RICAP-22, 6-9 September 2022

Depth:

3451.00m

HDG:

42.86°

Simone Biagi on behalf of the KM3NeT Collaboration INFN — LNS

The physics case

Neutrino Energy from MeV to PeV

The neutrino telescopes of KM3NeT

ARCA: Astroparticle Research with Cosmics in the Abyss

- 2 Building Blocks
- 115 Detection Units each, interspacing ~90 m
- 18 Digital Optical Modules (DOM) per DU, inter-DOM spacing 36 m
- Total active volume 1 km³, ≈ 500 Mton/blo
- 3500 m depth, SE the Sicilian coasts
- 2 Main Electro-Ontical Cables (MEOC) for e of a network of 9+8 inter-link cables

The neutrino telescopes of KM3NeT

ORCA: Oscillation Research with Cosmics in the Abyss

- 1 Building Block
- 115 Detection Units (DU), interspacing ~20 m
- 18 Digital Optical Modules (DOM) per DU, inter-DOM spacing 9 m
- Active volume \approx 7 Mton

Neutrino event topologies

Tracks

Showers

The KM3NeT collaboration

55 institutes in 16 countries 4 continents – 2 detectors

September 8th, h 09:30: A. Margiotta, The ANTARES neutrino telescope

Neutrino Astrophysics in the Mediterranean Sea

- Origin of Cosmic Rays
- Neutral messengers point back to their sources
 - Neutrons are short-lived, photons are likely to interact ⇒ Neutrinos as cosmic probe
- Neutrinos are produced at sources via hadronic interactions
 - Cosmic diffuse flux
 - Point-like sources
 - Multi-messenger approach

- Detection principle: large volume of transparent medium instrumented with PMTs
- Located in the Northern Hemisphere
 - Complementary to IceCube
 - Southern sky sources, "Milky-Way optimised"
- Medium: Deep Sea Water
 - Very small light scattering = good angular resolution
 - Natural background (⁴⁰K and bioluminescence) taken into account.

Mkn 501 RX 11713 7-39 Crab SS433 GX339-4 Vela Galactic Centre

KM3NeT Technology in a nutshell

Digital Optical Module

- DOM: 31 x 3" PMTs
- Digital photon counting
- Directional information
- Wide acceptance angle
- All data to shore
- Gbit/s on optical fiber
- Custom White Rabbit
- 18 DOMs / String

Detection Unit (string)

DOM: JINST 17 (2022) P07038 Unfurl: JINST 15 (2020) P11027

- Unfurling by autonomous ROV
- Rapid deployment
- Multiple strings in one sea campaign

- September 8th, h 16:18: A. Simonelli, New measurements on an improved 3" Hamamatsu photomultiplier
- September 8th, h 16:36: I.C. Rea, The multi-PMT optical module of KM3NeT

~200 m ORCA

ARCA

Ε

200

Phase-1 completion = 32 Detection Units

Selected triggered events

z-t-Plot for DetID-116 Run 12555, FrameIndex 29183, TriggerCounter 679, Overlays 729, Trigger: MX 3DM 3DS 2022-07-06 06:48:38 UTC

- September 8th, h 16:54: T. Chiarusi, The KM3NeT data acquisition system Status and evolution
- September 8th, h 17:12: C. Bozza, Scalable solutions for the Control Unit of the KM3NeT DAQ system

Selection of atmospheric neutrinos

ARCA6

KM3NeT Effective Areas ARCA6 + ORCA6 compared to ANTARES

ARCA2

Eur. Phys. J. C 80 (2020) 99

Atmospheric muon flux ARCA2 + ORCA1

- Single-DOM measurement
- Useful to validate the calibration process
- Results compared with ANTARES and Bugaev model

Point source search

14

Dark matter search

Search for an excess flux of neutrinos from the Sun or enter, from DM decay, or DM-DM annihilation.

