Status and possible improvements of electroweak effective couplings for future precision experiments.

Fred Jegerlehner*, DESY Zeuthen/HU Berlin, fjeger@physik.hu-berlin.de

LC10 Workshop, INFN/LNF Frascati, December 2010

Abstract

I will report on my new package "alphaQED", which besides the effective fine structure constant α_{em} also allows for a fairly precise calculation of the $SU(2)_L$ gauge coupling α_2 . I will briefly review the role, future requirements and possibilities.

F. Jegerlehner

LC10 Workshop, INFN/LNF Frascati, December 2010

Outline of Talk:

Motivation

- Status: recent package alphaQED
- A new evaluation of the $S U(2)_L$ running coupling α_2
- Prospects for future improvements

Motivation

Precise SM predictions require to determine the $U(1)_Y \otimes SU(2)_L \otimes SU(3)_c$ SM gauge couplings α_{em} , α_2 and $\alpha_s \equiv \alpha_3$ (QCD) as accurately as possible **** a theory can not be better than its input parameters **** \Rightarrow precision limitations due to non-perturbative hadronic contributions \Leftarrow

beyond SM physics gauge coupling unification?

1. Introduction

Non-perturbative hadronic effects in electroweak precision observables, main effect via effective fine-structure "constant" $\alpha(E)$ (charge screening by vacuum polarization) Of particular interest: $\alpha(M_Z)$ and $a_\mu \equiv (g-2)_\mu/2 \Leftrightarrow \alpha(m_\mu)$ electroweak effects (leptons etc.) calculable in perturbation theory strong interaction effects (hadrons/quarks etc.) perturbation theory fails **Dispersion integrals over** e^+e^- **–data** $R_{\gamma}(s) \equiv \frac{\sigma(e^+e^- \rightarrow \gamma^* \rightarrow \text{hadrons})}{\sigma(e^+e^- \rightarrow \gamma^* \rightarrow \mu^+\mu^-)}$ encoded in Errors of data \implies theoretical uncertainties !!! The art of getting precise results from non-precision measurements ! New challenge for precision experiments on $\sigma(e^+e^- \rightarrow hadrons)$ KLOE, BABAR, $\sigma_{
m hadronic}$ via radiative return: hadrons $\Leftrightarrow \Phi \longrightarrow \pi^+\pi^-, \rho_0$ $s' = M_{\Phi}^2 (1-k) \quad [k = E_{\gamma}/E_{\text{beam}}]$ Energy scan Photon tagging

2. $\alpha(M_Z)$ in precision physics (precision physics limitations)

Uncertainties of hadronic contributions to effective α are a problem for electroweak precision physics:

3. Evaluation of $\alpha(M_Z)$

Non-perturbative hadronic contributions $\Delta \alpha_{had}^{(5)}(s)$ can be evaluated in terms of $\sigma(e^+e^- \rightarrow hadrons)$ data via dispersion integral:

The coupling α_2 , M_W and $\sin^2 \Theta_f$

How to measure α_2 :

♦ charged current channel M_W ($g \equiv g_2$):

$$M_W^2 = \frac{g^2 v^2}{4} = \frac{\pi \,\alpha_2}{\sqrt{2} \,G_\mu}$$

 \bullet neutral current channel $\sin^2 \Theta_f$

In fact here running $\sin^2 \Theta_f(E)$: LEP scale \iff low energy $v_e e$ scattering

$$\sin^2 \Theta_e = \left\{ \frac{1 - \Delta \alpha_2}{1 - \Delta \alpha} + \Delta_{\nu_{\mu}e, \text{vertex}+\text{box}} + \Delta \kappa_{e, \text{vertex}} \right\} \sin^2 \Theta_{\nu_{\mu}e}$$

F. Jegerlehner

The first correction from the running coupling ratio is largely compensated by the ν_{μ} charge radius which dominates the second term. The ratio $\sin^2 \Theta_{\nu_{\mu}e} / \sin^2 \Theta_e$ is close to 1.002, independent of top and Higgs mass. Note that errors in the ratio $\frac{1-\Delta\alpha_2}{1-\Delta\alpha}$ can be taken to be 100% correlated and thus largely cancel.

