Gamma} dE$$

Follow-up of gravitational wave events

- * Goal: search for UHE photons and neutrinos from the sources of gravitational waves (GW)
- * Two time windows: Δ =1000 s starting 500 s before the GW event Δ =24 h starting 500 s after the GW event

- produced in interactions of accelerated cosmic rays and the gamma rays within the GRB itself.
- neutrinos are thought to be produced in interactions of UHECRs with the lower-energy photons of the GRB afterglow.

• The ±500 s window: upper limit on the duration of the prompt phase of GRBs, when typically PeV neutrinos are thought to be

• The 1-day window after the GW event: conservative upper limit on the duration of GRB afterglows, where ultrahigh-energy

The neutrino diffuse flux

Figure 5. Exposure of the SD of the Pierre Auger Observatory (1 January 2004 - 31 August 2018) to UHE neutrinos as a function of neutrino energy for each neutrino flavor and for the sum of all flavors assuming a flavor mixture of $\nu_e: \nu_\mu: \nu_\tau = 1:1:1$. Also shown are the exposures to upward-going Earth-skimming ν_{τ} only and to the Downward-Going neutrinos of all flavors including CC and NC interactions.

Eleonora Guido for the Pierre Auger Collaboration

RICAP2022

The exposure of the SD of Auger needs to be calculated for the period of data taking:

- Monte Carlo simulations of neutrino-induced showers.
- The same selection and identification criteria applied to the data were also applied to the results of these simulations
- The identification efficiencies for each channel were obtained as the fraction of simulated events that trigger the Observatory and pass the selection procedure and identification cuts
- An integration over the whole parameter space, detection area, and time gives the exposure

[The Pierre Auger Collaboration, JCAP10(2019)022]

The neutrino diffuse flux

The total exposure folded with a single-flavor flux of UHE neutrinos per unit energy, area A, solid angle Ω and time, $\phi(E_V)$ and integrated in energy gives the expected number of events for that flux

$$N_{\rm evt} = \int_{E_{\nu}} \mathcal{E}_{\rm tot}(E_{\nu}) \phi(E_{\nu}) \, \mathrm{d}E_{\nu}$$

Assuming a differential flux $\phi = k \cdot E_{\nu}^{-2}$, the upper limit to k at 90% C.L. is given by:

$$k_{90} = \frac{2.39}{\int_{E_{\nu}} E_{\nu}^{-2} \mathcal{E}_{tot}(E_{\nu}) dE_{\nu}}$$
Exposure

Feldman-Cousins Differential upper limits to the normalization of the factor in absence diffuse flux: integrating the denominator in bins of of background width 0.5 in log (Ev).

The integrated upper limit is:

$$k_{90} < 4.4 \times 10^{-9} \,\mathrm{GeV \, cm^{-2} \, s^{-1} \, sr^{-1}}$$

value of the normalization of a differential flux needed to predict ~ 2.39 events

RICAP2022

[The Pierre Auger Collaboration, *JCAP10*(2019)022]

Follow-up of gravitational waves

Assuming a standard E^{-2} energy dependence for a constant UHE neutrino flux per flavor from e.g. the source of GW151226 a 90% CL upper limit on k can be obtained

$$k^{\rm GW}(\delta) = \frac{2.39}{\int_{E_{\nu}} E_{\nu}^{-2} \mathcal{E}_{\rm GW}(E_{\nu}, \delta) \ dE_{\nu}}$$

From the limits to the flux normalization we obtained upper limits to the UHE neutrino spectral fluence radiated per flavor:

$$E_{\nu}^2 \frac{dN_{\nu}}{dE_{\nu}} \times T_{\text{search}} = k^{\text{GW}}(\delta) T_{\text{search}}$$
 Tsearch

Eleonora Guido for the Pierre Auger Collaboration

RICAP2022

n = 1 day + 500 s is the total search period interval

16

Follow-up of gravitational waves

- * The regular neutrino search with the SD is used
- UHE neutrino search of the Pierre Auger Observatory
- point-sources

Eleonora Guido for the Pierre Auger Collaboration

RICAP2022

Neutrino search

