<u>Phys. Rev. D 106, 022005</u>

A search for neutrino emission from cores of Active Galactic Nuclei

Federica Bradascio

IRFU, CEA Paris-Saclay, Université de Paris-Saclay

7 September, 2022

RICAP-22

Multimessenger astronomy

MULTIMESSENGER SOURCE

COSMIC RAYS

Charged particles, deflected by magnetic fields

Federica Bradascio - A search for neutrino emission from cores of Active Galactic Nuclei

GRAVITATIONAL WAVES

GAMMA RAYS

Point to their sources, but can be absorbed and created by multiple emission mechanisms

Earth

air shower

NEUTRINOS

Weak, neutral particles, point to their sources, Not deflected, not absorbed

5,160 Digital Optical Modules (**DOMs**)

86 strings with 60 DOMs each: **IceCube** 8 denser strings: **DeepCore**

1 km² surface array with 324 DOMs: **IceTop**

Neutrino detection principle

Cosmic Neutrinos IceCube hunt for sources

- Diffuse TeV-PeV neutrino flux of unknown origin
- TXS 0506+056 first compelling evidence of neutrino emission from blazars
- *Fermi*-LAT blazars can only be responsible for a small fraction of the observed neutrinos

Neutrinos from Cores of Luminous AGN AGN with Shakura-Sunyaev accretion disk

Neutrino luminosity approximated by X-ray luminosity [Stecker et al. (2013), Kalashev et al. (2014)]

Neutrinos from Cores of Low-Luminosity AGN AGN with Radiative Inefficient Accretion Flows (RIAFs)

Neutrino luminosity approximated by X-ray luminosity [Kimura et al. (2015)]

Which AGN?

Luminous AGN

Radio Galaxies

Federica Bradascio - A search for neutrino emission from cores of Active Galactic Nuclei

Low-Luminosity AGN (LLAGN)

Seyfert Galaxies

How to select AGN?

JET

Using various bands of the electromagnetic spectrum

Radio

Unaffected by obscuration, unbiased wrt orientation, mostly luminous AGN

X-ray

Excellent probe of accretion in AGN

Federica Bradascio - A search for neutrino emission from cores of Active Galactic Nuclei

Infrared

Produced in the dust surrounding the accretion disk

ACCRETION DISK

Credit: NASA/JPL-Caltech

3LAC *Fermi*-LAT blazars are removed in all samples

AGN final samples

Radio-selected AGN

IR-selected AGN

LLAGN

13,972 sources

52,835 sources

25,648 sources

AGN final samples

Radio-selected AGN

IR-selected AGN

LLAGN

Stacking analysis to test the combined emission of all sources

Federica Bradascio - A search for neutrino emission from cores of Active Galactic Nuclei

13,972 sources **9,749 sources**

52,835 sources 32,249 sources

How many neutrinos from each AGN?

Padovani et al. 2017

Federica Bradascio - A search for neutrino emission from cores of Active Galactic Nuclei

X-ray flux as neutrino flux proxy

Northern-Tracks dataset Upgoing through-going muons travelled through the Earth

Federica Bradascio - A search for neutrino emission from cores of Active Galactic Nuclei

Results: n_{s} , γ and p-value

Neutrino spectrum

LUMINOUS AGN SAMPLES

Federica Bradascio - A search for neutrino emission from cores of Active Galactic Nuclei

LOW-LUMINOSITY AGN SAMPLE

~10% from Luminous AGN and <6% from LLAGN

From AGN samples to AGN population Through the *completeness* factor

Neutrino spectrum for AGN population

LUMINOUS AGN

Federica Bradascio - A search for neutrino emission from cores of Active Galactic Nuclei

LOW-LUMINOSITY AGN

Cores of Luminous AGN can explain 27% – 100% of diffuse neutrino flux @100 TeV Cores of LLAGN can explain <100% of the diffuse neutrino flux @100 TeV

Conclusions

- First direct hint that cosmic rays accelerated in the AGN core regions are responsible for the bulk of the astrophysical neutrino flux observed by IceCube above 100 TeV
- AGN population dominates the sources of high-energy astrophysical neutrinos
- Sources of high-energy astrophysical neutrinos should be opaque to GeV-TeV gamma rays

