Status and Prospects of e⁺e⁻hadronic cross sections at low energy

G. Venanzoni LNF/INFN

Importance of precision R = $\frac{\sigma(e^+e^- \to hadrons)}{\sigma_0(e^+e^- \to \mu^+\mu^-)}$ measurements

- $(g-2)_{\mu}$ and $\alpha_{e.m.}(M_Z)$
- CVC tests between e^+e^- and τ
- QCD sum rules and α_S
- Test of models and input to theory (ChPT, VDM, QCD,...)
- Search of hybrids and glueballs
- Search for hypothetical light gauge bosons

Muon anomaly

$$a_{\mu} = \frac{(g_{\mu} - 2)}{2}$$

- Long established discrepancy (>3 σ) between SM prediction and BNL E821 exp.
- •Theoretical error δa_{μ}^{SM} (~6x10⁻¹⁰) dominated by HLO VP (4÷5x10⁻¹⁰) and HLbL ([2.5÷4]x10⁻¹⁰). A **twofold** improvement on δa_{μ}^{SM} from 2001 (thanks to new e⁺e- measurements)!
- •Experimental error $\delta a_{\mu}^{EXP} \sim 6 \times 10^{-10} (E821)$. Plan to reduce it to 1.5 10^{-10} by the new g-2 experiments at FNAL and J-PARC.

 a_{μ}^{HLO} = (690.9±**4.4**)10⁻¹⁰ [Eidelman, TAU08]

 $\delta a_{\mu}^{HLO} \sim 0.7\%$

 a_{μ}^{HLbL} =(10.5±2.6)10⁻¹⁰ [Prades, dR&V. 08] a_{μ}^{EX} (11 ±4)10⁻¹⁰ (Jegerlehner, Nyffler) $\delta a_{\mu}^{\text{HLbL}} \sim 25-40\%$

 a_{μ}^{SM} compared to BNL world av.

Dispersion Integral: $a_{\mu}^{HLO} = \int_{4m_{\pi}^{2}}^{\infty} \sigma_{had}(s)K(s)ds$

$$a_{\mu}^{HLO} = \int_{4m_{\pi}^{2}}^{\infty} \sigma_{had}(s) K(s) ds$$

 $K(s)\sim 1/s$

Contribution of different energy regions to the dispersion integral and the error to a HLO

Experimental errors on σ^{had} translate into theoretical uncertainty of a_{μ}^{had} !

→ Needs precision measurements!

$$\delta a_{\mu}^{\text{ exp}} \rightarrow 1.5 \ 10^{-10} = 0.2\% \ \text{on } a_{\mu}^{\text{ HLO}}$$
 New g-2 exp.

$\alpha_{em}(M_7)$ and EW fit of the SM (M_{Higgs})

$$\alpha(M_Z) = \frac{\alpha(0)}{1 - \Delta\alpha(M_Z)}$$

$$\Delta\alpha = \Delta\alpha_I + \Delta\alpha_{\text{had}} + \Delta\alpha_{\text{top}}$$

$$6 \frac{\text{August 2009}}{\text{linear}}$$

polarization function $\Pi_{\sim}'(q^z)$

$$\gamma$$
 had γ \Leftrightarrow γ had γ had γ γ had γ γ had γ γ γ had γ had γ γ had γ had

$$\Delta \alpha_{had}^{(5)}(M_Z^2) = -\frac{\alpha M_Z^2}{3\pi} \operatorname{Re} \int_{4m_{\pi}^2}^{\infty} ds \frac{R(s)}{s(s - M_Z^2 - i\varepsilon)}$$

$$\Delta \alpha_{had}^{(5)}(M_Z^2) = 0.027607 \pm 0.000225$$

$$\alpha^{-1}(M_Z^2) = 128.947 \pm 0.035$$

$$\alpha^{-1}(0) = 137.0359895 \pm 0.0000061$$

 $\delta\alpha(M_7)/\alpha(M_7)\sim 2x10^{-4} \rightarrow 5x10^{-5}$

Requirement from ILC (6x improvement)

Comparison of error profiles for $\alpha_{em}(M_Z)$

Cross section data:

Two approaches:

Energy scan (CMD2, SND, BES,CLEO):

- energy of colliding beams is changed to the desired value
- "direct" measurement of cross sections
- needs dedicated accelerator/physics program
- needs to measure luminosity and beam energy for every data point

Radiative return (KLOE, BABAR, BELLE, BESIII?):

- runs at fixed-energy machines (meson factories)
- use initial state radiation process to access lower lying energies or resonances
- data come as by-product of standard physics program
- requires precise theoretical calculation of the radiator function
- luminosity and beam energy enter only once for all energy points
- needs larger integrated luminosity

Data at '95

Data at '05

Data at 2010

Many improvements (mostly due to BaBar ISR). However the region below 2.5 GeV is still poorly known ($\delta R\sim 5-15\%$)

Exclusive vs inclusive measurements?

