Constraining charged Higgs bosons from measurements of $B^{\pm} \rightarrow \tau^{\pm} \nu / B_c^{\pm} \rightarrow \tau^{\pm} \nu$ at Giga Z

Andrew Akeroyd

NExT Institute, SHEP, University of Southampton

- $B^{\pm} \rightarrow \tau^{\pm} \nu$ has been measured at e^+e^- B factories
- Important constraints on the parameter $\tan\beta/m_{H^\pm}$
- Search for $B^{\pm} \to \tau^{\pm} \nu$ at LEP1 and contribution of $B_c^{\pm} \to \tau^{\pm} \nu$
- Measuring $B^{\pm}/B_c^{\pm} \rightarrow \tau^{\pm}\nu$ at Giga Z option of Linear Collider
- Comparison with a High Luminosity Flavour Factory $(B^{\pm} \rightarrow \tau^{\pm} \nu)$

A.G.A, Chuan-Hung Chen, S. Recksiegel: Phys.Rev.D77,115018 (2008) arXiv:0803.3517 Talk at LC10, Frascati, 02 December 2010 The purely leptonic decays of pseudoscalar mesons, $M^{\pm} \rightarrow l^{\pm} \nu_l$

- Well-known examples are $\pi^{\pm} \to \ell^{\pm} \nu_{\ell}$ and $K^{\pm} \to \ell^{\pm} \nu_{\ell}$ $_{(\ell^{\pm} = e^{\pm}, \mu^{\pm})}$
- Measured in 1950s with large branching ratios Heavier mesons: $D^{\pm}(\overline{c}d, c\overline{d}), D_s^{\pm}(\overline{c}s, c\overline{s}), B^{\pm}(\overline{b}u, b\overline{u}), B_c^{\pm}(\overline{b}c, b\overline{c})$ Proceed via annihilation of M^{\pm} into W^{\pm} and H^{\pm} (New Physics)

$$B^{-} \underbrace{\begin{matrix} b \\ W^{-}, H^{-} \\ \overline{u} \end{matrix}}_{\overline{u}} \tau^{-}$$

Decay rate for $B^{\pm} \rightarrow l^{\pm} \nu_l$

 W^{\pm} and H^{\pm} effectively induce the four-fermion interaction: $(G_F/\sqrt{2})V_{ub}([\overline{u}\gamma_{\mu}(1-\gamma_5)b][\overline{l}\gamma^{\mu}(1-\gamma_5)\nu] - Y[\overline{u}(1+\gamma_5)b][\overline{l}(1-\gamma_5)\nu])$

 $Y = \tan^2 \beta (m_b m_l / m_{H^{\pm}}^2)$ for 2HDM (Model II) $\tan \beta = v_2 / v_1$ The tree-level partial width is given by:

$$\Gamma(B^{\pm} \to l^{\pm} \nu_l) = \frac{G_F^2 m_B m_l^2 f_B^2}{8\pi} |V_{ub}|^2 \left(1 - \frac{m_l^2}{m_B^2}\right)^2 \times r_H$$

In SM $r_H = 1$; $|V_{ub}|$ is measured; f_B calculated in lattice QCD With H^{\pm} , $r_H \neq 1$ and depends on $\tan \beta/m_{H^{\pm}}$ Effect of H^{\pm} on $B^{\pm} \to \tau^{\pm} \nu_{\tau}$

Scale factor r_H : W.S. Hou, Phys.ReV.D48,2342 (1993)

$$r_{H} = [1 - m_{B}^{2} \frac{\tan^{2} \beta}{m_{H^{\pm}}^{2}}]^{2} \equiv [1 - m_{B}^{2} R^{2}]^{2}$$

- Same for each lepton flavour $(B^{\pm} \rightarrow e^{\pm}\nu, \mu^{\pm}\nu, \tau^{\pm}\nu)$
- Destructive interference
- Sensitivity to $\frac{\tan\beta}{m_{H^{\pm}}} (= R)$

These two parameters determine the tree-level MSSM Higgs potential

Scale factor r_H as a function of $R(= \tan \beta / m_{H^{\pm}})$

Two solutions for $r_H = 1$ i) R = 0 and ii) $R = 0.27 \text{ GeV}^{-1}$

Search for $B^{\pm} \rightarrow \tau^{\pm} \nu_{\tau}$ at e^+e^- B factories

First observation of $B^{\pm} \rightarrow \tau^{\pm} \nu_{\tau}$ by BELLE in 2006:

K.Ikado et al, Phys.Rev.Lett.97:251802 (2006); using $450 \times 10^6 B^{\pm}$ s

$$\mathsf{BR}(B^{\pm} \to \tau^{\pm} \nu_{\tau}) = (1.79^{+0.56}_{-0.49}(stat)^{+0.46}_{-0.51}(syst)) \times 10^{-4}$$

In agreement with SM prediction

Has become an important constraint on the parameter space of $[\tan\beta,m_{H^{\pm}}]$ in 2HDM Hou 93 and MSSM AGA/Recksiegel 03; Isidori/Paradisi 06

