

A Talk in Cartoons (mostly not mine)

This point in time...

1

This point in time...

Where are we, and where are we going?

Reports, Reviews, and Roadmaps

Direct Detection of Dark Matter – APPEC Committee Report *

Committee Members:

Julien Billard,¹ Mark Boulay,² Susana Cebrián,³ Laura Covi,⁴ Giuliana Fiorillo,⁵ Anne Green,⁶ Joachim Kopp,⁷ Béla Majorovits,⁸ Kimberly Palladino,^{9,12} Federica Petricca,⁸ Leszek Roszkowski (chair),¹⁰ Marc Schumann¹¹

arXiv:2104.07634

Palladino WIMPs RICAP 2022

Snowmass 2021

DPF Community Planning Exercise

- D. S. Akerib, P. B. Cushman, C. E. Dahl, R. Ebadi, A. Fan, R. J. Gaitskell, et al. "Dark Matter Direct Detection to the Neutrino Fog", SarXiv:2203.08084 [hep-ex] **(**<u>pdf</u>).
- Rouven Essig, Graham K. Giovanetti, Noah Kurinsky, Dan McKinsey, Karthik Ramanathan, Kelly Stifter, Tien-Tien Yu. "The landscape of low-threshold dark matter direct detection in the next decade", **arXiv:2203.08297** [hepph] 🕥 (pdf).
- D. Antypas, A. Banerjee, C. Bartram, M. Baryakhtar, J. Betz, et al. "New Horizons: Scalar and Vector Ultralight Dark Matter", SarXiv:2203.14915 [hep-ex] (pdf). (also under RF03, TF09, IF01)
- Rebecca K. Leane, Seodong Shin, Liang Yang, Govinda Adhikari, et al. "Puzzling Excesses in Dark Matter Searches and How to Resolve Them", arXiv:2203.06859 [hep-ph] (pdf). (also under TF09)

https://snowmass21.org/submissions/cf

• WIMP/high mass particle dark matter is a viable, motivated dark matter model.

- WIMP/high mass particle dark matter is a viable, motivated dark matter model.
- There are wider models of particle DM that cover broader mass and interaction strength • parameter space that are also well motivated.

- WIMP/high mass particle dark matter is a viable, motivated dark matter model.
- There are wider models of particle DM that cover broader mass and interaction strength parameter space that are also well motivated.
- many neutrino-induced nuclear recoils.
 - They can do other DM/BSM searches, neutrino physics, & neutrino astronomy

· We have trusty liquid noble technologies that should be used to look for dark matter until we see

- WIMP/high mass particle dark matter is a viable, motivated dark matter model.
- There are wider models of particle DM that cover broader mass and interaction strength parameter space that are also well motivated.
- many neutrino-induced nuclear recoils.
 - They can do other DM/BSM searches, neutrino physics, & neutrino astronomy
- New detectors and technologies are coming to probe lower mass particle DM.
 - · When proven, they should also be used until neutrino events are seen.

· We have trusty liquid noble technologies that should be used to look for dark matter until we see

- WIMP/high mass particle dark matter is a viable, motivated dark matter model.
- There are wider models of particle DM that cover broader mass and interaction strength parameter space that are also well motivated.
- many neutrino-induced nuclear recoils.
 - They can do other DM/BSM searches, neutrino physics, & neutrino astronomy
- New detectors and technologies are coming to probe lower mass particle DM.
 - When proven, they should also be used until neutrino events are seen.
- confirmation.

· We have trusty liquid noble technologies that should be used to look for dark matter until we see

· We should be prepared for discovery at any moment, and have multiple technologies ready for

- WIMP/high mass particle dark matter is a viable, motivated dark matter model.
- There are wider models of particle DM that cover broader mass and interaction strength parameter space that are also well motivated.
- many neutrino-induced nuclear recoils.
 - They can do other DM/BSM searches, neutrino physics, & neutrino astronomy
- New detectors and technologies are coming to probe lower mass particle DM.
 - When proven, they should also be used until neutrino events are seen.
- confirmation.
- WIMP searches fit into a wider ecosystem of dark matter searches, all are important.

· We have trusty liquid noble technologies that should be used to look for dark matter until we see

· We should be prepared for discovery at any moment, and have multiple technologies ready for

Outine

- Particle Dark Matter Models
 - Where are we in the WIMP paradigm?
- Direct Searches for Particle Dark Matter
 - High Mass: Liquid Nobles
 - Lower Mass: Multiple Technologies
- Expectations for the Future
 - Direct Detection plans
 - And things presented here! Meshing with other searches

13

Old Slide of the WIMP Miracle

Particles with masses of ~100 GeV and interactions at the weak scale would give current dark matter density of .3 GeV/cm³

WIMPs fit naturally with SuSY: lightest neutralino, the LSP

But I was asked ...

