

Recent H.E.S.S. highlights and status

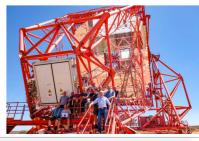
6–9 Sep. 2022 Physics Department, University "La Sapienza" Roma, Italy

Emmanuel Moulin for the H.E.S.S. collaboration CEA Saclay, Irfu, France

- Located in the Khomas Highland of Namibia at 1800m asl
- H.E.S.S. phase I: four 12m IACTs
 FoV 5°
 - first light 2002

• H.E.S.S. phase II: 28m telescope; FoV 3.5°; first light 2012

- Located in the Khomas Highland of Namibia at 1800m asl
- H.E.S.S. phase I: four 12m IACTs
 - FoV 5°
 - first light 2002
- H.E.S.S. phase II: 28m telescope; FoV 3.5°; first light 2012
 - Energy range: 30 GeV to 100 TeV
 - Energy resolution ~10% (68% cont.)
 - Angular resolution ~0.06° (68% cont.)
- H.E.S.S. collaboration: ~250 members, at 38 institutes, in 13 countries

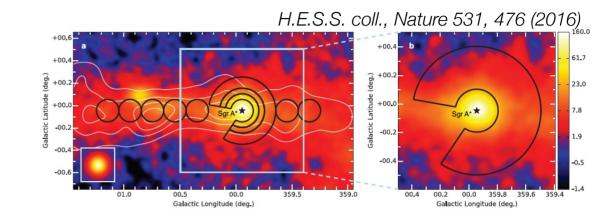


- Located in the Khomas Highland of Namibia at 1800m asl
- H.E.S.S. phase I: four 12m IACTs
 FoV 5°
 - first light 2002

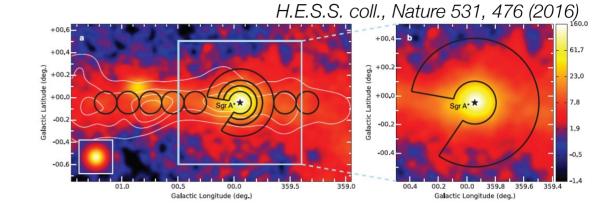
- H.E.S.S. phase II: 28m telescope; FoV 3.5°; first light 2012
- Camera upgrade in 2015-2016 (H.E.S.S. I) and in 2020-2021 (H.E.S.S. II)
 - Nectar-chip based HESS1U cameras and FlashCam-prototype
 - Changes to operational procedures and monitoring
- All telescopes, cameras, subsystems show high operational efficiency.
- Average losses due to technical failures <2%/telescope and <5% full array
- Low weather losses $\rightarrow >1200h$ darktime data

- Located in the Khomas Highland of Namibia at 1800m asl
- H.E.S.S. 1st extension started Oct. 1st, 2019
- H.E.S.S. 2nd extension
 from Oct. 2022 till Oct. 2024

- Located in the Khomas Highland of Namibia at 1800m asl
- H.E.S.S. 1st extension started Oct. 1st, 2019
- H.E.S.S. 2nd extension
 from Oct. 2022 till Oct. 2024


- COVID restrictions starting Feb 2020:
 - Observers not allowed to leave Namibia in March 2020.
 - \rightarrow Operations with local observers/telescope operators.
 - \rightarrow H.E.S.S. continued to take data throughout the entire pandemic
- Full integration of moonlight/twilight observations as of January 2021
 - \rightarrow ~1500h incl. conservative moonlight/twilight

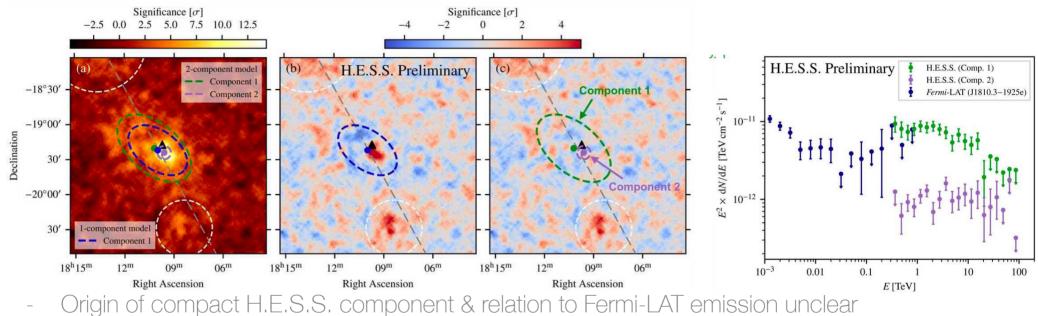
Galactic centre region


- Diffuse emission
- Proton mostly responsible for the emission
- First Galactic Pevatron detected

