

The ANTARES neutrino telescope

A.Margiotta

INFN Bologna and

Rome, 6-9 September 2022

Dipartimento di Fisica e Astronomia -Alma Mater Studiorum, Università Bologna

on behalf of the ANTARES Collaboration

The concept of Cherenkov neutrino telescopes

- Photomultipliers (PMTs) collecting Cherenkov photons due to relativistic charged particles from v interactions
- Parent v direction reconstructed using time & position of optical sensors

Bruno Pontecorvo

M.Markov,

Moisej Markov

We propose to install detectors deep in a lake or in the sea and to determine the direction of charged particles with the help of Cherenkov radiation

First tentative in water mid '70s: **D**eep **U**nderwater **M**uon **A**nd **N**eutrino **D**etector **Project** (<u>https://www.phys.hawaii.edu/~dumand/dumacomp.html</u>) about 4800 m under the sea - Hawaii island

DUMAND-II Progress Report

640 DUMAND-II Progress Report

R. J. Wilkes, for The DUMAND Collaboration : C.M. Alexander⁴, T. Aoki¹¹, U. Berson¹, P. Bosetti¹, J. Bolesta⁴, P.E. Boynton¹⁴, H. Bradne⁹, U. Camerini¹⁵, S.T. Dye³, E. Gergin³, P.W. Gorham⁴, P.K.F. Grieder³, W. Grogan¹⁵, H. Hanada¹⁰, D. Harris⁴, T. Hayashino¹⁰, E. Hazen³, M. Itol⁹, M. Jaworski¹¹, M. Jenko³, H. Kawamoto¹⁰, T. Kitamura⁷, K. Kobayakawa⁶, S. Kondo⁴, P. Koske⁵, J.G. Learned⁴, C. Ley¹, J.J. Lord¹⁴, R. Lord¹⁴, T. Lozic², R. March¹³, T. Matsumoto¹⁰, S. Matsuno⁴, A. Marvete¹³, L. McCourry¹⁴, M. Mignard⁴, K. Miller¹³, P. Minkowski¹, R. Mitiguy⁴, K. Mitsui¹¹, S. Narita¹⁰, D. Nicklaus¹⁵, Y. Ohashi¹¹, A. Okada¹¹, D. Orlov³, V.Z. Peterson⁴, A. Roberts⁴, M. Sakuda¹¹, V.J. Stenger⁴, H. Suzuki¹⁰, S. Tanaka¹⁰, S. Uehara¹², C. Wiebsch¹, G. Wilkins⁴, M. Webster¹³, T.J. Wilkes¹⁴, G. Wurm¹, A. Yamaguchi¹⁰, I. Yamamoto⁸, K.K. Young¹⁴

Technische Hochschule Aachen, Germany; 2) University of Bern, Switzerland;
 Boston University, USA; 4) University of Hawaii, USA; 5) University of Kiel,
 Germany; 6) Kobe University, Japan; 7) Kinki University, Japan; 8) Okayama
 Science University, Japan; 11) ICRR, University of Tokyo, Japan; 12) NLHEP,
 Tsukuba, Japan; 13) Vanderbilt University, USA; 14) University of Washington,
 USA; 15) University of Wisconsin, USA.

Abstract

The design, scientific goals, and capabilities of the DUMAND II detector system are described. Construction was authorized by DOE in 1990, and construction of various detector subsystems is under way. Current plans include deployment of the shore cable, junction box and three strings of optical detector modules in 1993, with expansion to the full 9-string configuration about one year later.

ISVHECRI 1992

DUMAND II Neutrino Telescope Instrumented volume: 230 m high, 106 m diameter

DUMAND Project canceled in 1996 because of technological problems

Precursor of the present neutrino telescopes, under water and ice

ANTARES accepted the challenge - the present and the future undersea neutrino telescopes shall exploit the ANTARES experience

Detection principle: muon tracks (CCv_{μ})+ cascades ($NC+v_{e}$)

γč

 $\theta_{\check{c}}$

Natural radiators are low cost and allow huge instrumented volumes in dark but transparent media \rightarrow Deep lake, seawater, ice

Detection of Cherenkov light induced by relativistic charged particles produced in neutrino interactions using a 3D array of PMTs

