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multipurpose, TeV spectrometer

Z, P are measured independently by
the Tracker, RICH, TOF and ECAL
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Last update: September 7, 2022, 8:56 AM
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The challenge of positrons and electrons at high energy

In this talk we'll:

- quickly highlight the major challenges of the high energy e* and e-
measurements

- discuss the power of a multi-purpose complete and redundant
detector like AMS
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Key requirements

In the e*, e measurement, the key requirements of the
detector/experiment are:
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Key requirements

In the e*, e measurement, the key requirements of the
detector/experiment are:

 rejection of the large background
(mainly protons, p/e- > 102): e/p separation;

* energy resolution and energy scale accuracy;

- precise knowledge of the detector acceptance,
efficiencies and their stability in time;

> Redundancy and Complementarity! d

07/09/22 M. Duranti - RICAP2022 8



e/p separation: ECAL

Exploring the shower topological differences between hadronic and
electromagnetic particles, is possible to obtain an e/p separation up to 10>
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e/p separation: TRD
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Thanks to the different energy deposits of light and heavy
particles, the TRD is capable to achieve an e/p separation up to 10*
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e/p separation: Tracker+ECAL

Additional e/p discrimination is achieved by the comparison of the ECAL calorimetric
energy and Tracker spectrometric rigidity measurements.

Given the natural abundances of p*, p-, e and e*, even a selection only based on the sign

of the Rigidity is possible to obtain quite pure sample of p* and e
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e/p separation: redundancy and complem

entarity
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Proton background rejection

NIM-A A 869 110-117 (2017)
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In the years the collaborations improv

the tools:

- BDT used for the first measurements

- Likelihood developed for the ultra-TeV

analyses
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Proton background rejection

PRL 113, 221102 (2014)  Tipjcally the strategy is:
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Key requirements — high energy positrons

In the e* measurement, the key requirements of the
detector/experiment are:

« rejection of the large background

(mainly protons, p/e* > 103);

« rejection of the charge-confused electron background;

-> as the energy increases,
these requirements become more and more crucial
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Charge Confusion control

% 0'35 ]L1'L91 R'>(') 1‘<'E'<1'4'Te;/ -1 Parameters from track fits (x?, residuals, etc...), as
S o025 ’ ’ ' = well as information about E/P and charge
o u 1 measurement are used to built a BDT based
0.2 e b —-  Charge Sign Estimator and separate positrons
: 155 [ contused electrons 4 from confused electrons
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- Charge sign estimator allows to constrain charge & s o !
sign confusion rate below 12% at TeV energy for B !
track configuration “at least 1 outer layer” E ]
- Requirement for hits on track in both L1 and L9 allows ° 800~ 80 1000 1200 1400
to significantly decrease charge sign confusion rate Energy [GeV]
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Charge Confusion control
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Parameters from track fits (x2, residuals, etc...), as
well as information about E/P and charge
measurement are used to built a BDT based
Charge Sign Estimator and separate positrons
from confused electrons
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- Charge sign estimator allows to constrain charge & s o |

sign confusion rate below 12% at TeV energy for B !

track configuration “at least 1 outer layer” K ]
- Requirement for hits on track in both L1 and L9 allows © 600 80 1000 1200 1400

to significantly decrease charge sign confusion rate Energy [GeV]
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Energy resolution

Energy resolution (%)
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The excellent energy resolution of ECAL results in a negligible
effect of on the measurement error above few GeVs.
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Detector acceptance and efficiency control

Data driven correction

e detector acceptance has been evaluated using a dedicated MC simulation

Example : TRD acceptance + quality cut

>
evaluated from the Q 4 Pata OMC .
comparison of each .g - L §ee ¢Q¢¢?++++++* eeeBuge
selection cut efficiency on £0.98°
ISS data and MC sample L [
| > [
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The tiny deviation 0.94 c% Toeeoooccce on#HHHHHHHHH *H.
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to the measurement | % ooef
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This is possible thanks to the AMS redundancy and complementarity Energy (GeV)
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Positrons and electrons
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Positrons

Fits of the data to
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7.80 excess above Eg=24.2+1.1GeV  4.80 sharp drop-off at E, = 268733 GeV
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Electrons

Traditionally, Cosmic Ray
spectrum is described by a power
law function.

Change of the behavior at ~50
GeV and at ~1 TeV

’IIIIIIIIllllllllllllllll_

Ay= 0.080+0.014
60 effect

:IIIIIIIIIIIIIII

t

I LT

Energy [GeV] (

Fit to data

CEY, E < Ey;

.- (E) = _
e~ (E) CEY(E/Ey?,E > E,.

A significant
excess at
E,=49.5%x5.6 GeV

T 1000

[
(=
o

B0, [GeVZm2sr's T

9.5 GeV

Energy [GeV]

il
1000

07/09/22 M. Duranti - RICAP2022




Positrons

Low energy positrons mostly come from cosmic ray collisions

The high energy origin of positrons

 AMS 3.4 million positrons and electrons is still debated

B Model of cosmic ray collisions +++H ‘} * ’

Astrophysical Journal 729, 106 (2011)
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The high energy origin of positrons
and electrons is still debated
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Conclusion

AMS Event Display Run/Event 1548219900 / 19925 GMT Time 2019-023.05:06:21

Front f

We presented the challenges, on the
ultra-TeV positron and electron
measurement:

* redundancy and complementarity is
the key for ultra-TeV positron |
measurement |

* pushing the electron and positron ) \
analysis to the highest energies is ’ \
crucial to shed light on DM
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* collecting more and more statistics /
will further improve the scientific gain ] AT T I
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