Particles with masses of ~100 GeV
Hasn't aitrue' WIMP already been ruled out?

would give current dark matter

M. Pospelov IDM Plenary

-boson

• Isn't SUSY discredited since the LHC hasn't seen anything?

a novel by Erik P. Kraft

Palladino WIMPs RICAP 2022

Cold Thermal Relics

freeze out ·

 $\frac{1}{T} \frac{10^{-1}}{T} \frac{10^{-2}}{T} \frac{10^{-2}}{T} \frac{10^{-2}}{T}$ Smaller annihilation cross section \rightarrow larger Ω_X

actual

WIMPs fit naturally with SuSY: lightest neutralino, the LSP

A more recent discussion of models

Dark Sector Candidates, Anomalies, and Search Techniques

An updated cartoon for particle dark matter

Palladino WIMPs RICAP 2022

"I can't tell you what's in the dark matter sandwich. No one knows what's in the dark matter sandwich."

SIDirect DM status

SI Direct DM status

DM as Moore's Law

Liquid Noble TPCs

- Self-shielding, large fiducial masses
- the liquid
- Ions drift in TPC electric field
- Amplification region in gas creates proportional light (S2)
- S2/S1 provides particle ID and discrimination
- Strong position reconstruction
- Argon can use timing of S1 light for pulse shape discrimination

LZandXENONnT

- 2 very sensitive detectors with new results
 - Talks Tuesday and Wednesday

LXe Results

- LZ leading Limits from an initial run
- moment

• Electronic recoils give sensitivity to solar axions, ALPs, Dark Photons, and the neutrino magnetic

23

- argon production (reduced Ar-39 background),

DarkSide Technologies

Gadolinium loaded acrylic TPC wall for neutron veto

SiPM, fabrication underway

Agnese talk

Palladino WIMPs RICAP 2022

Gd(MAA)₃ doped acrylic sheet (5 cm thick)

2 optical planes for the TPC + 480 channels to instrument the UAr veto

What technology makes sense?

COSMOLOGISTS ARE EASY TO SHOP FOR BECAUSE YOU CAN JUST GET THEM A BOX.

The Future

But particle astrophysicists want DETECTORS to find Dark Matter

Getto the Neutrino Fog: Xe

What else can be done with a big detector?

Dark Matter

- Dark photons
- Axion-like particles
- Planck mass

Sun

- Solar pp neutrinos
- Solar Boron-8 neutrinos

Supernova

- Supernova neutrinos
- Multimessenger

GADN programme

Construction starts in 2022 Data taking from 2025 Nominal run time: 10 years

Conceptual studies in progress Nominal run time: 10 years (3 kt x year)

Testera LeptonPhoton21

Resolve the DAMA/LIBRA Signal

DAMA/NaI+DAMA/LIBRA-phase1+DAMA/LIBRA-phase2 (2.86 ton x yr)

Palladino WIMPs RICAP 2022

2-6 keV

 $Acos[\omega(t-t_0)]$

Use new technologies for lower masses

Palladino WIMPs RICAP 2022

OSCURA

Full payload 100 SMs: 10 kg!

- · NEWS-G
- \cdot PICO
- SENSEL & other Si
- · SBC
- TESSERACT
- · QUEST-DMC

Acoustic Sensor

Directional Detection

Significant contribution at low masses and expected to be measure 10–50 neutrinos

- Solid and gaseous directional detectors
- Can probe under the neutrino fog, first place to look is at low mass •

SD sensitivity with fluorine is expected to strongly improve current status

Dho talk

Neutrinos from Primordial Black Holes

PBH evaporation neutrinos could be seen in direct detectors
<u>R. Calabrese talk</u>

Complementarity

A Unified Vision coming from SNOWMASS

Our Current Status

If we Delve Deep, Search Wide

Palladino WIMPs RICAP 2022

A Chou, SNOWMASS Dark Matter Plenary

Launching into the future

- WIMP/high mass particle dark matter is a viable, motivated dark matter model.
- There are wider models of particle DM that cover broader mass and interaction strength parameter space that are also well motivated.
- · We have trusty liquid noble technologies that should be used to look for dark matter until we see many neutrino-induced nuclear recoils.
 - They can do other DM/BSM searches, neutrino physics, & neutrino astronomy
- New detectors and technologies are coming to probe lower mass particle DM.
 - When proven, they should also be used until neutrino events are seen.
- · We should be prepared for discovery at any moment, and have multiple technologies ready for confirmation.
- WIMP searches fit into a wider ecosystem of dark matter searches, all are important.