Backup

Stacking Analysis

Signal PDF assumes each source is point-like and follows a power law spectrum:

$$\frac{dN}{dE} \propto E^{-\gamma}$$

Federica Bradascio - A search for neutrino emission from cores of Active Galactic Nuclei

Test the combined emission of all sources to identify neutrinos from a population

Nr. signal events

$$\mathscr{L}(n_s, \gamma) = \sum_{i}^{N} \left[\frac{n_s}{N} S(x_i, \gamma) + \left(1 - \frac{n_s}{N} \right) B(x_i) \right]$$

ned likelihood Signal PDF Background PDF

Signal PDF of all *M* AGN sources stacked together, weighted by ω_k :

$$S(x_i, \gamma) = \sum_{k=1}^{M_{AGN}} \omega_k S_k(x_i, \gamma)$$

Results: n_s and γ

IR-selected AGN

	Radio-selected AGN	IR-selected AGN	LLAGN
ns	53	105	35
γ	2.03	1.94	1.96

Results: p-values Probability that results are due to background alone

Results: trial correction

"Look elsewhere" effect: have our results arisen by chance?

Luminosity Function $\Phi(L, z)dL$

- Specifies the way in which the members of a class are distributed wrt their luminosity
- Defined as number density of objects with a luminosity in [L, L+dL]
- Positive/Negative Evolution = number density increases/decreases with larger redshift z
- **SXLF** = Soft X-ray Luminosity Function in the energy range 0.5-2 keV
- SXLF used to derive the total X-ray flux expected from all AGN in the 3 samples

Soft X-ray Luminosity Function Described by the Luminosity-Dependent Density Evolution (LDDE)

Luminous AGN

Federica Bradascio - A search for neutrino emission from cores of Active Galactic Nuclei

From AGN samples to AGN population Through the *completeness* factor

- Account for sources not making in the samples
- X-ray flux expected from all AGN in the entire Universe estimated through X-ray luminosity functions

Neutrino event signature

Tracks

 $\nu_{\mu} + N \rightarrow \mu + X$

Good angular resolution 0.1-1 deg Neutrino astronomy

Federica Bradascio - A search for neutrino emission from cores of Active Galactic Nuclei

Cascades

$\nu_X + N \rightarrow \nu_X + X, \ \nu_e + N \rightarrow e + X$ Fully active calorimeter **Good energy resolution ~15%**

Neutrino event signature

Tracks

 $\nu_{\mu} + N \rightarrow \mu + X$

Good angular resolution 0.1-1 deg Neutrino astronomy

Federica Bradascio - A search for neutrino emission from cores of Active Galactic Nuclei

Cascades

$\nu_X + N \rightarrow \nu_X + X, \quad \nu_e + N \rightarrow e + X$

Fully active calorimeter Good energy resolution ~15%

IceCube Strings and season deployments

	SEASON	STRINGS	NAME
IC9	2004-2005	1	IC1
IC22 IC40	2005-2006	9	IC9
IC59 IC79	2006-2007	22	IC22
IC86	2007-2008	40	IC40
DeepCore	2008-2009	59	IC59
	2009-2010	79	IC79
	2010-2011	86	IC86

$$\frac{d\Phi_{\nu+\bar{\nu}}}{dE_{\nu}} = \Phi_0 \left(\frac{E_{\nu}}{100 \text{TeV}}\right)^{-\gamma} \cdot 10^{-18} \text{GeV}^{-1} \text{cm}^{-2} \text{s}^{-2}$$

Federica Bradascio - A search for neutrino emission from cores of Active Galactic Nuclei

IceCube diffuse flux
Northern-Tracks dataset Upgoing through-going muons – 8 years (2009-2017)

- ~500k neutrino events, purity >99.7%
- Exclusion of atmospheric origin $@6.7\sigma$
- Clear high energy excess (36 neutrinos) above 20
- Total ~1k astrophysical neutrinos with good pointi

$$\begin{split} \phi_{\nu+\bar{\nu}} \Big|_{100 \text{ TeV}} &= 1.01^{+0.26}_{-0.23} \times 10^{-18} \text{GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1} \\ \gamma_{\text{astro}} &= 2.19 \pm 0.10 \end{split}$$