Galactic centre region

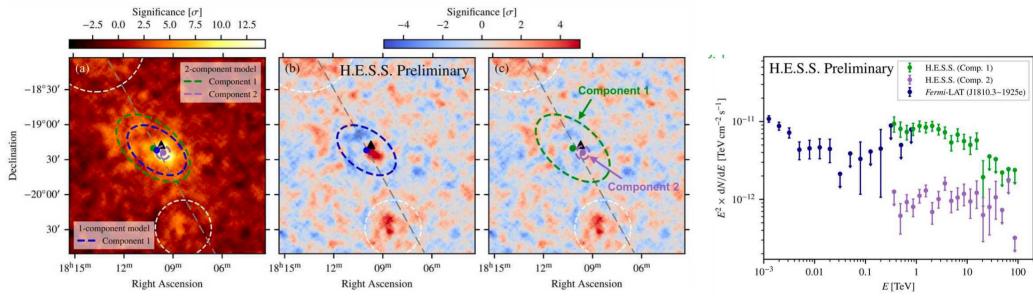
- Diffuse emission
- Proton mostly responsible for the emission
- First Galactic Pevatron detected

HESS J1702-420

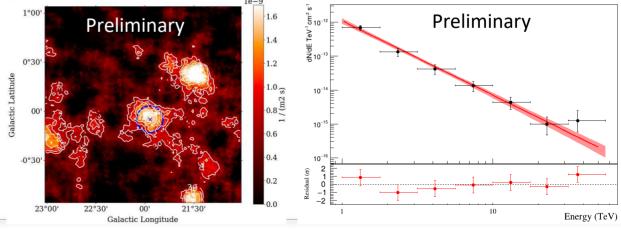

H.E.S.S. coll., A&A, 653, A152 (2021) 300 H.E.S.S $E_{\gamma}^{2} \times dN/dE_{\gamma}$ [TeV cm⁻²s⁻¹] = 0 = 0 = 0 = 0250 Jalactic Latitude **Salactic Latitud** 200 150 Counts 150 100 HESS J1702-420B HESS J1702-420A 10^{-12} 345* 344" 3430 345° 344° 343* 346 10^{1} 10^{2} Galactic Longitude Galactic Longitude E, [TeV]

- Gamma rays up to 100 TeV from the component HESS J1702-420A
- Hadronic scenario: cut-off energy of the protons is higher than 0.5 PeV (95% CL)
- A leptonic origin of the observed TeV emission cannot be ruled out either.

HESS J1809-193


- 2-component model Gaussian / power law preferred by 13o

H.E.S.S.


HESS J1809-193

- 2-component model Gaussian / power law preferred by 13σ

HESS J1831-098

- No indication for spectra cutoff
- Extended morphology fit by a single component
- Molecular cloud illuminated by nearby SNR or energetic pulsar wind nebula

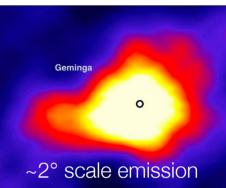


Galactic science: stellar cluster

Westerlund 1: the most massive open cluster in the Galaxy

- Discovery of coincident, degree-scale source HESS J1646–458 centered on Wd1 in 2012
 H.E.S.S. coll., accepted in A&A (2022)
- New deep (164h) study reveals shell-like structure, centered on cluster and 4 sources on top of/adjacent to the shell
- The whole extended complex has remarkably homogeneous spectra

- No clearcorrelation with neutral/molecular gas at 3.9 kpc (Wd1)
- While not unique, CR acceleration at the cluster wind termination shock

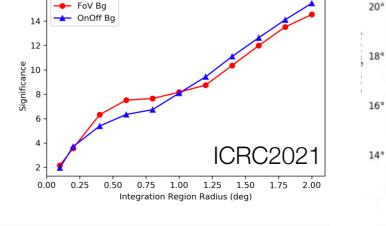


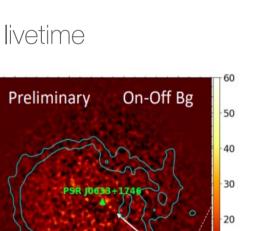
See Andreas Specovius' talk on Thursday

Pulsar halos - Geminga

- New source class: Geminga and Monogem pulsars are surrounded by a spatially extended region (~20 pc) emitting multi-TeV gamma-rays
- Data implied the diffusion coefficient to be two orders of magnitude lower than the one in the Galaxy.