Palladino WIMPs RICAP 2022

Delve Deep, Search Wide

In Memoriam

Noel Palladino

My Uncle who said, upon my leaving neutrino astronomy for Direct DM, "So you're going from searching for the almost impossible to the actually impossible?"

Andrew Hime

Spokesperson for MiniCLEAN (my first DM experiment) Single Phase liquid Ar/Ne goal of DM and neutrino physics

More Cartoons

TOM GAULD for NEW SCIENTIST

"After the discovery of 'antimatter' and 'dark matter', we have just confirmed the existence of 'doesn't matter', which does not have any influence on the Universe whatsoever."

"I can't tell you what's in the dark matter sandwich. No one knows what's in the dark matter sandwich."

Nore Cartoons

So far, the Nobel Committee has not returned my calls.

SCIENTISTS HOPE TO PROVE DARK MATTER SOON 1942-

Palladino WIMPs RICAP 2022

AND THEN

TO BE CALLED

FILTHY

MATTER .

More Cartoons

JUST OUTSIDE THE BOX

Copylight www.astustadoresto-cartoon.last

Palladino WIMPs RICAP 2022

"A piece of dark matter appeared from nowhere and... you know."

"That isn't dark matter, sir-you just forgot to take off the lens cap."

Experiments Currently running

Name	Technology	Target	Active Mass	Experiment Location	Start Ops	End Ops
Currently Run	ning or Under	Construct	ion	•	·	
LZ	TPC	LXe	7,000 kg	SURF	2021	2026
PandaX-4T	TPC	LXe	4,000 kg	CJPL	2021	2025
XENONnT	TPC	LXe	7,000 kg	LGNS	2021	2025
DEAP-3600	Scintillator	LAr	3,300 kg	SNOLAB	2016	202X
Darkside-20k	TPC	LAr	50 t	LNGS	2025	2030
DAMA/LIBRA	Scintillator	NaI	250 kg	LNGS	2003	
ANAIS-112	Scintillator	NaI	112 kg	Canfranc	2017	2022
SABRE PoP	Scintillator	NaI	5 kg	LNGS	2021	2022
COSINE-200	Scintillator	NaI	200 kg	YangYang	2022	2025
CDEX-10	Ionization (77K)	Ge	10 kg	CJPL	2016	
EDELWEISS III (High Field)	Cryo Ioniza- tion / HV	Ge	33 g	LSM	2019	
SuperCDMS CUTE	Cryo Ioniza- tion / HV	Ge/Si	5 kg/1 kg	SNOLAB	2020	2022
SuperCDMS SNOLAB	Cryo Ioniza- tion / HV	Ge/Si	11 kg/3 kg	SNOLAB	2023	2028
CRESST-III (HW Tests)	Bolometer Scintillation	CaWO4		LNGS	2020	
PICO-40	Bubble Chamber	C3F8	35 kg	SNOLAB	2020	
NEWS-G	Gas Drift	CH4		SNOLAB	2020	2025

Experments Currently running, cont'd

Name	Technolog	gy	Target	Active Mass	Experiment Location	Start Ops	End Ops
Currently Running or Under Construction							
DAMIC-M pro-	CCD Sł	kip-	Si	18 g	LSM	2022	2023
totype	per						
DAMIC-M	CCD Sl	kip-	Si	1 kg	LSM	2024	2025
	\mathbf{per}						
SENSEI	CCD SI	kip-	Si	2 g	Fermilab	2019	2020
	per						
SENSEI	CCD SI	kip-	Si	100 g	SNOLAB	2021	2023
	per						

Planned Experiments

Name	Technology	Target	Active	Experiment	Start Ops	End Ops
			Mass	Location		
Planned						
SABRE (North)	Scintillator	NaI	50 kg	LNGS	2022	2027
SABRE (South)	Scintillator	NaI	50 kg	SUPL	2022	2027
COSINE-200	Scintillator	NaI	200 kg	South Pole	2023	
South Pole						
COSINUS	Bolometer	NaI		LNGS	2023	
	Scintillator					
Darwin / XLZD	TPC	LXe	$50,000 \mathrm{~kg}$	undetermined	2028	2033
(US LXe G3)						
ARGO	TPC or Scin-	LAr	300 t	SNOLAB	2030	2035
	tillator					
CDEX-100 / 1T	Ionization	Ge	100-1000	CJPL	202X	
	(77K)		kg			
PICO-500	Bubble	C3F8	430 kg	SNOLAB	2021	
	Chamber					