Search for neutrinos from AGN cores

Search for IceCube neutrino sources Gamma-Ray Bursts and blazars - *not* dominant

1172 GRBs inspected, no correlation found <1% contribution to diffuse flux</p>

[IceCube, ApJ 843(2017)2]

Federica Bradascio - A search for neutrino emission from cores of Active Galactic Nuclei

BLAZARS

Active Galactic Nuclei

 $\log(\frac{z}{pc})$

Outflow

-3

SMBH

log(<u>r</u>)

SUPERMASSIVE BLACK HOLE

 $M_{\rm SMBH} \sim 10^6 - 10^9 M_{\odot}$ $L_{\rm AGN} = \epsilon \dot{M} c^2 \ge 10^{-5} L_{\rm Edd}$ $L_{\rm Edd} \approx 1.26 \times 10^{45} \left(M / 10^7 M_{\odot} \right) \text{ erg s}^{-1}$

> lonization cone

BROAD-LINE REGION High-density, dust-free gas clouds moving at Keplerian velocities

0

0

NARROW-LINE REGION

Lower-velocity ionised gas, not obscured by the torus

Hot layer of gas, inverse Compton scatters y up to X-ray energies

TORUS

Dust and molecular gas, can obscure emission from the AD

Federica Bradascio - A search for neutrino emission from cores of Active Galactic Nuclei

 \smile

 \bigcirc

-2

-1

0

BLR

NLR

Torus

2

Polar

dust

Disk

-4

-3

Corona

-5

Shakura-Sunyaev Accretion Disk Geometrically thin, optically thick (standard)

Radiative Inefficient Accretion Flows (RIAF) Truncated thin disk with low accretion rate

ADAF ACCRETION DISK SPECTRUM FOR $M_{BH} = 10^9 M_{\odot}$

Neutrinos from Cores of Luminous AGN

AGN with Shakura-Sunyaev accretion disk

Neutrinos from Cores of Luminous AGN AGN with Shakura-Sunyaev accretion disk

Stecker et al. (2013)

- Mainly pγ interactions in cores of luminous AGN
- Shock acceleration leading to maximum energies -> PeV neutrinos produced mainly through photomeson production with disk photons
- Neutrino luminosity approximated by X-ray luminosity

Neutrinos from Cores of Luminous AGN AGN with Shakura-Sunyaev accretion disk

Murase et al. (2020)

- AGN corona model explaining the medium-energy neutrino data
- Coronal X-rays provide target photons for the photomeson production
- Protons in corona plasma accelerated up to 10 PeV (0.1-10 PeV) by plasma turbulence and produce 5–50 TeV neutrinos and cascaded gamma rays via interactions with matter and radiation

Neutrinos from Cores of Luminous AGN AGN with Shakura-Sunyaev accretion disk

Kalashev et al. (2014)

- Protons accelerated by electric fields in close vicinity of the BH horizon, resulting in a E⁻² spectrum
- Electric acceleration in a gap formed in the magnetosphere
- Neutrino flux depends on the assumed max proton energy and disk temperature

Neutrinos from Cores of Low-Luminosity AGN

AGN with Radiative Inefficient Accretion Flows

Neutrinos from Cores of Low-Luminosity AGN AGN with Radiative Inefficient Accretion Flows

Kimura et al. (2015)

- Cosmic ray protons accelerated in RIAF via stochastic process or magnetic reconnection
- Neutrino production through mainly pp interactions
- Protons are not thermal
- Model depends on Bolometric
 Iuminosity and accretion rate of the RIAF

Neutrinos from Cores of Low-Luminosity AGN AGN with Radiative Inefficient Accretion Flows

Kimura et al. (2015)

How to select AGN?