The ANTARES site

The ANTARES detector

NIM A 656 (2011) 11

The Optical Module

NIM A 484 (2002) 369

ANTARES 2001-2022

2002 Junction Box deployment: no repair, no failure in 20 years

1997 Proposal

- 2001 Main Electro-Optical Cable deposition
- 2002 Junction box deployment
- 2003 Prototype Sector Line First data
- 2005 Mini Instrumentation Line with OMs environmental data
- 2006 First complete detector line
- 2008 Detector with 12 lines completed complete configuration
- 2016 Running (almost) without common funds

February 2022 Data taking terminated

First detector line

Deployment 14/02/2006

Connection march 2006

p to

017

IMG_1556_Bouy_L1_onshore_Team.JPG

Disconnection after 16 years

Recovered optical modules availat for new experimental programme

⁴⁰K (long-term) monitoring of PMT efficiency

Regular tunings Only ~20% efficiency loss Extremely stable data acquisition ⁴⁰K powerful calibration tool

📕 Eur. Phys. J. C 78 (2018) 669

Example of the detected hit time differences, Δt , between two adjacent OMs

$${}^{40}\text{K} \rightarrow {}^{40}\text{Ca} + e^- + \overline{\nu}_e \qquad (89.3\%)$$

$${}^{40}\text{K} + e^- \rightarrow {}^{40}\text{Ar}^* + \nu_e \qquad (10.7\%)$$

$$\hookrightarrow {}^{40}\text{Ar} + \gamma$$

electrons above Cherenkov threshold

Why the Mediterranean Sea

- excellent water optical properties \rightarrow excellent reconstruction performance
- angular resolution
 - tracks: ~0.4° [< 0.1 ° KM3NeT] @ 10TeV; (IceCube : 0.3° @ >100 TeV)
 - showers: ~4° [2° KM3NeT] @10 TeV ; (IceCube: 10° @ > 100 TeV)
- Visibility of the Galactic region \rightarrow ~ 70 % for the Galactic Centre
- Investigation of the IceCube diffuse flux from another point of view

Event topologies - reconstruction performances

Science with ANTARES

Neutrinos: undeflected and unabsorbed \rightarrow perfect probes

Medium Energy 10 GeV < E_v < 10 TeV

Galactic \rightarrow Extragalactic High Energy, $E_v > \text{TeV} \rightarrow \text{PeV}$

Dark matter search

v Oscillations

> 10 GeV

v from cosmic sources origin and production mechanism of HE CRs Energy

+ Exotic searches - Nuclearites, Magnetic monopoles...

v, CRs, γ s and multimessenger astronomy

radiation fields and matter \mathbf{e}^{\pm}

protons/nuclei *L* electrons/positrons

(+Bremsstr

Compton

Inverse

Sun shield with solar Array SXI Units IRT Sployed Jar Array

8-TA

TID

Atmospheric neutrino background

measured using an energy estimator accounting for detector systematics

EPJ 73: 2606 (2013) PLB 816: 136228 (2021)

Diffuse flux of cosmic neutrinos in ANTARES

Search for an excess of high-energy events w.r.t atmospheric neutrinos

- Selection cuts optimized with MRF procedure (assumed spectral index Γ=2.5)
- Look for event excess above a given Eth both for track & shower samples
- Data with E> Eth : 50 events (27 tracks + 23 showers)
- Background with E> Eth (atm. Flux=HONDA + Enberg): 36.1 ± 8.7 (19.9 tracks +16.2 showers)
- \rightarrow 1.8 σ excess of events with E> Eth, assumed as cosmic flux (red histogram)

DATA sample 2007-2018

Ap.J.Lett. 853 (2018) 1, L7

S

https://pos.sissa.it/358/891/pdf -(ICRC 19)

Diffuse flux of cosmic neutrinos in ANTARES

Ap.J.Lett. 853 (2018) 1, L7
 https://pos.sissa.it/358/891/pdf -(ICRC 19)

Results not really constraining... but fully compatible with IceCube

Flux from the Galactic ridge

- neutrino signal expected from the Galactic Ridge (gamma-ray data)
- v flux related to the primary CRs spectrum, if no cut-off below 1 PeV in CR flux
- Analysis in 2016 (7 y data 2007-2013) gives limits close to expectation without cutoff

PLB 760 (2016) 143
Phys. Rev. D 96, 062001 (2017)
ApJL 868, L20 (2018)

