
Scalable solutions for the Control Unit of
the KM3NeT DAQ system

Cristiano Bozza
University of Salerno and INFN

 for the KM3NeT Collaboration

RICAP – Roma, Italy – September 2022

C. Bozza - UNISA/INFN - KM3NeT - Scalable solutions for the Control Unit of the KM3NeT DAQ system 2

KM3NeT overview
● KM3NeT: modular neutrino telescopes in the Mediterranean Sea

● The basic unit: the Digital Optical Module (DOM) with 31 photomultipliers (PMTs)
– Cherenkov radiation from charged particles produced in neutrino interactions

● Detection Unit (DU): 18 DOMs + base

● The logical core of
each DOM/base:
the CLB (Central
Logic Board)

C. Bozza - UNISA/INFN - KM3NeT - Scalable solutions for the Control Unit of the KM3NeT DAQ system 3

KM3NeT overview

ARCA footprint, off the Italian shore

Multi-km3 – scale
final size

The Collaboration: worldwide
partnership with strong EU core

ORCA footprint, off the
French shore

Two neutrino
telescopes

C. Bozza - UNISA/INFN - KM3NeT - Scalable solutions for the Control Unit of the KM3NeT DAQ system 4

KM3NeT construction status
● ARCA status:

– 19 DUs operational

● ORCA status:
– 11 DUs operational

● More DUs coming soon
(deployment ongoing in these days)
– Each DU is tested as an

independent detector

C. Bozza - UNISA/INFN - KM3NeT - Scalable solutions for the Control Unit of the KM3NeT DAQ system 5

KM3NeT control SW figures
● ARCA: 2×115 DUs

– 230 Base Modules, 4140 DOMs
– 128340 PMTs
– ~400,000 parameters to be monitored continuously (every 10~60s)

● ORCA: 115 DUs
– 115 Base Modules, 2070 DOMs
– 64170 PMTs
– ~200,000 parameters to be monitored continuously (every 10~60s)

● ARCA with 19 DUs, control data exchange with CLBs:
– ~76 incoming UDP datagrams/s
– ~175 bytes/s (from CLBs), ~19 bytes/s (to CLBs)
– CPU load: 1.39 core (Intel Xeon E5-2640 v2 @ 2.00GHz)
– 18 MB monitoring data every 10 minutes (~ 1 TB/year)

C. Bozza - UNISA/INFN - KM3NeT - Scalable solutions for the Control Unit of the KM3NeT DAQ system 6

DAQ structure
● Functional components:

– Control Unit (CU)
– Trigger and Data Acquisition System

(TriDAS – controlled by the CU)
– General monitoring

(not controlled by the CU)

LAP

MCPDBI

DM TM

 ADF

 DW

 DQ

 ODF ODF ODF

Data Base

Control Unit

Detector

Tr
iD
AS

TriDAS components:
● Data Queues (DQs) build timeslices for
● Optical Data Filters (ODFs) which trigger events

to be written using
● Data Writers (DWs)
● Acoustic Data Filters (ADFs) receive data from DQs

C. Bozza - UNISA/INFN - KM3NeT - Scalable solutions for the Control Unit of the KM3NeT DAQ system 7

DAQ Control Unit
● LAP: provide authentication to users and services
● DBI: data base interface, connected to remote DB
● MCP: manages data acquisition tasks and schedules
● DM: controls DOMs, bases and additional devices
● TM: controls data processing software

● Each Control Unit system has its own cache
– Work even if others are missing
– Remote DB may be unreachable

● Keep up operation using DB cache +
local upload buffers

● Cross-process communication via
HTTP-based messaging protocol (SAWI)

● Browser as debugger
● GUI interface built on top of

messaging API

LAP
Local Authentication Provider

DBI
Data Base Interface

MCP
Master Control Program

DM
Detector Manager

TM
TriDAS Manager

C. Bozza - UNISA/INFN - KM3NeT - Scalable solutions for the Control Unit of the KM3NeT DAQ system 8

● Most relevant data flows are shown
● Local download/upload cache based on files:

– Simplify development
– Keep the architecture flexible
– Avoid local DBs

● Licensing
● Maintenance

● Monitoring/slow control data
(DM, TM, MCP, LAP),
Run bookkeeping (MCP)
– Written to DBI cache via NFS
– Regularly uploaded to remote DB (SQL.NET)

● Text logs for diagnostics (all):
– Written to file (NFS)
– Uploaded to remote file storage (file copy)

Control Unit data flow

LAP

DBI
MCP

DM

TM

DBI cache

C. Bozza - UNISA/INFN - KM3NeT - Scalable solutions for the Control Unit of the KM3NeT DAQ system 9

CU Dynamic Provisioning
● CU and TriDAS software can run on various (performant) commercial HW
● Failure of one or more servers can be overcome by automatic reallocation of tasks

– Admin intervention not needed!