- Most recent inclusive measurements: MEA and B antiB, with total integrated luminosity of 200 nb⁻¹ (one hour of data taking at 10³² cm⁻² sec-1).10% stat.+ 15% syst. Errors
- 2) New BaBar data is improving a lot this region. However still the question on the completeness of exclusive data vs systematics of old inclusive measurements

Radiative corrections are important!

- Unclear treatment of R.C. in old data.
- Reevaluation of RC leads to significant changes in recent data
- New data (CMD-2,SND, KLOE, Babar) paid more attention to :
 - ISR
 - Vacuum Polarization (VP)
 - FSR
- A lot of work for theorists to provide accurate MC generators (and for experimentalists to test it!)

$$\sigma_{bare} = \sigma_{dressed} \left| 1 - \Pi(s) \right|^2 (1 + C_{FSR})$$

- $\sigma_{\rm dressed} = \frac{N}{\int L dt \ \varepsilon \ (1 + \delta_{\rm ISR})}$
- $\Pi(s) = \Pi_{\text{lep}}(s) + \Pi_{\text{had}}(s)$

Figure from Fred Jegerlehner

A common effort for RC and Monte Carlo tools

Eur. Phys. J. C (2010) 66: 585–686 DOI 10.1140/epjc/s10052-010-1251-4 THE EUROPEAN
PHYSICAL JOURNAL C

Review

Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data

Working Group on Radiative Corrections and Monte Carlo Generators for Low Energies

```
S. Actis<sup>38</sup>, A. Arbuzov<sup>9,e</sup>, G. Balossini<sup>32,33</sup>, P. Beltrame<sup>13</sup>, C. Bignamini<sup>32,33</sup>, R. Bonciani<sup>15</sup>, C.M. Carloni Calame<sup>35</sup>, V. Cherepanov<sup>25,26</sup>, M. Czakon<sup>1</sup>, H. Czyż<sup>19,a,f,i</sup>, A. Denig<sup>22</sup>, S. Eidelman<sup>25,26,g</sup>, G.V. Fedotovich<sup>25,26,e</sup>, A. Ferroglia<sup>23</sup>, J. Gluza<sup>19</sup>, A. Grzelińska<sup>8</sup>, M. Gunia<sup>19</sup>, A. Hafner<sup>22</sup>, F. Ignatov<sup>25</sup>, S. Jadach<sup>8</sup>, F. Jegerlehner<sup>3,19,41</sup>, A. Kalinowski<sup>29</sup>, W. Kluge<sup>17</sup>, A. Korchin<sup>20</sup>, J.H. Kühn<sup>18</sup>, E.A. Kuraev<sup>9</sup>, P. Lukin<sup>25</sup>, P. Mastrolia<sup>14</sup>, G. Montagna<sup>32,33,b,d</sup>, S.E. Müller<sup>22,f</sup>, F. Nguyen<sup>34,d</sup>, O. Nicrosini<sup>33</sup>, D. Nomura<sup>36,h</sup>, G. Pakhlova<sup>24</sup>, G. Pancheri<sup>11</sup>, M. Passera<sup>28</sup>, A. Penin<sup>10</sup>, F. Piccinini<sup>33</sup>, W. Płaczek<sup>7</sup>, T. Przedzinski<sup>6</sup>, E. Remiddi<sup>4,5</sup>, T. Riemann<sup>41</sup>, G. Rodrigo<sup>37</sup>, P. Roig<sup>27</sup>, O. Shekhovtsova<sup>11</sup>, C.P. Shen<sup>16</sup>, A.L. Sibidanov<sup>25</sup>, T. Teubner<sup>21,h</sup>, L. Trentadue<sup>30,31</sup>, G. Venanzoni<sup>11,c,i</sup>, J.J. van der Bij<sup>12</sup>, P. Wang<sup>2</sup>, B.F.L. Ward<sup>39</sup>, Z. Was<sup>8,g</sup>, M. Worek<sup>40,19</sup>, C.Z. Yuan<sup>2</sup>
```

60 participants, 13 countries

See www.lnf.infn.it/wg/sighad for more information (next meeting April 2011, Frascati)

Results on R from energy scan at $\sqrt{s} < 10$ GeV

<u>Place</u>	Ring	<u>Detector</u>	$E_{\underline{cm}}(\underline{GeV})$	<u>pts</u>	<u>Year</u>
Novosibirsk	VEPP-2M VEPP-2	CMD2,SND Olya,ND,CMD	<1.4 <1.4	128	01-03 79-85 97-99
Beijing	BEPC	BESII	2-5	85	98-99
Orsay	DCI	M3N,DMI,DM2	1.35-2.13	33	'78
Frascati	Adone	γγ2,MEA, Boson,BCF	1.42-3.09	31	'78
SLAC	Spear	MarkI	2.8-7.8	78	'82
Cornell	CESR	CLEO	3-5		'05
Hamburg	Doris	DASP PLUTO C.Ball LENA	3.1-5.2 3.6-4.8,9.46 5.0-7.4 7.4-9.4	64 27 11 95	'79 '77 '90 '82
Novosibirsk	VEPP-4	MD-1	7.23-10.34	30	' 91

Recent Results with ISR

<u>Place</u>	Ring	<u>Detector</u>	$\underline{E}_{\underline{cm}}(\underline{GeV})$	<u>pts</u>	<u>Year</u>
Frascati	DAФNE	KLOE	<1 GeV		'05- 08-10
SLAC	PEPII	BaBar	<5 GeV		'05-10.
Tsukuba	KEKB	Belle	<5 GeV		'08-10.