Above result allow us to calculate non-perturbative hadronic correction in $\gamma\gamma$, γZ , ZZ and WW self energies, as

$$\begin{split} \Pi^{\gamma\gamma} &= e^2 \,\hat{\Pi}^{\gamma\gamma} ; \quad \Pi^{Z\gamma} = \frac{eg}{c_{\Theta}} \,\hat{\Pi}_V^{3\gamma} - \frac{e^2 \,s_{\Theta}}{c_{\Theta}} \,\hat{\Pi}_V^{\gamma\gamma} ; \\ \Pi^{ZZ} &= \frac{g^2}{c_{\Theta}^2} \,\hat{\Pi}_{V-A}^{33} - 2 \,\frac{e^2}{c_{\Theta}^2} \,\hat{\Pi}_V^{3\gamma} + \frac{e^2 \,s_{\Theta}^2}{c_{\Theta}^2} \,\hat{\Pi}_V^{\gamma\gamma} \\ \Pi^{WW} &= g^2 \,\hat{\Pi}_{V-A}^{+-} \end{split}$$

with $\hat{\Pi}(s) = \hat{\Pi}(0) + s\hat{\pi}(s)$.

F. Jegerlehner

Leading hadronic contributions:

$$\Delta \alpha_{\text{had}}^{(5)}(s) = -e^2 \left[\operatorname{Re} \hat{\pi}^{\gamma \gamma}(s) - \hat{\pi}^{\gamma \gamma}(0) \right]$$
$$\Delta \alpha_{2 \,\text{had}}^{(5)}(s) = -\frac{e^2}{s_{\Theta}^2} \left[\operatorname{Re} \hat{\pi}^{3 \gamma}(s) - \hat{\pi}^{3 \gamma}(0) \right]$$

which exhibit the leading hadronic non-perturbative parts, i.e. the ones involving the photon field via mixing.

Note: gauge boson SE potentially very sensitive to New Physics (oblique corrections)

new physics may be obscured by non-perturbative hadronic effects; need to fix this!

Remark on the QCD coupling α_s

Asymptotic freedom: weak coupling at high energies

always needed for evaluating perturbative windows/tails !!!

Status of α_s [Bethke 2009](left) compared with 1989 pre LEP status (right) $\alpha_s^{(5)}(M_Z) = 0.11 \pm 0.01$ (corresponding to $\Lambda_{\overline{MS}}^{(5)} = 140 \pm 60$ MeV).[Altarelli 89].

♦ perturbative QCD (pQCD) applies for $M_{\tau} \leq \sqrt{s}$

Fortunately in good shape thanks to LEP, HERA, Tevatron etc as well as heroic efforts by theorists

 \diamond running α_s in \overline{MS} to 4 loops exact with matching, perturbative R(s)

e.g. RHAD package for pQCD Harlander, Steinhauser 2002/2009

My alphaQED and alpha2SM packages

Download link: *>>> [alphaQED.tar.gz]

The package for calculating the effective electromagnetic fine structure constant is available in two versions:

alphaQEDreal [FUNCTION funalpqed] providing the real part of the subtracted photon vacuum polarization including hadronic, leptonic and top quark contributions as well as the weak part (relevant at ILC energies)

alphaQEDcomplex [FUNCTION funalpqedc] provides in addition the corresponding imaginary parts.

corresponding options for $S U(2)_L$ coupling $\alpha_2 = g^2/4\pi$ alpha2SMreal and alpha2SMcomplex

F. Jegerlehner

This is much more complex as it requires R(s) in addition to $\alpha(s)$ (usually taken to be real). This requires first to install the **rhad** package written by Harlander and Steinhauser (FORTRAN package version rhad-1.01 (March 2009 issue))

Sample Plots:

Note that the smooth space-like effective charge agrees rather well with the non-resonant "background" above the Φ (kind of duality)

The top and the W-boson 1-loop contributions at high energies.

Sample program test_Rdat.f for extracting R(s) data, fits and pQCD calculation.

 $\mathbf{R}(\mathbf{s})$ data, fits, pQCD

Sample results:

 $R(s) e^+e^- \rightarrow$ hadrons data vs. Chebyshev polynomial fits [no fit for $\psi_3 \dots \psi_6$ region yet]

Complex vs. real α VP correction

• Usually adopted VP subtraction corrections: $\alpha(s) \rightarrow \alpha$ R(s) corrected by $(\alpha/\alpha(s))^2 = |1 - \text{Re }\Pi'(s)|^2$ ($\Pi'(0)$ subtracted)