HAWC detection of extended TeV emission

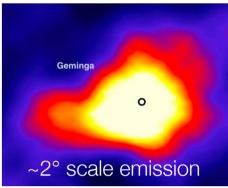



Pulsar halos - Geminga

- New source class: Geminga and Monogem pulsars are surrounded by a spatially extended region (~20 pc) emitting multi-TeV gamma-rays
- Data implied the diffusion coefficient to be two orders of magnitude lower than the one in the Galaxy.

H.E.S.S observations of Geminga

- 2006-2008 dataset with 0.5° and 0.7° wobble offset,14.2 hour livetime
- ightarrow No significant excess at the time
- 2019: observations at large wobble offset ±1.6°
- Detecting large, extended sources with IACTs is challenging, but possible
- True emission extent likely larger than H.E.S.S. field-of-view


10

PSF

20^m

22°

30^m

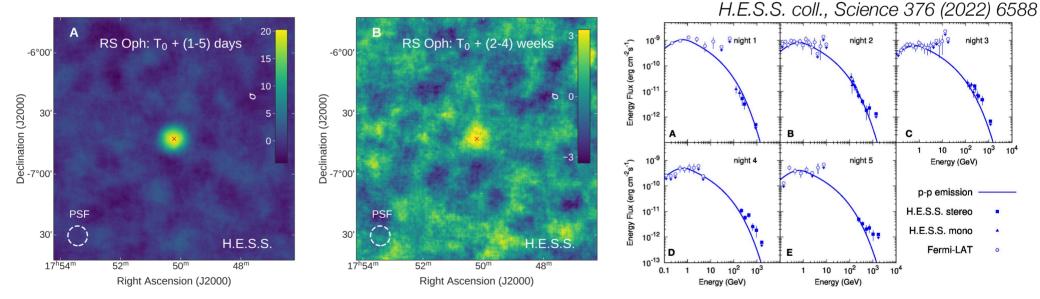
R.A. (12000)

ICRC2021

40^m

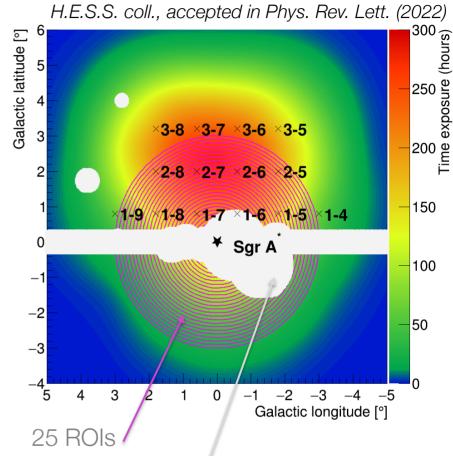
6^h50^m

The recurrent Nova RS Ophiuchi


- Novae outbursts from accreting binary systems of White Dwarf + massive donor
 - Detected in gamma rays, i.e., Fermi-LAT
- 1st Galactic transient source: RS Ophiuchi 2021 flare
- Triggered by optical detection, VHE observations started with ~24h latency.

The recurrent Nova RS Ophiuchi

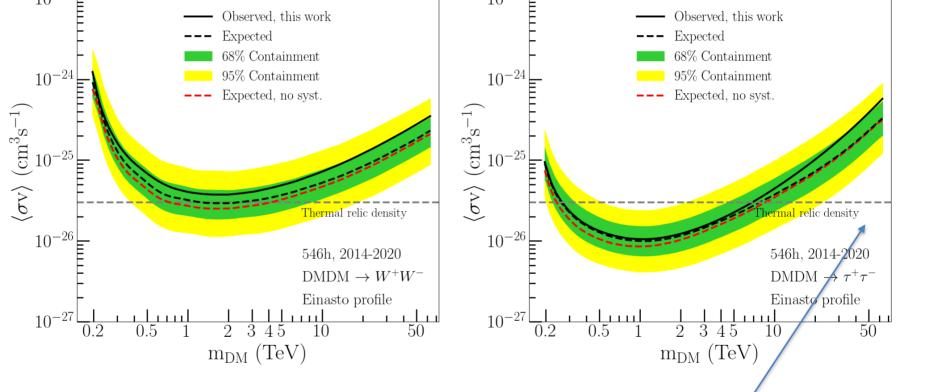
- Novae outbursts from accreting binary systems of White Dwarf + massive donor
 - Detected in gamma rays, i.e., Fermi-LAT
- 1st Galactic transient source: RS Ophiuchi 2021 flare
- Triggered by optical detection, VHE observations started with ~24h latency.



