Magnetic Turbulence and **Cosmic-Ray Small-Scale Anisotropies**

Vo Hong Minh Phan

Adopted from Kuhlen, Phan and Mertsch ApJ 2021.

Introduction to Cosmic-Ray Anisotropies

• Numerical Simulations

Analytic Theory for Cosmic-Ray Anisotropies

Summary and Future Perspectives

High statistics and large field of view

Cosmic-Ray Anisotropy

 $\delta I(\hat{\mathbf{n}}, E) =$

Credit: IceCube, HAWC, Philipp Mertsch

$$1 - \frac{\phi(\hat{\mathbf{n}}, E)}{\phi^{\text{iso}}(E)}$$

Angular Power Spectrum

Abeysekara et al., ApJ 2018, Giacinti & Sigl, PRL 2012

Angular Power Spectrum

Abeysekara et al., ApJ 2018, Giacinti & Sigl, PRL 2012

Induced by local magnetic turbulence

BC

La Bainte Stall and Sale and S

La Sale and Sa

$\mathbf{B}_0 + \delta \mathbf{B}(\mathbf{r})$

$\langle \delta \mathbf{B}(\mathbf{r}) \rangle = \mathbf{0}$

Slab turbulence

STANG STATES OF NON

Slab turbulence

LAND STREET SPACE

The good 's and

Chille Stratest

 $P(k_{\parallel}) \sim k_{\parallel}^{-5/3}$

in Standard Road Road $P(k_{\parallel}) \sim k_{\parallel}^{-5/3}$

the second the se

A Standard Standard Street Street

A CONTRACTOR 20 $\kappa_{zz}(E) \sim E^{1/3}$

A DE ROAD AND A

A MARY SETTICS

ale al all a construction and a construction of the construction of the construction of the construction of the al Stin Signilla signitude

$f(\mathbf{r}(t), \mathbf{p}(t), t) = f(\mathbf{r}(t_0), \mathbf{p}(t_0), t_0)$

Ahlers & Mertsch, ApJL 2015

$f(\mathbf{r}(t), \mathbf{p}(t), t) = f(\mathbf{r}(t_0), \mathbf{p}(t_0), t_0)$

Ahlers & Mertsch, ApJL 2015

$f(\mathbf{r}_{\odot}, \mathbf{p}(t), t) = f_0 + [\mathbf{r}_{\mathbf{i}}(t_0) - 3\hat{\mathbf{p}}_{\mathbf{i}}(t_0) \cdot \mathbf{K}] \cdot \nabla f_0$

$f(\mathbf{r}(t), \mathbf{p}(t), t) = f(\mathbf{r}(t_0), \mathbf{p}(t_0), t_0)$

Local isotropic cosmic-ray spectrum

Ahlers & Mertsch, ApJL 2015

$f(\mathbf{r}_{\odot}, \mathbf{p}(t), t) = f_0 + [\mathbf{r}_{\mathbf{i}}(t_0) - 3\hat{\mathbf{p}}_{\mathbf{i}}(t_0) \cdot \mathbf{K}] \cdot \nabla f_0$

$f(\mathbf{r}(t), \mathbf{p}(t), t) = f(\mathbf{r}(t_0), \mathbf{p}(t_0), t_0)$

Local isotropic cosmic-ray spectrum

Ahlers & Mertsch, ApJL 2015

$f(\mathbf{r}_{\odot}, \mathbf{p}(t), t) = f_0 + [\mathbf{r}_{\mathbf{i}}(t_0) - 3\hat{\mathbf{p}}_{\mathbf{i}}(t_0) \cdot \mathbf{K}] \cdot \nabla f_0$

Local isotropic cosmic-ray spectrum

Ahlers & Mertsch, ApJL 2015

$f(\mathbf{r}(t), \mathbf{p}(t), t) = f(\mathbf{r}(t_0), \mathbf{p}(t_0), t_0)$ Trajectories + diffusion coefficient

Local cosmic-ray gradient

Test Particle Simulation

Solve Lorentz equation + Liouville's theorem

Sky Maps

Angular Power Spectrum

Kuhlen, Phan, and Mertsch, ApJ 2021, Ahlers & Mertsch, PNPP 2019

Analytic Theory for Cosmic-Ray Anisotropies

$$\langle C_{\ell} \rangle = \int \mathrm{d}\hat{\mathbf{p}}_1 \,\mathrm{d}\hat{\mathbf{p}}_2 P_{\ell}$$

 $\mathcal{P}_{\ell}(\hat{\mathbf{p}}_1 \cdot \hat{\mathbf{p}}_2) \langle f(\hat{\mathbf{p}}_1) f(\hat{\mathbf{p}}_2) \rangle$