- more precisely, should subtract $|1 \Pi'(s)|^2 = \alpha/|\alpha_c(s)|)^2$ where $\alpha_c(s)$ complex version of running α
- complex version what the Novosibirsk CMD-2 Collaboration has been using in more recent analyzes [code available from Fedor Ignatov *>>]
- Typically, corrections

$$1-|1-\Pi'(s)|^2/(\alpha/\alpha(s))^2$$

non-resonance regions corrections < 0.1 %</p>

 \Box at resonances where corrections $\sim 1/\Gamma_R$

F. Jegerlehner

LC10 Workshop, INFN/LNF Frascati, December 2010

Note: imaginary parts from narrow resonances, $\lim \Pi'(s) = \frac{\alpha}{3} R(s) = \frac{3}{\alpha} \frac{\Gamma_{ee}}{\Gamma}$ at peak, are sharp spikes and are obtained correctly only by appropriately high resolution scans. For example,

$$|1 - \Pi'(s)|^2 - (\alpha/\alpha(s))^2 = (\operatorname{Im} \Pi'(s))^2$$

at $\sqrt{s} = M_R$ is given by

 1.23×10^{-3} [ρ], 2.76×10^{-3} [ω], 1.56×10^{-2} [ϕ], 594.81 [J/ψ], 9.58 [ψ_2], 2.66×10^{-4} [ψ_3], 104.26 [Υ_1], 30.51[Υ_2], 55.58 [Υ_3]

Standard Model $S U(2)_L$ coupling $\alpha_2 = g^2/4\pi$

Non-perturbative hadronic (data-driven) provided by

Sample results:

Comparison of $\Delta \alpha$ and $\Delta \alpha_2$ in the ρ and ϕ region. It is the ω contribution, missing in $\Delta \alpha_2$, which produces the characteristic "bump" in $\Delta \alpha$ ($\rho - \omega$ mixing) near the ρ .

Remark: the hadronic shift $\Delta \alpha_{2 \text{ had}}^{(5)}$ is calculated based on e^+e^- -annihilation data using the flavor separation procedure proposed and investigated in *Hadronic Contributions to Electroweak Parameter Shifts* Z. Phys. C **32** (1986) 195.

F. Jegerlehner

Perspectives to reduce uncertainties in estimates of effective fine structure constant

experiment side: new more precise measurements of R(s) see Graziano Venanzoni's talk (next talk)

I theory side: $\alpha_{\rm em}(M_Z^2)$ by the "Adler function controlled" approach

$$\alpha(M_Z^2) = \alpha(-s_0) + \left[\alpha(-M_Z^2) - \alpha(-s_0)\right] + \left[\alpha(M_Z^2) - \alpha(-M_Z^2)\right]$$

= $\alpha^{\text{data}}(-s_0) + \left[\alpha(-M_Z^2) - \alpha(-s_0)\right]^{\text{pQCD}} + \left[\alpha(M_Z^2) - \alpha(-M_Z^2)\right]^{\text{pQCD}}$

where the space-like $-s_0$ is chosen such that pQCD is well under controlled for

F. Jegerlehner

 $-s < -s_0$. The monitor to control the applicability of pQCD is the Adler function

$$D(Q^2 = -s) = -(12\pi^2) s \frac{\mathrm{d}\Pi'_{\gamma}(s)}{\mathrm{d}s} = Q^2 \int_{4m_{\pi}^2}^{\infty} \frac{R(s)}{(s+Q^2)^2}$$

which on the one hand for, Q^2 not too small, can be calculated in pQCD on the other hand it can be evaluated non-perturbatively in the standard manner using data at lower energies plus pQCD for perturbative regions and the perturbative tail.

"Experimental" Adler–function versus theory (pQCD + NP)

Error includes statistical + systematic here (in contrast to most R-plots showing statistical errors only)!

(Eidelman, F.J., Kataev, Veretin 98, FJ 08 update) theory based on results by Chetyrkin, Kühn et al.