- Detection at > 6 sigma on each night of first five nights
- Hadronic acceleration scenario preferred

The Inner Galaxy Survey (IGS)

- H.E.S.S. is performing a survey of the inner few degrees of the Galactic Centre region since 2015
 - → provide unprecedented sensitivity to dark matter
 - \rightarrow deeper study of the diffuse emission
 - → search for TeV outflows from the Galactic Centre
- The first ever conducted VHE gamma-ray survey of the Galactic Center (GC) region.
- 2014-2020 exposure map with IGS pointing positions: significant exposure up to b \approx 6°



Set of exclusion regions for DM search to mask conventional gamma-ray emission

Dark matter search with IGS

• No significant DM signal found in any ROI $\rightarrow 95\%$ C.L. upper limits on $\langle \sigma v \rangle$ 10^{-23} 1

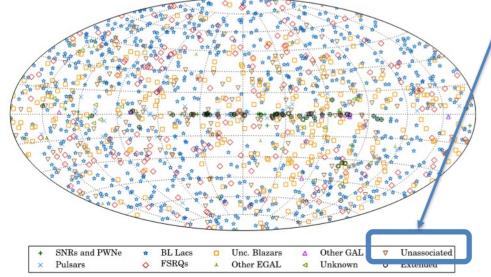
 Systematic uncertainty included in the limit computation Thermal cross-section expected for vanilla (s-wave) annihilating WIMPs that account for 100% of DM

Dark matter search with IGS

- No significant DM signal found in any ROI \rightarrow 95% C.L. upper limits on $\langle \sigma v \rangle$ H.E.S.S. coll., accepted in Phys. Rev. Lett. (2022) 10^{-23} $DMDM \rightarrow W^+W^-$ Observed, this work Expected 68% Containment 10^{-23} 10^{-24} 95% Containment Expected, no syst. $\langle \sigma v \rangle \; (\mathrm{cm}^3 \mathrm{s}^{-1})$ $\frac{10^{-24}}{2} \frac{10^{-24}}{10^{-25}}$ Thermal relic density Thermal relic density 10^{-26} 546h, 2014-2020 10^{-26} $DMDM \rightarrow W^+W^-$ H.E.S.S., this work Fermi-LAT dSph (2015) PLANCK (2018) HAWC GC (2017) Einasto profile Fermi-LAT GC (2017), DMDM $\rightarrow b\bar{b}$ —— H.E.S.S GC (2016) $0.5 \ 1 \ 2 \ 3 \ 4 \ 5 \ 10$ 10^{-27} -10.05 0.1 0.2 0.5 1 2 3 45 10 m_{DM} (TeV) m_{DM} (TeV)
- Comparison with Fermi-LAT dSph and GC, HAWC dSph and GC, MAGIC Segue 1, PLANCK CMB, H.E.S.S. GC (2016) and this work.
 → Most constraining limits in the TeV-mass range

Selected Unidentified Fermi-LAT Objects as Dark matter subhalos

Dark Matter subhalos in the Galactic halo


- Lower signal than the GC region
- No astrophyiscal background
- Location not known ...

Selected Unidentified Fermi-LAT Objects as Dark matter subhalos

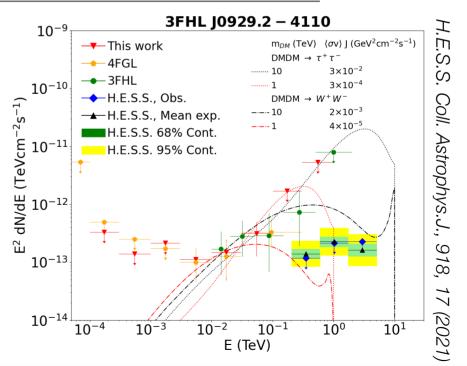
Ajello et al., Astrophys. J. Suppl. 2017, 232, 18

Dark Matter subhalos in the Galactic halo

- Lower signal than the GC region
- No astrophyiscal background
- Location not known ...

200 unassociated over 1556 sources in the catalogue;

→ these sources are classified as
 Unidentified Fermi Objects (UFOs);
 → Selection through the Third catalog of
 Hard *Fermi*-LAT sources (3FHL) to obtain the
 most promising UFOs for the IACT
 observations.