- First results with ARCA6, no excess observed.
- Limited exposure, more data will improve the sensitivity.
- Other results: secluded dark matter; analysis of power spectrum (i.e. anisotropies)

Core Collapse Supernovae

Eur. Phys. J. C81 (2021) 445

ORCA 1 BB + ARCA 1BB

 $>5\sigma$ for ARCA+ORCA for $27 M_{\odot}$

at a distance < 25 kpc

ARCA6+ORCA6 already sensitive to 60% of Galactic CCSNe (<11 kpc) Joint real time trigger operational for SNEWS since early 2019

September 7th, h 15:40: M. Bendahman, Neutrinos from core-collapse supernovae at KM3NeT

ARCA Reconstruction Performances

Track-like and shower-like events

Tracks (v_µ CC) **ideal tool for astronomy**

Ang. Resol. < 0.2° above 10 TeV •

Median Angular resolution [⁰]

10-2

 10^{3}

10⁴

Energy Resol. ~ 0.27 in $log_{10}(E_{reco}/E_{\mu})$ • $(10 \text{ TeV} < E_{\mu} < 10 \text{ PeV})$

KM3NeT/ARCA

10⁵

10⁶

 $(v_{\mu} - true \mu direction)$ angle

 v_{μ} CC

Shower ($v_x NC + v_e CC$) contained events

Ang. Resol. < 2° above 50 TeV

Energy Resol. < 5%

KM3NeT vs IceCube:

Con: ⁴⁰K background, bioluminescence, need for real-time positioning, deep-sea operations Pro: ⁴⁰K calibration, better view of the galactic center, no bubbles/dust —> better angular resolution

September 8th, h 14:50: W.I. Ibnsalih, KM3NET/ARCA expectations for starburst galaxies observation

Neutrino selection in ORCA6

- Selection based on track signature: mostly v_{μ}
- Background: atmospheric muons
- Selection: vertex position, track fit quality, upgoing tracks
- 1237 v candidates in 354.6 days, S/B~40

- Oscillation fit, binned in E_{reco} , θ_{zenith}
- Normalization left free, various systematics on flux, energy scale, tau- and NC normalization

Sun/Moon shadows with ORCA

- No standard candle source
- Cosmic rays to the rescue

Detector construction

Detector construction: a collaboration effort!

ARCA infrastructure for 2nd Building Block

Nov 2020: Successful laying of the second MEOC

With two main cables it is possible to connect the full ARCA detector (2 building blocks)

Junction Boxes

- Technology developed with external companies, from oil&gas
- Electronics intrinsically redundant, every component is duplicated in case of breaking
- Boards and components produced with military/space standard
- This junction box meets the requirement of a 20-year lifetime at 3500m sea depth
- With a reliable infrastructure, DU mass production can start

What next? PNRR Italian funding

- KM3NeT has received the approval for PNRR funds (Italian funds for recovery after pandemic)
- These funds will allow the completion of the first building block + the realisation of two junction boxes on the second block with all detection units related —> ~130 strings in total
- Timeline of the PNRR is 3 years.
- A fantastic opportunity to enter definitely the game of neutrino astronomy

Detection Unit deployment

Junction Box touchdown (4x)

Detection Unit unfurling, triggered by ROV

LOM recovery (after unfurling)

Summary

- KM3NeT is active and taking data!
- Detector performance as good as expected. First physics results.
- ORCA currently taking data with 10 lines.
 ~10 more lines ready for deployment late 2022, early 2023.
 - Funding assured, procurement and construction in progress, for ~50 strings.
- ARCA currently taking data with 19 lines.
 - Funding assured, procurement and construction in progress, for ~130 strings.
- Detector mass production in regime stage. Production rate will increase in the next years
- Interesting physics results in the next years!

Why don't you join KM3NeT?

▼ Menu: General Settings

182 ns

KM3NeT

ARCA and ORCA Building Blocks

37

Time calibration

Also: lab calibration of timing differences, LED flasher, timing from reconstructed tracks. Timing resolution better than 1 ns. Coincidence rate between PMTs on a DOM for one ORCA and one ARCA line, as a function of PMT multiplicity

Positioning

Positioning

Track residuals before (blue) and after (orange) dynamic position calibration. After: 5 cm resolution.

KM3NeT, ICHEP 2022

Independent validation: cosmic ray shadow of sun and moon

Junction Box deployment

DU unfurling with fish (3x)

ARCAI+ARCA2

Selection of atmospheric neutrinos