New Projects or Upgrades

<u>Place</u>	Ring	<u>Detector</u>	$E_{cm}(GeV)$	<u>pts</u>	<u>Year</u>
Novosibirsk	VEPP-2000	CMD3 and SND2	<2		10
Beijing	BEPCII	BESIII	2-4.6		10
			(<3 with ISR)		
Frascati	DAФNE	KLOE-2	<1 (→2.5?)		' 11
Tsukuba	KEKB	SuperBelle	<5 GeV		'14?

Recent results with energy scan:

- In the last years main results were published from: CMD2 and SND @VEPP-2M, BESII@BEPC, CLEO@CESR:
- 1)VEPP-2M, Novosibirsk (exclusive measurements) 0.4 <E_{cm}<1.4 GeV
 - New results on e⁺e⁻ $\rightarrow \pi^+ \pi^- \pi^+ \pi^-$, $\pi^+ \pi^- \pi^0 \pi^0$ ($\sigma_{syst} \sim 7\%$), e⁺e⁻ $\rightarrow \pi^+ \pi^- \pi^0$ ($\sigma_{syst} \sim 12\%$), e⁺e⁻ $\rightarrow K_S$, K_L , e⁺e⁻ $\rightarrow \omega \pi^+ \pi^-$, $\eta \pi^+ \pi^-$ ($\sigma_{syst} \sim 15\%$) from CMD2 and SND
 - $e^+e^- \rightarrow \pi^+\pi^-$ from CMD2 with $\sigma_{syst} \sim 1.\%$ ($\sigma_{syst} \sim 0.6\%$ in 0.61<E<0.96 GeV)
 - $e^+e^- \rightarrow \pi^+\pi^-$ from SND with $\sigma_{\rm syst} \sim 1.3\%$

1.15	ISR+FSR	
1.05		π+π
1		μ*μ-
0.95		e+e-
0.9	ISR+FSF	: 4
	0.6 0.7 0.8 0.9	1 1.1 1.2 1.3 1.4

Sources of errors	CMD-2 $\sqrt{s} < 1 \text{ GeV}$	SND	CMD-2 $1.4 > \sqrt{s} > 1 \text{ GeV}$
Event separation method	0.2-0.4%	0.5%	0.2-1.5%
Fiducial volume	0.2%	0.8%	0.2-0.5%
Detection efficiency	0.2-0.5%	0.6%	0.5-2%
Corrections for pion losses	0.2%	0.2%	0.2%
Radiative corrections	0.3-0.4%	0.2%	0.5-2%
Beam energy determination	0.1-0.3%	0.3%	0.7-1.1%
Other corrections	0.2%	0.5%	0.6-2.2%
The total systematic error	0.6-0.8%	1.3%	1.2–4.2%

How cross-section is measured

All modes except 2π

$$\sigma\left(e^{+}e^{-} \to H\right) = \frac{N_{H} - N_{bg}}{L \cdot \varepsilon \cdot (1 + \delta)}$$

- Luminosity L is measured using Bhabha scattering at large angles
- Efficiency ϵ is calculated via Monte Carlo + corrections for imperfect detector
- Radiative correction δ accounts for ISR effects only

2π

$$\left|F_{\pi}\right|^{2} = \frac{N_{2\pi}}{N_{ee}} \cdot \frac{\sigma_{ee} \cdot (1 + \delta_{ee})}{\sigma_{2\pi} (\text{point-like } \pi) \cdot (1 + \delta_{2\pi})}$$

- Ratio $N(2\pi)/N(ee)$ is measured directly \Rightarrow detector inefficiencies are cancelled out
- · Virtually no background
- Analysis does not rely on simulation
- Radiative corrections account for ISR and FSR effects
- Formfactor is measured to better precision than L

Measurement of exclusive channels with CMD-2/SND

Pion form factor @ Novosibirsk (with energy scan)

Good agreement between the two spectra

R measurement at BESII

•BESII @ BEPC, Beijing (inclusive measurement) 2 $\langle E_{cm} \langle 5 \text{ GeV} \rangle$ -New result of R in 2 $\langle E_{cm} \langle 5 \text{ GeV} \rangle$ from BESII coll., with $\sigma_R / R \sim 7\%$ (improvement of a factor 2)

$$R = \frac{N_{had}^{obs} - N_{bg} - \sum_{l} N_{ll} - N_{\gamma\gamma}}{\sigma_{\mu\mu}^{0} \cdot L \cdot \epsilon_{trg} \cdot \bar{\epsilon}_{had} \cdot (1 + \delta)},$$

TABLE II. Contributions to systematic errors: experimental selection of hadronic events, luminosity determination, theoretical modeling of hadronic events, trigger efficiency, radiative corrections and total systematic error. All errors are in percentages (%).