Galactic ridge region : $||| < |_{ridge} \approx 30-40^{\circ} \text{ and } |b| < b_{ridge} \approx 2-3^{\circ}$

Search for cosmic sources: tracks+cascades

Data set 13 year (from Jan 2007 to Feb 2020); Livetime: 3845 days Search for an excess of events from a particular sky direction

Using a pre-definite candidate-list search: **121 investigated sources**

With a unbinned full-sky search

PRD 96, 082001 (2017)

PoS(ICRC2021)1161

Notable case of J0242+1101 (PKS0239+108)

PoS(ICRC2021)972

Intriguing overlap in time of the flaring emission in radio, γ -ray and neutrino found from the direction of the blazar **J0242+1101** studied from **2008 to 2021**.

- First panel: weighted time distribution of the ANTARES tracks (showers) within 5°(10°) from J0242+1101 and best-fit Gaussian time profile.
- Second panel: weighted time distribution of the Ice-Cube tracks closer to J0242+1101 than 50% angular error. Weight=energy of each event. The color scale indicates the event angular distance from the source.
- Third panel: OVRO (Owens Valley Radio Observatory) radio light-curve @15 GHz for J0242+1101.
- Fourth panel: adaptive binned γ-ray light-curve obtained from Fermi LAT data for J0242+1101.

Chance probability of the multi-messenger association under study.

Multi-messenger approaches - sending alerts

Alert system (**TAToO**: Telescopes and Antares Target of Opportunity) active since 2009 APP 35 (2012) 530

What triggers an alert:

- High energy (HE): single neutrino with energy ≥
 5 TeV. Rate: ~1/month
- Very high energy (VHE): single neutrino with energy ≥ 30 TeV. Rate: ~3-5/year
- Directional trigger: single neutrino from the direction (≤ 0.4°) of a local galaxy (≤ 20 Mpc). Introduced to increase the chance to detect a local CCSN. Rate: ~1/month
- **Doublet trigger**: at least two neutrinos coming from close directions (≤ 3°) within a predefined timewindow (15 min). **No doublet trigger ever**

Multi-messenger approaches - sending alerts

Multi-messenger approaches - receiving alerts

Receiving alerts Time dependent searches GRB Microquasar Gamma-ray binaries Blazars Supernovae lb,c Fast Radio Bursts

Follow-up of IceCube neutrinos:

- 115 IceCube events received, 37 analyzed (7 HESE, 3 EHE, 10 gold and 17 bronze)
- No ANTARES candidates compatible with any of the IceCube alerts
- 90% confidence level upper limits on the neutrino fluence

Dedicated offline follow-up of IC events:

TXS0506+056 (ApJL863 (2018) 2, L30) AT2019dsg and AT2019fdr (ApJ920 (2021) 1, 50) HESE and EHE events (ApJ. 879 (2019)2, 108)

Follow-up of LIGO/Virgo GWs No candidates associated with GWs

NO candidates associated with GWS

Follow-up of Fermi-GBM and Swift GRBs

Follow-up of HAWC alerts

Neutrino Follow-up of GW170817

ANTARES, IceCube, Pierre Auger, LIGO/Virgo. ApJL 850 L35 (2017)

ANTARES Follow-up of ICECUBE-170922

ANTARES Time integrated search

- Same method as PS study 2007-2017 applied to the TXS 0506+056 source, potentially associated to the IC event
- Expected background (3136 days) :
 - 0.23/deg² for track-like
 - 0.005/deg² for shower-like events
- # of events fitted the likelihood signal function for the source: μ_{sig} = 1.03
- Pre-trial p-value of 3.4% (post-trial 87%)
- Updated 2007-2020, after recalibration
- 4 events within $1^{\circ}\mu_{sig} = 2.9$
- Pre-trial: 2.9σ (1-sided)

ApJL 863, L2 (2018) update at ICRC 2021

Indirect search for Dark Matter

Neutrino telescopes are very versatile and good for different search channels Search for an excess of neutrinos - as final product of annihilation - from the core of astrophysical objects were WIMPS could have accumulated

• equilibrium between capture and annihilation

<u>The Sun</u>

- The Sun has known isotopic abundance ⇒sensitive to WIMP-nucleon cross section for spin-dependent and spin-independent case (odd or even atomic number)
- Competitive limits to direct experiment for spin-dependent