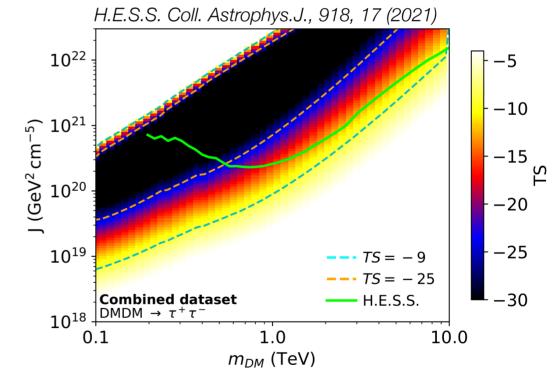

Selected Unidentified Fermi-LAT Objects as Dark matter subhalos

Criteria	Numbers of sources
Without association	178
Far enough from the Galactic plane, cut in Galactic latitude of $ b > 5^{\circ}$	126
Non-variable, cut in variability index (No. of Bayesian blocks in var. analysis) equal to 1	125
Maximum zenith angle at H.E.S.S. site of 45°	83
Follow a simple power law with significance for curvature $< 3\sigma$	83
Hard spectrum, cut in spectral index below 2	18
No MWL counterparts	6

 \rightarrow 6 selected, 4 observed by H.E.S.S.

DM-induced emission models are viable according to *Fermi*-LAT measurements;

→ H.E.S.S. upper limits can constrain some viable DM-induced emission models that explain *Fermi*-LAT detection.

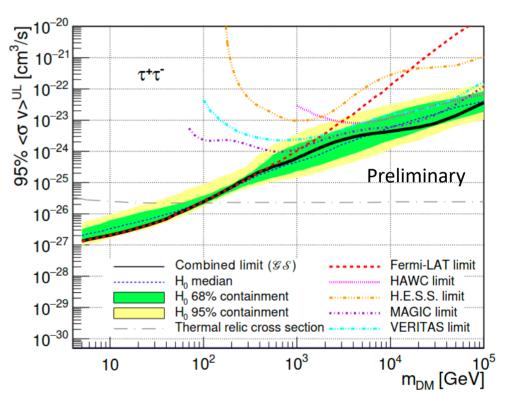

Selected Unidentified Fermi-LAT Objects as Dark matter subhalos

Criteria	Numbers of sources
Without association	178
Far enough from the Galactic plane, cut in Galactic latitude of $ b > 5^{\circ}$	126
Non-variable, cut in variability index (No. of Bayesian blocks in var. analysis) equal to 1	125
Maximum zenith angle at H.E.S.S. site of 45°	83
Follow a simple power law with significance for curvature $< 3\sigma$	83
Hard spectrum, cut in spectral index below 2	18
No MWL counterparts	6

 \rightarrow 6 selected, 4 observed by H.E.S.S.

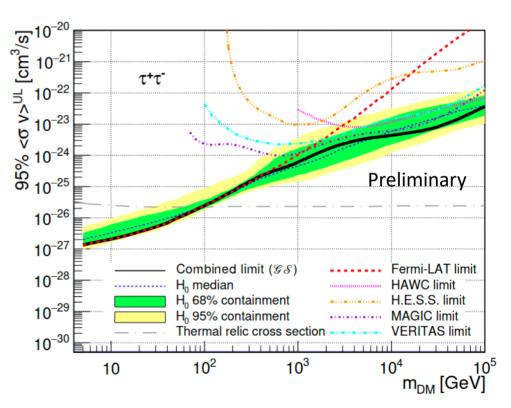
DM-induced emission models are viable according to Fermi-LAT measurements;
 → H.E.S.S. upper limits can constrain some viable DM emission models that explain Fermi-LAT detection.

Assume thermally-produced WIMPs: \rightarrow UFOs very unlikely DM subhalos



Combining all dwarf galaxy observations

- Combination of the observation results towards 20 dSph galaxies
 - Significant increase of the statistics
 → Increase the sensitivity to potential DM signals
 - Cover the widest energy range ever investigated : 20 MeV – 80 TeV
- Common elements :
 - Agreed model parameters
 - Sharable likelihood table formats
 - Inint likelihood test statistic



Combining all dwarf galaxy observations

- This analysis framework allows us to perform multi-instrument and multi-target analysis
- No significant DM signal was observed
- Combined limits range from 5 GeV to 100 TeV and improve individual limits up to a factor 2 to 3
- Joint publication under preparation

New challenges

- Many studies combine very large data sets (+600 hours), obtained over many years with changing camera/telescope configurations, mapping extended structures beyond single fov and/or source confusion
- Challenges in treating systematics in large datasets, background estimation and rejection as well as separation of sources
 - → Extensive work improving calibration, background, and high-level analysis e.g. choice of gammapy as high-level tool (borne out of 1HGPS)

Summary

H.E.S.S. is approaching its 20th anniversary
1st telescope inauguration and start of stereoscopic observations in 2002
The H.E.S.S. observatory still improves its operational performance and enables fascinating research

Thanks for your attention