E_{cm}	hadron	L	M.C.	trigger	radiative	total
(GeV)	selection		modeling		correction	
2.000	7.07	2.81	2.62	0.5	1.06	8.13
3.000	3.30	2.30	2.66	0.5	1.32	5.02
4.000	2.64	2.43	2.25	0.5	1.82	4.64
4.800	3.58	1.74	3.05	0.5	1.02	5.14

R measurement at CLEO

·CLEO@ CESR, Ithaca (inclusive measurement) 3.9 <Ecm < 4.3 GeV

-New result on R (inclusive measurement) in 3.97<E $_{cm}$ <4.26 GeV (above the open charm threshold) with a δ_{sys} between 5.2 and 6.1%. In agreement with the sum of exclusive measurement and previous experiments

Energy	R
(MeV)	(ISR-corrected)
3970	$3.36 \pm 0.04 \pm 0.05$
3990	$3.55 \pm 0.05 \pm 0.06$
4010	$3.88 \pm 0.04 \pm 0.08$
4015	$3.95 \pm 0.08 \pm 0.08$
4030	$4.74 \pm 0.07 \pm 0.12$
4060	$4.34 \pm 0.05 \pm 0.10$
4120	$4.21 \pm 0.06 \pm 0.10$
4140	$4.18 \pm 0.04 \pm 0.10$
4160	$4.18 \pm 0.03 \pm 0.10$
4170	$4.20 \pm 0.01 \pm 0.10$
4180	$4.17 \pm 0.04 \pm 0.10$
4200	$3.77 \pm 0.05 \pm 0.08$
4260	$3.06 \pm 0.02 \pm 0.04$

R measurement at CLEO

·CLEO@ CESR, Ithaca (inclusive measurement) 6.9 < E_m<10..5 GeV

-New result on R (inclusive measurement) in 6.964<E_{cm}<10.538 GeV (7 points) with a δ sys of \sim 2%. In agreement with previous experiments (but MARKI) and pQCD (Λ =0.31 GeV)

$$R = \frac{N_{had}(1-f)}{\mathcal{L}\epsilon_{had}(1+\delta)\sigma_{\mu\mu}^{0}},$$

ε(1+δ)	1%
L	1%
Bckg/Hadr Modeling	0.7%
Dataset variation	0.3%
TOTAL	1.8%

ISR: Initial State Radiation

Neglecting final state radiation (FSR):

Theoretical input: precise calculation of the radiation function H(s, M²_{hadr})

→ EVA + PHOKHARA MC Generator

Binner, Kühn, Melnikov; Phys. Lett. B 459, 1999 H. Czyż, A. Grzelińska, J.H. Kühn, G. Rodrigo, Eur. Phys. J. C 27, 2003 (exact next-to-leading order QED calculation of the radiator function)

IN 2005 KLOE has published the first precision measurement of $\sigma(e^+e^-\to\pi^+\pi^-)$ with ISR using 2001 data (140pb⁻¹) PLB606(2005)12 \Rightarrow ~3 σ discrepancy btw a_u^{SM} and a_u^{exp}

Extracting $\sigma_{\pi\pi}$ and $|F_{\pi}|^2$ from $\pi\pi\gamma$ events

a) Via absolute Normalisation to VLAB Luminosity (as in 2005 analysis):

1)
$$\frac{d\sigma_{_{\pi\pi\gamma(\gamma)}}^{obs}}{dM_{_{\pi\pi}}^{2}} = \frac{\Delta N_{\rm Obs} - \Delta N_{\rm Bkg}}{\Delta M_{_{\pi\pi}}^{2}} \cdot \frac{1}{\varepsilon_{\rm Sel}} \cdot \frac{1}{\int L dt}$$

 $d\sigma_{\pi\pi\gamma(\gamma)}/dM^2$ is obtained by subtracting background from observed event spectrum, divide by selection efficiencies, and *int. luminosity*:

$$\sigma_{\pi\pi}(s) \approx s \frac{d\sigma^{obs}}{dM_{\pi\pi}^2} \cdot \frac{1}{H(s)}$$

Obtain $\sigma_{\pi\pi}$ from (ISR) - radiative cross section $d\sigma_{\pi\pi\gamma(\gamma)}/dM^2$ via theoretical radiator function H(s):

$$|\mathbf{F}_{\pi}|^2 = \frac{3s}{\pi\alpha^2\beta_{\pi}^3}\sigma_{\pi\pi}(\mathbf{s})$$