 \Rightarrow pQCD works well to predict $D(Q^2)$ down to $s_0 = (2.5 \, {\rm GeV})^2$; use this to calculate

$$\Delta \alpha_{\rm had}(-Q^2) \sim \frac{\alpha}{3\pi} \int dQ'^2 \frac{D(Q'^2)}{Q'^2}$$

$$\Delta \alpha_{\rm had}^{(5)}(-M_Z^2) = \left[\Delta \alpha_{\rm had}^{(5)}(-M_Z^2) - \Delta \alpha_{\rm had}^{(5)}(-s_0) \right]^{\rm pQCD} + \Delta \alpha_{\rm had}^{(5)}(-s_0)^{\rm data}$$

and obtain, for $s_0 = (2.5 \text{ GeV})^2$:

 $\Delta \alpha_{\text{had}}^{(5)}(-s_0)^{\text{data}} = 0.007337 \pm 0.000090$ $\Delta \alpha_{\text{had}}^{(5)}(-M_Z^2) = 0.027460 \pm 0.000134$ $\Delta \alpha_{\text{had}}^{(5)}(M_Z^2) = 0.027498 \pm 0.000135$

Shift +0.000008 from the 5-loop contribution
For ± 0.000103 added in quadrature form perturbative part
QCD parameters: $\alpha_s(M_Z) = 0.1189(20)$, $m_c(m_c) = 1.286(13) [M_c = 1.666(17)]$ GeV, based on a construction $m_b(m_c) = 4.164(25) [M_b = 4.800(29)]$ GeV
QCD analysis

based on a complete 3–loop massive QCD analysis (Kühn et al 2007)

(FJ 98/10)

Present situation: (after KLOE & BaBar)

$$\Delta \alpha_{\text{hadrons}}^{(5)}(M_Z^2) = \begin{array}{ll} 0.027510 \pm 0.000218 \\ 0.027498 \pm 0.000135 \\ \alpha^{-1}(M_Z^2) \end{array} = \begin{array}{ll} 128.961 \pm 0.030 \\ 128.962 \pm 0.018 \end{array} \quad \text{Adler}$$

The virtues of Adler function approach are obvious:

- no problems with physical threshold and resonances
- ◆ pQCD is used only where we can check it to work (Euclidean, $Q^2 \gtrsim 2.5$ GeV).
- no manipulation of data, no assumptions about global or local duality.
- * non–perturbative "remainder" $\Delta \alpha_{had}^{(5)}(-s_0)$ is mainly sensitive to low energy data []]

Future: ILC requirement: improve by factor 10 in accuracy

direct integration of data: 58% from data 42% p-QCD $\Delta \alpha_{had}^{(5) data} \times 10^4 = 162.72 \pm 4.13 (2.5\%)$ 1% overall accuracy ±1.63

1% accuracy for each region (divided up as in table) added in quadrature: ± 0.85 Data: [4.13] vs. [0.85] \Rightarrow improvement factor 4.8 $\Delta \alpha_{had}^{(5) \, pQCD} \times 10^4 = 115.57 \pm 0.12$ (0.1%) Theory: no improvement needed !

★ integration via Adler function: 26% from data 74% p-QCD $\Delta \alpha_{had}^{(5) data} \times 10^4 = 073.61 \pm 1.68 (2.3\%)$ 1% overall accuracy ±0.74 1% accuracy for each region (divided up as in table) added in quadrature: ±0.41 Data: [2.25] vs. [0.46] ⇒ improvement factor 4.9 (Adler vs Adler) [4.13] vs. [0.46] ⇒ improvement factor 9.0 (Standard vs Adler) $\Delta \alpha_{had}^{(5) pQCD} \times 10^4 = 204.68 \pm 1.49 (0.7\%)$ Theory: (QCD parameters) has to improve by factor 10 ! $\rightarrow \pm 0.20$

Requirement may be realistic:

- pin down experimental errors to 1% level in all non-perturbative regions up to 10 GeV
- switch to Adler function method
- \clubsuit improve on QCD parameters, mainly on m_c and m_b

Unique chance for DAFNE-2 to improve precision of $\alpha_{\rm eff}(E)$ substantially! In conjunction with improvement of QCD parameters (lattice QCD!). Mandatory for ILC project, but in many other places e.g. g-2 of the muon.

ILC community should actively support these activities as integral part of LC precision physics!!! Be engaged!

Remember: tremendous progress since middle of 90's

- Novosibirsk VEPP-2M: MD-1, CMD2, SND
- Beijing BEPC: BES II
- Cornell CESR: CLEO
- Frascati DAFNE: KLOE
- Stanford SLAC PEP-II: BaBar

Many analyzes exploiting these results: Davier et al, Teubner et al., Burkhardt, Pietrzyk, Yndurain et al....

Indispensable for Muon g-2, indirect LEP Higgs mass constraint etc. and future precision test at ILC and new physics signals in precision observables.

F. Jegerlehner

The story must go on!

***** Backup slides

How much pQCD?

