

The GAPS experiment: low-energy antinuclei measurements for dark matter searches

Nadir Marcelli

RICAP 2022

6-9 september 2022

Cosmic Rays as DM Messengers

Particles Antiparticles Photons Neutrinos

Low background channels: Expected antideuteron and antihelium-3 signal from DM annihilation/decay is orders of magnitude above the astrophysical background at low energies

backgound

Low-energy cosmic antideuteron

> **Primary flux:** particles from DM annihilation or decay

Secondary/tertiary flux: Cosmic Ray (CR) interacting with the interstellar medium (ISM)

$$p(CR) + H(ISM) \rightarrow p + H + p + n + \bar{p} + \bar{n} \longrightarrow \bar{d}$$

For kinematical reasons, at energies below $\sim 250 \ MeV/n$ the secondary flux is strongly suppressed

 \rightarrow more than 2 orders of magnitude with respect to the primary flux

The GAPS experiment is optimized for low-energy cosmic antideuteron searches

- The observation of a single antideuteron event would be sufficient to claim the discovery of new physics

The GAPS experiment

- **GAPS:** General Anti-Particle Spectrometer
 - Balloon-borne experiment
 - Flight from Antarctica (McMurdo Station)
 - Instrument size: \sim 3.6 $m \times$ 3.6 $m \times$ 3.6 m
- > Main objective: search for low-energy ($\leq 250 MeV/n$) cosmic anti-nuclei as signature of new physics.
 - Can probe various dark matter (DM) models.
- Anti-nuclei identification: uniquely characterized atomic X-rays from the decay of exotic atoms and charged particles from the annihilation of the antinucleus with nucleus of the exotic atom.
- High statistic measurements of low-energy antiprotons and leading sensitivity to antihelium.
- Precise measurements of low-energy nuclei as proton, deuteron, and alpha.

The first of a series of \sim 35 days flights (at least 3) is planned for the austral summer of 2023-2024.

Instrument design

- Time of Flight (TOF):
 - High-speed trigger and veto
 - Velocity measurement $\beta = \frac{v}{c}$
 - *dE/dx* measurement
- > Si(Li) Tracker:
 - Stopping depth, *d*E/*d*x
 - Charged particles multiplicity
 - X-ray identification
 - Annihilation vertex reconstruction
- > Thermal system:
 - Cools Si(Li) detectors to $\sim -40~^{\circ}{
 m C}$

GAPS: Time of Flight system

> 3 components:

- Umbrella
- Cortina
- Cube
- > 160 long, thin plastic scintillator paddles
- Preamp board on each paddle end, 6 SiPMs/board
- > Fast sampling with DRS4 ASIC:
 - < 400 ps timing resolution

GAPS: Si(Li) Tracker

Lithium-drifted Silicon

- > 10 planes of cylindrical Si(Li) detectors, 2.5 mm thickness and 10 cm in diameter
- Operation at relatively high temp of -35C to -45C
- > 1100 SiLi detectors (fully equipped 1440)

- \blacktriangleright Large dynamical range (~10 keV \rightarrow 100 MeV)
- \blacktriangleright <4 keV FWHM (at ~60 keV) at -37°C

Time-of-flight measures velocity, incident angle, and dE/dx

Time-of-flight measures velocity, incident angle, and dE/dx

Si(Li) Tracker (10 planes, 12x12 detectors each) act as:

• Target to slow and capture an incoming antiparticle forming an exotic atom in an exited state

Time-of-flight measures velocity, incident angle, and dE/dx

Si(Li) Tracker (10 planes, 12x12 detectors each) act as:

- Target to slow and capture an incoming antiparticle forming an exotic atom in an exited state
- X-ray spectrometer to measure the decay X-rays

Time-of-flight measures velocity, incident angle, and dE/dx

Si(Li) Tracker (10 planes, 12x12 detectors each) act as:

- Target to slow and capture an incoming antiparticle forming an exotic atom in an exited state
- X-ray spectrometer to measure the decay X-rays
- Particle tracker to measure the resulting dE/dX, stopping depth and annihilation products

- > The TOF together with the tracker help to select antinuclei (\bar{d}, \bar{p}, He)
- > Antinuclei identification (\bar{p}/\bar{d}) with:
 - Stopping range, *d*E/*d*x
 - Pion and protons multiplicity
 - Unique atomic X-rays

JCAP08 (2020) 03511 Astropart. Phys. 74 (2016) 6-13

Custom algorithm developed to reconstruct the annihilation star, reconstruct the tracks of the **primary** and **secondary charged particles** and determine the annihilation **vertex** position.

- 1. Primary track search
 - Track following approach (initial direction from TOF timing)
- 2. Secondary tracks search
 - Search for star-like converging tracks along primary direction
- 3. Annihilation vertex position evaluation
 - Straight-line fitting of each track
 - Evaluation of point of minimum distance to all line associated to vertex

Reconstruction algorithm

GAPS antiproton sensitivity

- Precision measurements of antiproton spectrum in an unexplored energy range (<250 MeV/n)</p>
- ~500 GCR antiprotons expected for each balloon flight:
 - BESS: 29 @ ~ 200 MeV/n
 - PAMELA: 7 @ \sim 250 MeV/n
- Provide constraints on Galactic propagation and solar modulation
- Observed antiproton excess also puts constraints on antideuteron flux predictions
- Sensitive to light dark matter and primordial black
 hole evaporation
- Validation of GAPS exotic atom identification technique

GAPS antideuteron sensitivity

- Predicted antideuteron signal from DM annihilation or decay ~ 2 orders of magnitude above astrophysical background below 250 MeV/n
- An essentially background-free DM signature
- GAPS sensitivity will be up to 2 orders of magnitude below the BESS limit

GAPS antihelium-3 sensitivity

GAPS hardware integration

GAPS hardware integration

GAPS Functional Prototype (GFP)

Goals:

- test and operate all components together
- test readout chain
- collect X-ray data
- collect muon data

Results:

- The GFP demonstrated for the first time that all key system interfaces successfully
- Reconstruction of cosmic muon tracks demonstrates compliance with the key performance requirements
- Trigger, event building, and track reconstruction algorithms verified

Merging data from Si(Li) and TOF to get a complete picture of muon data → Done. Analysis ongoing.

- GAPS is the first experiment dedicated to the observation of cosmic antiprotons, antideuterons, and antihelium-3 at energies below 250 MeV/n
- GAPS main scientific goals:
 - First detection of cosmic antideuterons, thanks to excellent sensitivity in a backgroundfree region
 - Precision measurement of the antiproton spectrum, searching for dark matter signatures and to put constraints on dark matter and propagation models
 - **Detection of cosmic antihelium-3**, if present in the cosmic rays, using a complementary technique with respect to other experiments
- Hardware integration already started, a functional prototype has been assembled at the end of 2021 and successfully tested in 2022
- First flight is planned in late 2023

RICAP2022 6-9 september 2022

Nadir Marcelli