Relation between $|F_{\pi}|^2$ and the cross section $\sigma(e^+e^- \to \pi^+\pi^-)$

b) Via bin-by-bin Normalisation to rad. Muon events

Radiative Corrections

Radiator-Function $H(s,s_{\pi})$ (ISR):

- ISR-Process calculated at NLO-level PHOKHARA generator

(H.Czyż, A.Grzelińska, J.H.Kühn, G.Rodrigo, EPJC27,2003)

Precision: 0.5%

$$s \cdot \frac{d\sigma_{\pi\pi\gamma}}{ds_{\pi}} = \sigma_{\pi\pi}(s_{\pi}) \times \mathsf{H}(s,s_{\pi})$$

Radiative Corrections:

- i) Bare Cross Section divide by Vacuum Polarisation $\delta(s) = (\alpha(s)/\alpha(0))^2$
 - → from F. Jegerlehner
- ii) FSR

Cross section $\sigma_{\pi\pi}$ must be incl. for FSR for use in the dispersion integral of a_{μ}

FSR corrections have to be taken into account in the efficiency eval. (Acceptance, M_{Trk}) and in the mapping $s_{\pi} \rightarrow s_{\gamma*}$

(H.Czyż, A.Grzelińska, J.H.Kühn, G.Rodrigo, EPJC33,2004)

SA Event Selection (KLOE08)

- a) 2 tracks with $50^{\circ} < \theta_{\text{track}} < 130^{\circ}$
- b) small angle (not detected) γ ($\theta_{\pi\pi}$ < 15° or > 165°)
 - √ high statistics for ISR
 - ✓ low relative FSR contribution
 - $_{\rm x\ 10^{\ 2}}$ \checkmark suppressed $\phi \rightarrow \pi^{+}\pi^{-}\pi^{0}$ wrt the signal

kinematics: $\vec{p}_{\gamma} = \vec{p}_{miss} = -(\vec{p}_{+} + \vec{p}_{-})$

statistics: 240pb⁻¹ of 2002 data

3.1 Mill. Events between 0.35 and 0.95 GeV²

Luminosity:

KLOE measures L with Bhabha scattering

 $55^{\circ} < \theta < 125^{\circ}$ acollinearity $< 9^{\circ}$ $p \ge 400 \text{ MeV}$

$$\int \mathcal{L} \, \mathrm{d}t = \frac{N_{obs} - N_{bkg}}{\sigma_{eff}}$$

F. Ambrosino et al. (KLOE Coll.) **Eur.Phys.J.C47:589-596,2006**

generator used for $\sigma_{e\!f\!f}$ BABAYAGA (Pavia group):

C. M.C. Calame et al., NPB758 (2006) 22

new version (BABAYAGA@NLO) gives 0.7% decrease in cross section, and better accuracy: 0.1%

Systematics on Luminosity		
Theory	0.1 %	
Experiment 0.3 %		
TOTAL $0.1 \% \text{ th} \oplus 0.3\% \text{ exp} = 0.3\%$		

Luminosity:

KLOE measures L with Bhabha scattering

$$55^{\circ} < \theta < 125^{\circ}$$

acollinearity $< 9^{\circ}$
 $p \ge 400 \text{ MeV}$

$$\int \mathcal{L} \, \mathrm{d}t = \frac{N_{obs} - N_{bkg}}{\sigma_{eff}}$$

KLOE result (KLOE08)

Systematic errors on $a_{\mu}^{\pi\pi}$:

Reconstruction Filter	negligible
Background	0.3%
Trackmass/Miss. Mass	0.2%
π /e-ID and TCA	negligible
Tracking	0.3%
Trigger	0.1%
Acceptance $(\theta_{\pi\pi})$	0.1%
Acceptance (θ_{π})	negligible
Unfolding	negligible
Software Trigger	0.1%
√s dep. Of H	0.2%
Luminosity $(0.1_{th} \oplus 0.3_{exp})\%$	0.3%

experimental fractional error on $a_{\mu} = 0.6 \%$

FSR resummation	0.3%
Radiator H	0.5%
Vacuum polarization	0.1%

 $\sigma_{\pi\pi}$, undressed from VP, inclusive for FSR as function of $(M_{\pi\pi}^0)^2$

theoretical fractional error on $a_{\mu} = 0.6 \%$

$$a_{\mu}^{\pi\pi} = \int_{x_1}^{x_2} \sigma_{ee \to \pi\pi}(s) K(s) ds \qquad a_{\mu}^{\pi\pi} (0.35 - 0.95 \text{GeV}^2) = (387.2 \pm 0.5_{\text{stat}} \pm 2.4_{\text{sys}} \pm 2.3_{\text{theo}}) \cdot 10^{-10}$$

LA Event Selection (KLOE10)