Potential Future Experiments

Name	Technology	Target	Active Mass	Experiment Location	Start Ops	End Ops
Concept or R&D						
Oscura	CCD Skip- per	Si	10 kg Si	SNOLAB	2025	2028
SBC	Bubble Chamber	LAr	1 t	SNOLAB	2028	
SNOWBALL	Supercooled Liquid H2O					
DarkSide- LowMass	TPC	LAr	$1.5 \mathrm{t}$			
ALETHEIA	TPC	He		China Inst. At. Energy		
TESSERACT	Cryo TES	$egin{array}{llllllllllllllllllllllllllllllllllll$		undetermined	2026	
CYGNO	Gas Direc- tional	$He + CF_4$	0.5 - 1 kg	LNGS	2024	
CYGNUS	Gas Direc- tional	$rac{\mathrm{He}}{\mathrm{SF}_6/\mathrm{CF}_4}+$		Multiple sites		
Windchime	Accelerometer array			Multiple sites	2	

Evidence for Dark Matter

Wavelike Dark Matter

Dark Matter Candidates

Utraheavy dark matter

A Modern WIMP view

56

High Mass Particle DM Beyond the WIMP

Direct Detection Sensitivities

Palladino WIMPs RICAP 2022

59

SuperCDMS SNOLAB

- Cryogenic thermal phonon technology
 - iZIP (phonon and ionization) and HV sensors
 - Ge (1.4 kg) and Si (0.6 kg)
- Under construction at SNOLAB
- Operations beginning Fall 2023

	Germanium	Silicon
нν	Lowest threshold for low mass DM Larger exposure, no ³² Si bkgd	Lowest threshold for low mass Sensitive to lowest DM mass
iZIP	Nuclear Recoil Discrimination Understand Ge Backgrounds	Nuclear Recoil Discrimination Understand Si Backgrounds

Technologies for Low Mass Searches

Sensor types:

EDELWEISS

Neutron-transmutation-doped (NTD) sensors

- Ge wafers with strong T-R dependence
- High linearity ≻
- Sensitive to thermal phonons

CRESST, SuperCDMS, COSINUS, EDELWEISS

Transition-Edge-Sensor (TES)

- Thin-film deposited on crystals
- Strong R-T dependence at superconducting transition
- Sensitive to athermal phonons

SuperCDMS Calibrations

- Calibrating low energy nuclear recoils is difficult
- Discrepancies in the field
- Definitely divergent from • Lindhard theory
- Projections for Si more conservative than preliminary measurements

SuperCDMS: Science with new prototypes

HVeV (Si or Ge, 1 x 1 cm² x 4 mm). 2 equal area QET sensors

R. Agnese et al. Phys. Rev. Lett. 121, 051301 (2018)

- Study charge transport in Si and Ge, minimize charge leakage
- Improve phonon resolution, study single e-h devices
- Physics runs in NEXUS (FNAL) and CUTE ongoing
- Used in the TUNL ionization yield measurements.

A mosaic of these on 2 SuperCDMS towers can get us to the v-fog in 0.5 - 5 GeV range

0V, CPD (cryogenic photon detector) 1 mm thick (45.6 cm²) Si wafer with CDMS phonon readout

- Study phonon resolution and test facility noise performance
- Phonon resolution in the $\sigma_{pt} \sim 1$ eV range now.
- New prototype (with new hanging support) may have $\sigma_{pt} \sim 50 100 \text{ meV}$

A mosaic of the current CPDs on 2 SuperCDMS towers can get us to DM masses of 100 MeV now and down to 50 MeV if the new prototype has sub-eV resolution 14

especially "environmental" sub-keV phonon-only backgrounds

Cushman LLWI

XENONNI

- 5.9 t liquid xenon TPC
- Operating at LNGS in Italy since Sept '21 •
- Radon/krypton reduction with cryogenic dist • and custom pump
- Drift field is a little low

Palladino WIMPs RICAP 2022

5,900 kg (4,000 kg)

arXiv:1802.06039

• 10 t liquid xenon

LZ

- Operating at SURF in South Dakota USA
- Planned for 1000 live days over ~5 years

 Many talks in parallels this afternoon and tomorrow

Next Generation Liquid Xenon

- 50–100 t liquid xenon TPC
- Combination of XENONnT/DARWIN and LZ collaborations
- Location TBD
- · Joint workshop last spring, meeting this summer

April Showers Bring May Flowers:

 Good things are coming Strong chances for Discovery Headlining experiments and small tests Many more DM candidates and experimental techniques to explore than we considered a decade ago

arXiv:2104.07634

68

Eur.Phys.J.Plus(2018)133:131

arXiv:2203.08084

The Main Options

Palladino WIMPs RICAP 2022

Palladino WIMPs RICAP 2022