Using various bands of the electromagnetic spectrum

Unaffected by obscuration and thus unbiased wrt orientation

Excellent probe of accretion in AGN

2RXS + AIIWISE

~1.6 x 10⁴ sources

~1.8 x 10⁶ sources

NVSS

Federica Bradascio - A search for neutrino emission from cores of Active Galactic Nuclei

Radio

Infrared

Produced in the dust surrounding the accretion disk

XMMSL2 + AIIWISE

~1.9 x 10³ sources

Radio-selected AGN

Search Radius

X-ray source **NVSS** sources **Random sources**

Search Radius \leq 60 arcsec, chosen based on the X-ray positional error and flux

Through X-ray and Radio positional cross-match

Radio-selected AGN Through X-ray and Radio positional cross-match

Removing Fermi-LAT blazars

FRACTION OF 3LAC MATCHED SOURCES

Radio-selected AGN

False matches = random matches

Federica Bradascio - A search for neutrino emission from cores of Active Galactic Nuclei

Contamination = false matches normalized to crossing point

*From Salvato et al. 2017 (already cross-matched)

IR-selected AGN Through X-ray and IR-colors correlation

- Mid-IR emission produced in the warm dust torus
- IR colors = ratio of intensities between several mid-IR bands
- Use IR color-color diagram to select AGN
- Use AGN classification from existing AGN catalogue [Véron et al. 2010]
- Remove 3LAC blazars

IR-selected AGN Cut on W1 (3.4 µm)

IR-selected AGN Cut on W1 (3.4 µm)

IR-selected AGN Cut on W1 (3.4 μ m), W2 (4.6 μ m), W3 (12 μ m) and W4 (22 μ m)

IR-selected AGN

Before applying the cut

IR-selected AGN After applying the cut

LLAGN (Seyfert Galaxies) Through X-ray and IR correlation + Seyfertness PDF

2RXS sources classification from AGN catalogue [Véron et al. 2010]

Seyfertness assigned to each source

LLAGN (Seyfert Galaxies) Contamination and Efficiency calculation

$\lambda = -2\log\left|\frac{\mathscr{L}(n_s = 0)}{\mathscr{L}(\hat{n}_s, \hat{\gamma})}\right|$ Nr. neutrino events -Nr. signal events $\mathscr{L}(n_s, \gamma) = \sum_{i}^{N} \left[\frac{n_s}{N} S(x_i, \gamma) + \left(1 - \frac{n_s}{N} \right) B(x_i) \right]$ Unbinned likelihood Signal PDF **Background PDF**

Stacking analysis LIKELIHOOD RATIO TEST AS TEST STATISTIC

UNBINNED LIKELIHOOD

STACKING OF WEIGHTED SOURCES

$$S(x_i, \gamma) = \frac{\sum_{k=1}^{M_{AGN}} \omega_k \cdot S_k(x_i, \gamma)}{\sum_{k=1}^{M_{AGN}} \omega_k}$$

Stacking analysis

SIGNAL PDF

SPATIAL PDF

Federica Bradascio - A search for neutrino emission from cores of Active Galactic Nuclei

$$S(x_i, \gamma) = S_{\text{spatial}} \cdot S_{\text{energy}}$$

BACKGROUND PDF $B(x_i, \gamma) = B_{\text{spatial}} \cdot B_{\text{energy}}$

Stacking analysis

Test Statistic gives the significance of an excess of neutrinos above background expectations

Likelihood ratio test as test statistic

Test Statistic used to evaluate the **p-value** of the analysis by comparing the bkg-only TS distribution with the signal TS

Stacking analysis Advantage of a stacking analysis

Stacking analysis of cores of AGN Expected results

Stacking analysis of cores of AGN Expected fraction of diffuse flux

Validation of the analysis

Comparison with 8yr PS stacking analysis

Neutrino Energy Range Where our data is able to constrain the source spectrum

• The source spectrum is modelled with an unbroken powerlaw:

$$\frac{dN}{dE} \propto \left(\frac{E}{E_0}\right)^{-\gamma}$$

- This PDF has support on $[E_0, + inf]$
- But we can measure neutrinos only in a limited energy range [E_{min}, E_{max}]

Federica Bradascio - A search for neutrino emission from cores of Active Galactic Nuclei

Neutrino Energy Range By progressively changing the energy range limits of injected neutrino signal