οπ

2 pion tracks at large angles $50^{\circ} < \theta_{\pi} < 130^{\circ}$

Photons at large angles $50^{\circ} < \theta_{v} < 130^{\circ}$

- √ independent complementary analysis
- √ threshold region (2m_x)² accessible
- $\sqrt{\gamma_{ISR}}$ photon detected (4-momentum constraints)
- √ lower signal statistics
- ✓ larger contribution from FSR events
- ✓ larger $\phi \rightarrow \pi^+\pi^-\pi^0$ background contamination
- √ irreducible background from ϕ decays $(\phi \rightarrow f_0 \gamma \rightarrow \pi\pi \gamma)$

At least 1 photon with $50^{\circ} < \theta_{y} < 130^{\circ}$ and E_v > 20 MeV → photon detected

Threshold region non-trivial

due to irreducible FSR-effects, which have to be estimated from MC using phenomenological models (interference effects unknown)

KLOE10 result: Pion Form Factor

arXiv:1006.5313

Table of systematic errors on a..ππ(0.1-0.85 GeV²):

	μ ,
Reconstruction Filter	< 0.1%
Background	0.5%
$f_0 + \rho \pi$	0.4%
Omega	0.2%
Trackmass	0.5%
π/e-ID and TCA	< 0.1%
Tracking	0.3%
Trigger	0.2%
Acceptance	0.4%
Unfolding	negligible
Software Trigger	0.1%
Luminosity $(0.1_{th} \oplus 0.3_{exp})\%$	0.3%

experimental fractional error on $a_u = 1.0 \%$

FSR resummation	0.3%
Radiator H	0.5%
Vacuum polarization	< 0.1%

theoretical fractional error on $a_u = 0.6 \%$

Disp. Integral:

$$a_{\mu}^{\pi\pi} = \int_{x_1}^{x_2} \sigma_{ee \to \pi\pi}(s) K(s) ds$$

$$a_{\mu}^{\pi\pi}(0.1\text{-}0.85 \text{ GeV}^2) = (478.5 \pm 2.0_{\text{stat}} \pm 4.8_{\text{sys}} \pm 2.9_{\text{theo}}) \cdot 10^{-10}$$

1.0% 0.6% 0.4%

Comparison of results: KLOE10 vs KLOE08

KLOE08 result compared to KLOE10:

Fractional difference:

Excellent agreement with KLOE08, expecially above 0.5 GeV²

Combination of KLOE08 and KLOE10:

 $a_{\mu}^{\pi\pi}(0.1\text{-}0.95 \text{ GeV}^2) = (488.6\pm5.0) \cdot 10^{-10}$

KLOE covers ~70% of total a_{μ}^{HLO} with a fractional error of 1.0%

BABAR results on R using ISR:

- Center-of-mass energy of machine PEP-II ($\sqrt{s}=m_{\Upsilon(4s)}=10.6$ GeV) far from mass range of interest (ca. < 4 GeV)
 - \rightarrow requires high energy photon E_v*=(3 5.3) GeV
 - → requires high integrated luminosity of PEP-II
- Hard ISR-photon back-to-back to hadrons
- → only acceptance for large angle photons
 - → photon tagging!

Event-Display of an ISR-Event in transversal plane

- Normalisation:
 - \rightarrow to integrated luminosity and radiator function (not for 2π mode)
- \rightarrow to radiative muon pairs, which are selected with high precision (for 2π mode)

BABAR results on R using ISR:

- Mass resolution of hadronic system improved by means of a kinematic fit
 - → Input to the fit: Momentum and direction of ISR-photon (not energy!)
 - \rightarrow Constraints: energy and momentum conservation (and π^0 mass)

- χ^2 -distribution of kinematic fit is the main tool for background subtraction
 - → long tail due radiative corrections (NLO)
 - → remaining background obtained from MC (for qq events) or from data with sideband technique (for ISR events)

- Background from $\Upsilon(4s)$ and from B-decays is very small $(E_{\gamma} > 3 \text{ GeV})$
 - → main backgroud from other ISR-events
 - → background from continuum processes e⁺e⁻→qq

BaBar results with ISR: an incomplete list

- $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ between 1. and 3 GeV with $\sigma_{\rm syst}$ ~5%-10%
- $e^+e^- \rightarrow 4h (\pi^+\pi^-\pi^+\pi^-, \pi^+\pi^-K^+K^-, K^+K^-K^+K^-)$ between 0.6 and 4.5 GeV
 - $\sigma_{\text{syst}}(\pi^+\pi^-\pi^+\pi^-)$ is 12% (<1GeV), 5%(1.-3 GeV), 16% (>3 GeV)
 - $\sigma_{\text{syst}}(\pi^+\pi^-\text{K}^+\text{K}^-)$ is 15% (1.5-4.5 GeV)
 - $\sigma_{\text{syst}}(\text{K}^+\text{K}^-\text{K}^+\text{K}^-)$ is 20% (2.0-4.5 GeV)
- e⁺e⁻ \rightarrow 6h (3($\pi^+\pi^-$), 2($\pi^+\pi^-$) $\pi^0\pi^0$, 2($\pi^+\pi^-$) K⁺K⁻) between 1.5 and 4.5 GeV with σ_{syst} between 6 and 10%
- $e^+e^- \rightarrow \pi^+\pi^-$ with $\sigma_{\rm sys}$ ~0.6% (around the ρ)