Double fault-tolerant installation (shore station)

LAP

MCP

DBI

DM

TM

 DW

 ODF ODF

 ADF

LAP LAP

DBI,DM,TM,
MCP,DW DQ,ADF

LAP LAP

DQ,DW,DBI,
MCP, DM,TM

 DQ

 ODF ODF

 ODF ODF ODF ODF

DQ,ADF,DW

C. Bozza - UNISA/INFN - KM3NeT - Scalable solutions for the Control Unit of the KM3NeT DAQ system 10

CU performance-impacting tasks
● Network communications: ~4000 DOMs, each with one CLB, communicating asynchronously

with the DM via SRP (UDP-based messaging protocol)

● CPU: sorting information (by time or ID) requires N log N effort (or N2 in case of bad design)

● Disk: detailed logging needs continuous writes of small buffers

● Presenting monitoring information in GUI
– Graphical representation is left to client

– Indexing and retrieval of different subsets of information with multiple clients

● Warnings:
– Thread starvation (threadpools exhausted or excessively growing)

– Deadlocks
● Internal: multiple threads with data consistency requirements
● Cross-process: logical error loops

C. Bozza - UNISA/INFN - KM3NeT - Scalable solutions for the Control Unit of the KM3NeT DAQ system 11

CU network access
● Detector Manager:

– Multiple sockets allocated with properly sized buffers
– Socket sharing among DOMs in fixed groups
– One readout thread per socket
– Data distributed to CLB controllers (each with own queue)

● No chance of thread race
● Possibly flooding CLB constrained within its own controller queue

Listener socketsListener threads

CLB data
queues

C. Bozza - UNISA/INFN - KM3NeT - Scalable solutions for the Control Unit of the KM3NeT DAQ system 12

CU disk access
● Disk access optimized by caching slow control data and logs in memory
● Optimized writes in relatively large chunks

DBI disk cache (via NFS) Text log storage (via NFS)

DM/TM/MCP RAMSlow control data

Multiple RAM slots to
avoid thread racesData naturally

almost sorted

Text logs

Multiple RAM slots to
avoid thread races,
logs sorted at flush time
(every 5 secs)

C. Bozza - UNISA/INFN - KM3NeT - Scalable solutions for the Control Unit of the KM3NeT DAQ system 13

CU CPU load analysis
● CLB controllers are powered by controller threads in “round robin” fashion

– Balance care-needing CLBs with overall performance
– Avoid unforeseen CPU loads: a coarser slow control is preferred over an unresponsive server

● The number of threads can anyway be tuned according to needs.
– Excess CLB messages are filtered out: for each parameter, only the last value is considered

CLB controllers and queues

Event processing threads

All CLB control operations
scale linearly with the data
rate and number of CLBs

C. Bozza - UNISA/INFN - KM3NeT - Scalable solutions for the Control Unit of the KM3NeT DAQ system 14

CU GUI Monitoring
● GUI monitoring uses JSON data over HTTP

– 4 parameters/CLB read for the GUI, all retrieved with a single HTTP query
– Data extracted using a “direct path” access, i.e. without searching or sorting

● Every GUI client establishes a direct reference to its list of monitoring variables

C. Bozza - UNISA/INFN - KM3NeT - Scalable solutions for the Control Unit of the KM3NeT DAQ system 15

CU CPU load figures from ARCA
Dependency of CPU load of Detector Manager on the number of active Dus

● Measured in ARCA with regular activity (including monitoring GUIs that increase the baseline)
● Extrapolated to a full block

DUs DUs

C
P

U
 c

or
es

C
P

U
 c

or
es

Fit: a + b N
Fit: a + b N + c N log N

Forecast: a + b N
Forecast: a + b N + c N log N

Heaviest activities in the DM include accessing sorted lists, for which a reasonable dependency is
N log N. Other tasks are linear, and O(N2) tasks are limited to small sets.

