Searching for Light Dark Matter with Aligned Carbon Nanotubes: the ANDROMeDa Project

RICAP 2022

ANDROMED

Federico Virzi Università di Roma la Sapienza

7/9/22

State of art: Dark Matter

- Diverse experiments with high mass target
- Exclusion Limits at high mass DM
- $M_\chi > 10~GeV$
- Scattering $\chi + N$

Light Dark Matter

While for light dark matter:

- Need to measure lower DM masses: 1 $MeV < M_\chi <$ 1 $GeV \rightarrow$ 5 $eV < T_\chi <$ 50 eV
- Low sensitivity with current experiments
- Scattering $\chi + e^-$
- Directionality: DM wind from CYGNUS constellation

ANDROMeDa Target

ANDROMeDa target proposal:

- Carbon NanoTube as target
- CNT are 2D material: zero longitudinal density
- Carbon work function $\phi =$ 4.7 eV

Recoil electron has:

- Low kinetic energy (almost 5 eV)
- Short range in matter
- Same direction of DM wind

CNT

Experimental directionality:

- If DM wind || CNT: Recoil electron gets out from target
- If DM wind \perp CNT: Recoil electron is absorbed by target

Growing CNT in Lab

• Nanotube facility in Rome la Sapienza

 \mbox{Ar}^+ ions on CNT, the CNT degradation is:

- Lateral: **depending** Penetration depth
- Longitudinal: **indipendent** by Penetration depth

ANDROMeDa Prototype Scheme Dark-PMT

- Target: Aligned Carbon NanoTubes (CNT)
- Readout: Avalanche PhotoDiode (APD)
- Portable, cheap and easy to produce
- Unaffected by thermal noise $(\phi = 4.7 \ eV)$
- Can be used at room T
- Directional sensitivity

1 Currs APD Acromatic and a cathode a cathode

Dark-PMT

~ 5 cm

ANDROMeDa Directionality

- DM wind from CYGNUS
- Directionality with aligned CNT
- Measure $N_1 N_2$

Physics Letters B 776 (2018) 338-344

Expected Exclusion limits

- CNT Density $ho = 1 \ mg/cm^2$
- 1 g target: 100 Dark-PMTs with 10 cm² each PMT

ANDROMeDa project

- Awarded PRIN2020 grant $(1M \in)$
- 3-year project started in May 2022
- 3 units: INFN (F. Pandolfi) Università Roma la Sapienza (G. Cavoto) Università Roma3 (A. Ruocco)
- Main goal: Dark-PMT at the end of the project

R&D Challenges

Challenges from both sides of the detector

- Minimize electron re-absorption in target
- Detection of each single electron ($T_e \sim 5 \ keV$)

CNT: Challenges

In CNT synthesis:

- Not aligned CNT
- Waviness
- Crust at the top
- Need to minimize both effect

CNT: Waviness

- CNTs are sustained by neighbours
- At the end of the grow there are impurities

- Grow CNT in Electric field
- Uniform seeds size
- Increase seeds density
- Building new evaporation chamber in Rome

CNT: Removing Crust layer

• A possibility is plasma etching after CNT grow (S.Seo,et al., Carbon,180,2021,204-214)

• *Ar*/*O*₂

Plasma

Aligned CNTs

Detection: APD

- Electrons from target accelerated to $\sim 5 \ keV$
- APD are typically used for photons
- Adjusted for electron usage
- Another possibility are Silicon Drift Detectors

APD: Characterization

- We have characterized the APD by using an e-gun
- Reading I_{APD} by varying I_{gun}
- $E_e = 900 \ eV$
- $I_{APD} = I_0 + G \times I_{gun}$

Andromeda: Dark-PMT Prototype

Conclusions

- DM mass region not much explorated
- Light DM detection by using Dark-PMT
- Dark-PMT: Portable, no thermal noise Directionality
- CNT: 2D material
- We are opening positions: Post-Doc INFN (Dark-PMT prototyping, electronics) Post-Doc Roma Tre (nanotube spectroscopy)
- Contact: francesco.pandolfi@roma1.infn.it

First Dark-PMT prototype in 2025

Backup slides

DM wind direction

- Neutrino floor from Sun
- Cygnus never overlap Sun

Target: CNT

- CNT: lenght = up to 300 μ m, width \simeq 5 nm
- Directionality
- Recoil electron has almost the direction of χ

Target: CNT growing

Chemical Vapor Deposition Technique

CNT: Waviness

At *nm* scale there is CNT waviness

Difficult electron detection

CNT: Waviness

- A possibility is to increase seeds density
- Uniform seeds size
- Grow CNT in Electric field
- Building evaporation chamber in Rome

	Current	Goal
Seed density (cm ⁻²)	1010-1011	> 1012
Seed size (nm)	15-30	5 (±20%)

CNT: Recoil electron

DM 5 MeV 2000 - A = 0 --- 0. = 180° 1500 dLog ER (y⁻¹Kg⁻¹) 000 500 2 E_R (eV)

Physics Letters B 776 (2018) 338-344

- Low Energy χ Low Energy e^-
- C work function $\phi = 4.7 \ eV$

APD: characterization with e-gun

- Electron energy 30 < E < 1000 eV, $\sigma_E <$ 0.05 eV
- Gun current $I \simeq 1 \ pA$
- Single electron
- Beam entirely on APD

APD

Electron detection

• SDD has better resolution at low energies