Method	range [GeV]	pQCD		
Standard approach:	5.2 - 9.5	33.50(0.02)		
My choice	13.0 - ∞	115.69(0.04)	\rightarrow	149.19 (0.06)
Standard approach:	2.0 - 9.5	72.09(0.07)		
Davier et al.	11.5 - ∞	123.24(0.05)	\rightarrow	195.33 (0.12)
Adler function controlled:	5.2 - 9.5	3.92(0.00)		
	13.0 - ∞	1.09(0.00)		
	$-\infty2.5$	201.23(1.03)		
	$-M_Z \rightarrow M_Z$	0.38(0.00)	\rightarrow	206.62 (1.03)

Correction factor $(\alpha_{old}(s) / \alpha_{new}(s))^2$ applying to R(s) [new routine vs. old one]. The sharp peak is due to the updated ϕ mass and width.

November 2010 Update

Most recent update: incl. KLOE I, BaBar and KLOE II

	a_{μ} :		
Energy range	a_{μ}^{had} [%](error) × 10 ¹⁰	rel. err.	abs. err.
$\rho, \omega \ (E < 2M_K)$	540.49 [78.0](2.26)	0.4 %	22.9 %
$2M_K < E < 2 \text{ GeV}$	102.19 [14.7](4.00)	3.9 %	71.8 %
$2 \text{ GeV} < E < M_{J/\psi}$	21.63 [3.1](0.93)	4.3 %	3.9 %
$M_{J/\psi} < E < M_{\Upsilon}$	26.12 [3.8](0.57)	2.2 %	1.4 %
$M_{\Upsilon} < E < E_{\rm cut}$	1.38 [0.2](0.07)	5.1 %	0.0 %
$E_{\rm cut} < E \ pQCD$	1.53 [0.2](0.00)	0.0 %	0.0 %
$E < E_{\rm cut}$ data	691.81 [99.8](4.72)	0.7 %	100.0 %
total	693.34 [100.0](4.72)	0.7 %	100.0 %

final state	range (GeV)	res (stat) (syst) [tot]	rel	abs
ρ	(0.28, 0.99)	503.49 (0.67) (1.86)[1.98]	0.4%	17.4%
ω	(0.42, 0.81)	37.00 (0.44) (1.00)[1.09]	3.0%	5.3%
ϕ	(1.00, 1.04)	35.20 (0.49) (0.81)[0.95]	2.7%	4.0%
J/ψ		8.51 (0.40) (0.38)[0.55]	6.5%	1.4%
Ŷ		0.10 (0.00) (0.01)[0.01]	6.7%	0.0%
had	(0.99, 2.00)	66.99 (0.22) (3.91)[3.92]	5.8%	68.1%
had	(2.00, 3.10)	21.63 (0.12) (0.92)[0.93]	4.3%	3.8%
had	(3.10, 3.60)	3.77 (0.03) (0.10)[0.10]	2.8%	0.0%
had	(3.60, 9.46)	13.83 (0.04) (0.05)[0.06]	0.4%	0.0%
had	(9.46,13.00)	1.28 (0.01) (0.07)[0.07]	5.4%	0.0%
pQCD	(13.0,∞)	1.53 (0.00) (0.00)[0.00]	0.0%	0.0%
data	(0.28,13.00)	691.81 (1.06) (4.63)[4.75]	0.7%	0.0%
total		693.34 (1.06) (4.63) [4.75]	0.7%	100.0%

Table 1: Results for $a_{\mu \, had} \times 10^{10}$.

$$\Delta \alpha_{\rm had}^{(5)}(-2.5~{\rm GeV})$$

Energy range	$\Delta \alpha_{\rm had}^{(5)} [\%] (\rm error) \times 10^4$	rel. err.	abs. err.	
$\rho, \omega \ (E < 2M_K)$	33.35 [45.5](0.15)	0.5 %	2.8 %	
	16.46 [22.4](0.79)	4.8 %		
$2 \text{ GeV} < E < M_{J/\psi}$	7.72 [10.5](0.32)	4.2 %	12.6 %	
$M_{J/\psi} < E < M_{\Upsilon}$	13.81 [18.8](0.27)	1.9 %	8.8 %	
$M_{\Upsilon} < E < E_{\rm cut}$	0.95 [1.3](0.05)	5.1 %	0.3 %	
$E_{\rm cut} < E \ pQCD$	1.09 [1.5](0.00)	0.0 %	0.0 %	
$E < E_{\rm cut}$ data	72.28 [98.5](0.90)	1.3 %	100.0 %	
total	73.37 [100.0](0.90)	1.2 %	100.0 %	