Process	Systematic accuracy
$\pi^{+}\pi^{-}\pi^{0}$	(6-8)%
$2\pi^{+}2\pi^{-}$	5%
$2\pi 2\pi^0$	(8-14)%
$2\pi^{+}2\pi^{-}\pi^{0}$	(8-11)%
$2\pi^+2\pi^-\eta$	7%
$3\pi^{+}3\pi^{-} + 2\pi^{+}2\pi^{-}2\pi^{0}$	(6-11)%
$KK\pi$	(5-6)%
$K^+K^-\pi\pi$	(8-11)%

BaBar results on R using ISR:

To calculate R in 1 – 2 GeV the processes $\pi^+\pi^-3\pi^0$, $\pi^+\pi^-4\pi^0$, K+K-, K_LK_S, K_LK_S $\pi\pi$, K_SK+ $\pi^-\pi^0$ must be measured. The work is in progress.

BABAR RESULTS being updated

```
\begin{array}{l} e^+e^- \rightarrow 2\mu\gamma,\, 2\pi\gamma,\, 2K\gamma,\, 2p\gamma,\, 2\Lambda\gamma,\, 2\Sigma\gamma,\, \Lambda\Sigma\gamma \\ e^+e^- \rightarrow 3\pi\gamma \\ e^+e^- \rightarrow 2(\pi^+\pi^-)\gamma,\, K^+K^-\pi^+\pi^-\gamma,\, K^+K^-\pi^0\pi^0\gamma,\, 2(K^+K^-)\gamma \\ e^+e^- \rightarrow 2(\pi^+\pi^-)\pi^0\pi^0\gamma,\,\, 3(\pi^+\pi^-)\gamma,\, K^+K^-2(\pi^+\pi^-)\gamma \\ e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\gamma,\, \pi^+\pi^-\pi^0\pi^0\gamma,\, \pi^+\pi^-\pi^0\eta\gamma \,\, \dots \\ e^+e^- \rightarrow K^+K^-\pi^0\gamma,\, K^+K^-\eta\gamma \,\, (KK^*\gamma,\, \phi\pi^0\gamma,\, \phi\eta\gamma \,\, \dots) \\ e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^0/\eta\gamma,\, K^+K^-\pi^+\pi^-\pi^0/\eta\gamma \\ \text{Are being updated to full BaBar data with $\sim 500 \text{fb}^{-1}$} \end{array}
```

BaBar results on $e^+e^- \rightarrow \pi^+\pi^-(\gamma)$ using ISR:

PION FORM FACTOR AT BABAR

SYSTEMATIC ERRORS

√s' intervals (GeV)

errors in 10-3

sources	0.3-0.4	0.4-0.5	0.5-0.6	0.6-0.9	0.9-1.2	1.2-1.4	1.4-2.0	2.0-3.0
trigger/ filter	5.3	2.7	1.9	1.0	0.5	0.4	0.3	0.3
tracking	3.8	2.1	2.1	1.1	1.7	3.1	3.1	3.1
π -ID	10.1	2.5	6.2	2.4	4.2	10.1	10.1	10.1
background	3.5	4.3	5.2	1.0	3.0	7.0	12.0	50.0
acceptance	1.6	1.6	1.0	1.0	1.6	1.6	1.6	1.6
kinematic fit (χ^2)	0.9	0.9	0.3	0.3	0.9	0.9	0.9	0.9
$correl \mu\mu ID loss$	3.0	2.0	3.0	1.3	2.0	3.0	10.0	10.0
$\pi\pi/\mu\mu$ cancel.	2.7	1.4	1.6	1.1	1.3	2.7	5.1	5.1
unfolding	1.0	2.7	2.7	1.0	1.3	1.0	1.0	1.0
ISR_luminosity	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4
sum (cross section)	13.8	8.1	10.2	5.0	6.5	13.9	19.8	52.4

Dominated by particle ID (π -ID, correlated $\mu\mu \rightarrow '\pi\pi'$, μ -ID in ISR luminosity)

PION FORM FACTOR AT BABAR

CROSS SECTION

Comparison of input $ee \rightarrow \pi\pi$ data

Babar: 3π

Babar: 4h

Babar: 6π

Total systematic: ~6-8%

Total systematic: ~11%

Babar: 2K4π

Total systematic: ~7%

Prospects on R?