Earth

Physics of the Dark Universe, 16 (2017) 41

<u>Sun</u>

Phys.Lett. B759 (2016) 69 JCAP 05 (2016) 016 JCAP11 (2013) 032

Galactic Center

JCAP 10 (2015) 068 Phys. Lett. B 769 (2017) 249 Phys. Rev. D 102 (2020) 082002 (with IceCube) JCAP06 (2022) 028 (secludedDM) Phys. Lett. B 805 (2020) 135439

data 2007 - 2020 compatible with background

ν - oscillation studies

J. High Energ. Phys. 06(2019) 113

- Data sample (2007-2016) \rightarrow 2830 days of lifetime
- 7710 events selected, two reconstruction procedures
- Track channel only, $\mathsf{E}_{\mathsf{reco}}$ from muon range
- Binned likelihood fit (Poisson stat.) performed in two dimensions ($log_{10}(E_{reco}), cos\theta_{reco}$)
- Sample soon public

No-oscillation hypothesis excluded at 4.6σ

Beyond the SM: sterile neutrinos and NSI

The same data sample used for oscillation studies allowed to investigate the existence of sterile neutrinos and Non-Standard Interaction signature.

J. High Energ. Phys. 06(2019) 113

- (3+1) sterile neutrino models $\Delta m_{41}^2 > 0.5 \text{ eV}^2$
- Tight complementary information to eV-scale sterile neutrino searches
- Our results (90% CL) exclude regions of the parameter space not yet excluded by other experiments.

J. High Energ. Phys. 07(2022) 048 26

- Non-standard interactions signature in neutrino oscillation patterns detectable
- A log-likelihood ratio test of the dimensionless coefficients ε_{μτ} and ε_{ττ} – ε_{μμ} does not provide clear evidence of deviations from standard interactions.
- The non-NSI hypothesis is disfavoured with a significance of 1.7σ (1.6σ) for the normal (inverted) mass ordering scenario.

Exotic particles: Magnetic Monopoles and Nuclearites

Magnetic Monopoles 💭 JHEAp 34 (2022) 1

- Search for fast MM with Dirac magnetic charge
- Kasama, Yang and Goldhaber model improved description of MM cross section → increased light production
- better atmospheric muon rejection

Nuclearites (Strange Quark Matter)

- Down going flux with Galactic velocities (v/c=10⁻³)
- dE/dx according to de Rujula& Glashow model
- Nuclearite mass 4 x 10^{13} GeV/c²<M_N < 10^{17} GeV/c²
- No Cherenkov emission Visible photons from black body radiation

arXiv:2208.11689

ANTARES: a multidisciplinary observatory

Deep-Sea Research I 58 (2011) 875–884 Acoustic and optical variations during rapid downward motion episodes in the deep North Western Mediterranean

PLoS ONE 8 (7) 2013 Deep-sea bioluminescence blooms after dense water formation at the ocean surface

Ocean Dynamics, April 2014, 64, 4, 507-517 *High-frequency internal wave motions at the ANTARES site in the deep Western Mediterranean*

Deep sediment resuspension and thick nepheloid layer generation by open-ocean convection

Sci. Rep. 7 (2017) 45517 Sperm whale diel behaviour revealed by ANTARES, a deep-sea neutrino telescope

Https://arxiv.org/abs/2107.08063 Studying Bioluminescence Flashes with the ANTARES Deep Sea Neutrino Telescope

A new paper on pressure measurements at the sea bottom in preparation

ANTARES

KM3NeT

- ANTARES was the first and largest NT in the Mediterranean Sea.
- Fundamental lesson learned from ANTARES: undersea Cherenkov technique is feasible and reliable for long time data taking.
- Multi disciplinary observatory (Earth and Sea sciences).
- Competitive physics results & intriguing hints.
- Constraints on neutrinos as seen by IceCube.
- Extensive multi-messenger program.
- Joint studies with several partners (electromagnetic+ GWs + Cosmic Rays + Neutrinos).
- About 100 papers published & 100 PhD.

• AN EXCITING ADVENTURE ! To be continued...

KM3Ne¹

Oscillation Research with Cosmics In the Abyss

Astroparticle Research with Cosmics the Abyss

Paris - June 2008