final state	range (GeV)	res (stat) (syst) [tot]	rel	abs
$\overline{ ho}$	(0.28, 0.99)	30.69 (0.04) (0.12)[0.13]	0.4%	2.0%
ω	(0.42, 0.81)	2.66 (0.03) (0.07)[0.08]	3.0%	0.7%
ϕ	(1.00, 1.04)	4.00 (0.06) (0.09)[0.11]	2.7%	1.4%
J/ψ		3.95 (0.19) (0.18)[0.26]	6.6%	8.2%
Υ		0.07 (0.00) (0.00)[0.00]	6.7%	0.0%
had	(0.99, 2.00)	12.45 (0.05) (0.78)[0.78]	6.3%	74.4%
had	(2.00, 3.10)	7.72 (0.04) (0.32)[0.32]	4.2%	12.4%
had	(3.10, 3.60)	1.77 (0.01) (0.05)[0.05]	2.8%	0.3%
had	(3.60, 9.46)	8.09 (0.02) (0.03)[0.04]	0.5%	0.2%
had	(9.46,13.00)	0.88 (0.01) (0.05)[0.05]	5.5%	0.3%
pQCD	(13.0,∞)	1.09 (0.00) (0.00)[0.00]	0.0%	0.0%
data	(0.28,13.00)	72.28 (0.21) (0.88)[0.91]	1.3%	0.0%
total		73.37 (0.21) (0.88) 0.91	1.2%	100.0%

Table 2: Results for $\Delta \alpha_{had}^{(5)}(-2.5 \text{ GeV}) \times 10^4$.

F. Jegerlehner

	$\Delta \alpha_{\rm had}^{(5)}(M_Z)$		
Energy range	$\Delta \alpha_{\rm had}^{(5)}$ [%](error) × 10 ⁴	rel. err.	abs. err.
$\rho, \omega \ (E < 2M_K)$	36.29 [13.2](0.17)	0.5 %	0.8 %
$2M_K < E < 2 \text{ GeV}$	21.73 [7.9](1.11)	5.1 %	36.3 %
$2 \text{ GeV} < E < M_{J/\psi}$	15.33 [5.6](0.62)	4.0 %	11.1 %
$M_{J/\psi} < E < M_{\Upsilon}$	66.56 [24.2](0.83)	1.2 %	20.1 %
$M_{\Upsilon} < E < E_{\rm cut}$	19.49 [7.1](1.04)	5.3 %	31.6 %
$E_{\rm cut} < E \ pQCD$	115.69 [42.1](0.04)	0.0 %	0.0 %
$E < E_{\rm cut} data$	159.41 [57.9](1.85)	1.2 %	100.0 %
total	275.10 [100.0](1.85)	0.7 %	100.0 %

final state	range (GeV)	res (stat) (syst) [tot]	rel	abs
ρ	(0.28, 0.99)	33.37 (0.05) (0.13)[0.14]	0.4%	0.6%
ω	(0.42, 0.81)	2.92 (0.04) (0.08)[0.09]	3.0%	0.2%
ϕ	(1.00, 1.04)	4.67 (0.07) (0.11)[0.13]	2.7%	0.5%
J/ψ		11.14 (0.53) (0.58)[0.79]	7.1%	18.1%
Ŷ		1.18 (0.05) (0.06)[0.08]	6.9%	0.2%
had	(0.99, 2.00)	17.06 (0.07) (1.11)[1.11]	6.5%	36.1%
had	(2.00, 3.10)	15.33 (0.08) (0.61)[0.62]	4.0%	11.1%
had	(3.10, 3.60)	4.93 (0.03) (0.13)[0.14]	2.8%	0.5%
had	(3.60, 9.46)	50.49 (0.11) (0.20)[0.22]	0.4%	1.4%
had	(9.46,13.00)	18.32 (0.24) (1.01)[1.04]	5.7%	31.2%
pQCD	(13.0,∞)	115.69 (0.00) (0.04)[0.04]	0.0%	0.0%
data	(0.28,13.00)	159.41 (0.61) (1.75)[1.85]	1.2%	0.0%
total		275.10 (0.61) (1.75)[1.85]	0.7%	100.0%

Table 3: Results for $\Delta \alpha_{had}^{(5)}(M_Z) \times 10^4$.