- An significant improvement on $\delta \alpha_{em}(M_Z^2)$ would require 1% up to 10 GeV (using the standard integration method of data) or up to ~3 GeV using the Adler function (+ improvements from Theory)
- But how realistic is this possibility?
- Remember the error is:

F. Jegerlehner

Energy	< 1	1-2	2-3	3-9.5	9.5-13
(GeV)				(exc.J/ψ and Y)	
$\delta_{tot}R/R$	~0.5%	6%	4%	0.7%	5.5%
$\delta^2 \! \Delta lpha_{had}^{(5)}(M_Z^2)$	~1%	36%	11%	2%	31%
$\delta^2 \Delta \alpha_{had}^{(5)}(-2.5 GeV)$	~4%	75%	12%	<1%	<1%

•(Super)B factories will continue to improve the region below 5 GeV with ISR. BESIII will also enter in the game both with a scan above 2-3 GeV and with ISR below. However not easy to keep the systematic error at 1% level using ISR (FSR, RC?).

Prospects on R?

- VEPP2000 could improve the situation below 2 GeV by a direct scan
- An energy upgrade of Dafne would improve the region below 2/3 GeV as well
- This would allow to matches the request in precision using the Adler function method.
- However in the direct integration not clear how to reduce the error in the region 9.5 -13 GeV (unless using theory?)

Energy (GeV)	< 1	1-2	2-3	3-9.5 (exc.J/ψ and Y)	9.5-13
$\delta_{tot}R/R$	~0.5%	6%	4%	0.7%	5.5%
$\delta^2 \! \Delta lpha_{had}^{(5)}(M_Z^2)$	~1%	36%	11%	2%	31%
$\delta^2 \Delta \alpha_{had}^{(5)}(-2.5 GeV)$	~4%	75%	12%	<1%	<1%

F. Jegerlehner

Impact of DAFNE-2 on exclusive channels in the range [1-2.5] GeV with a scan (Statistics only)

DAFNE-2 is **statistically** equivalent to 5÷10 ab⁻¹ (Super)B-factory

SPARE

e⁺e⁻ data: current and future/activities

Open issues

- Buco nella sezione d'urto multiadronica vicino a soglia p bar-b
- narrow vector meson resonance, with a mass M ~1.87 GeV and a width Γ ~ 10-20 MeV, consistent with an Nbar-N bound state

Open issues

- Buco di FOCUS nella sezione d'urto dei 6π
- Babar conferma in entrambi i canali

Errore percentuale

Punti con errore ~3% dalla misura inclusiva di BES PRL 84, 594 (2000) – PRL 88, 101802 (2002)

Comparison of different evaluations of $\Delta\alpha^{(5)}_{had}$

$\Delta \alpha^{(5)}_{had}$	Method	Ref
0.0280 ± 0.00065	data<12 GeV	S.Eidelman F.Jegerlehner '95
0.02777 ± 0.00017	data<1.8 GeV	J.H.Kuhen, M.Steinhauser '98
0.02763 ±0.00016	data<1.8GeV	M.Davier, A.Höcker '98
0.027730 ± 0.000148	Euclidean>2.5 GeV	F.Jegerlehener '99
0.027426±0.000190	scaled data, pQCD 2.8-3.7, 5-∞	A.D.Martin et al. '00
0.027896±0.000391	data<12 GeV (new data CMD2 & BES)	F.Jegerlehner '01
0.02761 ± 0.00036	data<12 GeV (new data CMD2 & BES)	H.Burkhardt,B.Pietrzyk '01 ('05)
0.00007 (0.00005)	$\delta\sigma$ ~1% up to J/ ψ ($\delta\sigma$ ~1% up to Y)	

a_{u}^{HLO} :

L.O. Hadronic contribution to a₁₁ can be estimated by means of a dispersion integral:

1 / s² makes low energy contributions especially important:

$$e^+e^- \rightarrow \pi^+\pi^-$$

in the range < 1 GeV
contributes to 70%!

- K(s) = analytic kernel-function
- above sufficiently high energy value, typically 2...5 GeV, use pQCD

Input:

- a) hadronic electron-positron cross section data (G.dR 69, E.J.95, A.D.H.'97,....))
- b) hadronic τ- decays, which can be used with the help of the CVC-theorem and an isospin rotation (plus isospin breaking corrections)

Comparison with CMD2/SND

only statistical errors are shown

band: KLOE error data points: CMD2/SND experiments

CMD-2 and SND data have been averaged over width of KLOE bin (0.01 GeV²)

LA Event Selection (KLOE10)

2 pion tracks at large angles $50^{\circ} < \theta_{\pi} < 130^{\circ}$

Photons at large angles $50^{\circ} < \theta_{v} < 130^{\circ}$

- √ independent complementary analysis
- √ threshold region (2m_x)² accessible
- √ γ_{ISR} photon detected (4-momentum constraints)
- √ lower signal statistics
- ✓ larger contribution from FSR events
- ✓ larger $\phi \rightarrow \pi^{+}\pi^{-}\pi^{0}$ background contamination
- √ irreducible background from ϕ decays $(\phi \rightarrow f_0 \gamma \rightarrow \pi\pi \gamma)$

Use data sample taken at √s≅1000 MeV, 20 MeV below the *ϕ*-peak