C. Bozza - UNISA/INFN - KM3NeT - Scalable solutions for the Control Unit of the KM3NeT DAQ system 16

CU overload protections 1/2
● CU services are unlikely to cause CPU overload

– Only bugs could cause runaway CPU or memory consumption
● Always fasten your seat belt, accidents happen!

● TriDAS processes require plenty of resources and already now use several servers

– Each DataFilter/DataWriter has a single thread, so it can’t saturate more than 1 core

● Intrinsic protection

– DataFilter memory buffers are statically allocated and controlled by resource allocation

● Intrinsic protection

C. Bozza - UNISA/INFN - KM3NeT - Scalable solutions for the Control Unit of the KM3NeT DAQ system 17

CU overload protections 2/2
● TriDAS processes require plenty of resources and already now use several servers

– DataQueue memory buffers may grow indefinitely if there is insufficient computing power
● Hardware failure of one or more DataFilter servers and downgraded operation
● Specific circumstances that slow down processing
● LAP-based protection: the resident LAP of each server watches for overall memory consumption

and stops/restarts all local processes if the available memory falls below a tuneable limit
– Data loss, but system recovers in few seconds

– DataWriter memory buffers may grow indefinitely
● Network/disk problems
● LAP-based protection: the resident LAP of each server watches for overall memory consumption

and stops/restarts all local processes if the available memory falls below a tuneable limit
– Data loss, but system recovers in few seconds
– Does not solve the cause but keeps the system responsive, (remote) interventions are possible

C. Bozza - UNISA/INFN - KM3NeT - Scalable solutions for the Control Unit of the KM3NeT DAQ system 18

KM3NeT detector evolution
Entities to be driven in a KM3NeT detector – CU must be flexible!

Entity Hardware Firmware Sub-firmware
DOM CLB-v2 FirstGen
DOM CLB-v2 NewGen
DOM CLB-v4 NewGen

Base CLB-v2+BPS FirstGen BPSv1

Base CLB-v2+BPS NewGen BPSv1

Base CLB-v2+BPS FirstGen BPSv3

Base CLB-v2+BPS NewGen BPSv3

Base CLB-v4+BPD+BPC NewGen BPSv3_CU
Calibration Unit CLB-v4 NewGen BPSv3_CU
Instrumentation Unit CLB-v4 NewGen

More devices... CLB-v4 NewGen

C. Bozza - UNISA/INFN - KM3NeT - Scalable solutions for the Control Unit of the KM3NeT DAQ system 19

CU code sustainability
Code development policy: prefer readability and long-term maintenance over pure speed

Codebase C# on Mono CLR

External dependencies Oracle Data Provider (access to remote DB)

Binary image tagging Self-check on startup

Hardcoded constants Absent

General constants Centralized in dedicated libraries

Loops Implemented almost anywhere with LINQ

Filters Implemented with LINQ

Sort operations Implemented with LINQ

Behavioral “if” chains Replaced with tables of actions

State machines Tables of lambda functions

Device controller source code Single file (one per firmware variant)

Event reactions Actions; lambda functions

Interprocess calls HTTP library

GUI HTML+JS on HTTP

Enforcing correctness Static type checking; unit tests

C. Bozza - UNISA/INFN - KM3NeT - Scalable solutions for the Control Unit of the KM3NeT DAQ system 20

Conclusions
● The Control Unit software for KM3NeT is a mature software suite...

● ... but still very lively!
– Supporting new versions of firmware for devices

– Supporting new devices

– Adapting to more complex scenarios

● The mission of SW design and development:
– Produce clear code that is easy to maintain

– Prevent, mitigate or eliminate risks

● Performances are well under control

● Control Unit needs for 2 blocks (230 DUs) are likely to stay within one server
– The architecture would anyway allow for multiple CU servers

– For fault tolerance, more resources are already allocated and kept standing by

Maximize detector livetime!

C. Bozza - UNISA/INFN - KM3NeT - Scalable solutions for the Control Unit of the KM3NeT DAQ system 21

C. Bozza - UNISA/INFN - KM3NeT - Scalable solutions for the Control Unit of the KM3NeT DAQ system 22

Backup

BACKUP

C. Bozza - UNISA/INFN - KM3NeT - Scalable solutions for the Control Unit of the KM3NeT DAQ system 23

CU code sustainability
Code development policy examples:
● Making logic clear by tables of actions instead of if/switch chains

● Prefer functional programming style over procedural

● Use static type checking to discover mistakes at compile time rather than at run time

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23