Analytic Theory for Cosmic-Ray Anisotropies

$$\langle C_{\ell} \rangle = \int d\hat{\mathbf{p}}_1 d\hat{\mathbf{p}}_2 P$$

$P_{\ell}(\hat{\mathbf{p}}_1 \cdot \hat{\mathbf{p}}_2) \langle f(\hat{\mathbf{p}}_1) f(\hat{\mathbf{p}}_2) \rangle$

Standard approach gives only $\langle f(\hat{\mathbf{p}}_1) \rangle \langle f(\hat{\mathbf{p}}_2) \rangle \leq \langle f(\hat{\mathbf{p}}_1) f(\hat{\mathbf{p}}_2) \rangle$

Analytic Theory for Cosmic-Ray Anisotropies

$$\langle C_{\ell} \rangle = \int d\hat{\mathbf{p}}_1 d\hat{\mathbf{p}}_2 P$$

Standard approach gives only $\langle f(\hat{\mathbf{p}}_1) \rangle \langle f(\hat{\mathbf{p}}_2) \rangle \leq \langle f(\hat{\mathbf{p}}_1) f(\hat{\mathbf{p}}_2) \rangle$

Mertsch & Ahlers, JCAP 2019 or Kuhlen, Phan, and Mertsch, ApJ 2021

an a set and the set of the set o

$P_{\ell}(\hat{\mathbf{p}}_1 \cdot \hat{\mathbf{p}}_2) \langle f(\hat{\mathbf{p}}_1) f(\hat{\mathbf{p}}_2) \rangle$

 $\Lambda_{\ell\ell_0}(\Delta T) \langle C_{\ell_0} \rangle = \frac{8\pi}{3} K_{\parallel} \left(\frac{\partial_z f_0}{f_0}\right) \delta_{\ell 1}$

Mixing matrix

Diagrammatic technique

 $\Lambda_{\ell\ell_0}(\Delta T) \left\langle C_{\ell_0} \right\rangle = \frac{8\pi}{3} K_{\parallel} \left(\frac{\partial_z f_0}{f_0} \right) \delta_{\ell 1}$

Mixing matrix

Kuhlen, Phan, and Mertsch, ApJ 2021

Dipole source term

 $\Lambda_{\ell\ell_0}(\Delta T) \langle C_{\ell_0} \rangle = \frac{8\pi}{3} K_{\parallel} \left(\frac{\partial_z f_0}{f_0}\right) \delta_{\ell 1}$

Constrained by numerical simulations

 $\Lambda_{\ell\ell_0}(\Delta T) \langle C_{\ell_0} \rangle = \frac{8\pi}{3} K_{\parallel} \left(\frac{\partial_z f_0}{f_0}\right) \delta_{\ell 1}$

 $\Lambda_{\ell\ell_0}(\Delta T) \langle C_{\ell_0} \rangle = \frac{8\pi}{3} K_{\parallel} \left(\frac{\partial_z f_0}{f_0} \right) \delta_{\ell 1}$

Related to properties of turbulence

 $\langle C_{\ell_0} \rangle = \frac{8\pi}{3} K_{\parallel} \left(\frac{\partial_z f_0}{f_0} \right) \delta_{\ell_1}$ $\Lambda_{\ell\ell_0}(\Delta T)$

Constrain properties of turbulence

Summary

- Small-scale anisotropies might be induced by magnetic turbulence.
- We perform numerical and analytical analysis to better understand these anisotropies.
- Comparison to data is desired but a few issues have to be taken into account (finite energy resolution, more sophisticated turbulence, sky coverage, and so on).
- Comparison of numerical and analytic approaches might pave the way for constraining turbulence properties in the local interstellar medium.

https://www.cloudynights.com/topic/542350-m16-the-pillars-of-creation/page-2

$f(\mathbf{r}_{\odot}, \mathbf{p}(t), t) = f_0 + \left[\mathbf{r}_{\mathbf{i}}(t_0) - 3\hat{\mathbf{p}}_{\mathbf{i}}(t_0) \cdot \mathbf{K}\right] \cdot \nabla f_0$

Simulate particle trajectories backward in time!

Credit: Philipp Mertsch

Angular Power Spectrum

$$\langle C_{\ell} \rangle = \int d\hat{\mathbf{p}}_1 d\hat{\mathbf{p}}_2 P_{\ell}(\hat{\mathbf{p}}_1 \cdot \hat{\mathbf{p}}_2) \langle f(\hat{\mathbf{p}}_1) f(\hat{\mathbf{p}}_1) \rangle$$

- Finite energy resolution.
- Sky coverage.
- More sophisticated turbulence model.

Kuhlen, Phan, and Mertsch, ApJ 2021, Ahlers & Mertsch, PNPP 2019