Constraint on scale factor r_H and $\tan\beta/m_{H^\pm}$

Main uncertainty in SM prediction for $BR(B^{\pm} \rightarrow \tau^{\pm}\nu_{\tau})$ comes from $|V_{ub}|$ and f_B

• $|V_{ub}|$ measured from inclusive/exclusive decays with $b \rightarrow u W^*$

 $|V_{ub}| = (3.92 \pm 0.09 \pm 0.45) imes 10^{-3}$ average of exclusive/inclusive |V_{ub}| (disagreement)

• $f_B = 192 \pm 9.9$ MeV (average of two unquenched lattice QCD calculations)

Measurement of r_H has error from $|V_{ub}|$, f_B and exp error in measurement of BR $(B^{\pm} \rightarrow \tau^{\pm} \nu_{\tau})$

$$r_H = [1 - m_B^2 \frac{\tan^2 \beta}{m_{H^{\pm}}^2}]^2 = 1.62 \pm 0.57$$

Constraint on r_H and plane $[\tan\beta, m_{H^{\pm}}]$ using BELLE 2006 measurement

Green region ruled out. Comparable constraints to those from direct production of H^{\pm} at LHC

Current measurements of $B^{\pm} \rightarrow \tau^{\pm} \nu_{\tau}$ at $e^+e^- B$ factories

Four measurements (BELLE and BABAR):BR in units of 10^{-4} $e^+e^- o B^+B^-$; $B^+ o \tau^+\nu$; $B^- o$ hadronic or semileptonic (and vice versa) • BELLE 450 × 10⁶ B^{\pm} (hadronic tag): $1.79^{+0.56+0.46}_{-0.49-0.51}$ • BELLE 657 × 10⁶ B^{\pm} (semileptonic tag): $1.54^{+0.38+0.29}_{-0.37-0.31}$ • BABAR 467 × 10⁶ B^{\pm} (hadronic tag): $1.8^{+0.57}_{-0.54} \pm 0.26$ • BABAR 460 × 10⁶ B^{\pm} (semileptonic tag): $1.7 \pm 0.8 \pm 0.2$ World average of BR $(B^{\pm} \to \tau^{\pm}\nu_{\tau}) = 1.64 \pm 0.34 \times 10^{-4}$ HFAG

Future measurements of $B^{\pm} \rightarrow \tau^{\pm} \nu$

 $B^{\pm} \rightarrow \tau^{\pm} \nu$ plays a prominent role in the physics case for a [High Luminosity *B* Factory]

- Greater precision for $BR(B^{\pm} \rightarrow \tau^{\pm}\nu)$ is desirable
- \rightarrow constraints on $[\tan\beta, m_{H^{\pm}}]$ complementary
- to those from direct production of H^{\pm} at the LHC
- Upgrade of KEK-B and BELLE detector has been approved
- Flavour physics factory in Europe?
- Would give precision of maybe 5% for $BR(B^{\pm} \rightarrow \tau^{\pm}\nu)$

(and similar precision for $BR(B^{\pm} \rightarrow \mu^{\pm}\nu)$)

Measuring $B^{\pm} \rightarrow \tau^{\pm} \nu$ and $B_c^{\pm} \rightarrow \tau^{\pm} \nu$ at the Z peak: LEP1 and Giga Z

AGA/Chen/Recksiegel: Phys.Rev.D77, 115018 (2008)

Measuring $B^{\pm} \rightarrow \tau^{\pm} \nu$ at the Z peak ($\sqrt{s} = 91$ GeV)

- LEP1 (DELPHI, ALEPH, L3) also searched for $B^{\pm} \rightarrow \tau^{\pm} \nu$
- Used $Z \rightarrow b\overline{b}$ decays. Strongest limit from L3 (1997)

 $\mathsf{BR}(B^{\pm} \rightarrow \tau^{\pm} \nu) < 5.7 \times 10^{-4}$ (current world average $1.64 \pm 0.34 \times 10^{-4}$)

- L3 only used half their data. Is a reanalysis of interest?
- Z-peak data sensitive to $B^{\pm} \to \tau^{\pm} \nu$ and $B_c^{\pm} \to \tau^{\pm} \nu$
- Have (almost) the same signature
- \rightarrow limit on BR applies to sum of both decays

• B_c^{\pm} (*bc*) meson discovered in 1998 at the Tevatron Run I Ratio of $\tau^{\pm}\nu$ events from $B^{\pm} \rightarrow \tau^{\pm}\nu$ (*N_u*) and $B_c^{\pm} \rightarrow \tau^{\pm}\nu$ (*N_c*) given by:

$$\frac{N_c}{N_u} = \left| \frac{V_{cb}}{V_{ub}} \right|^2 \frac{f(b \to B_c^{\pm})}{f(b \to B^{\pm})} \left(\frac{f_{B_c}}{f_B} \right)^2 \frac{M_{B_c} \tau_{B_c}}{M_B} \frac{\tau_{B_c}}{\tau_B} \frac{\left(1 - \frac{m_\tau^2}{M_{B_c}^2} \right)^2}{\left(1 - \frac{m_\tau^2}{M_B^2} \right)^2}$$

• $f(b
ightarrow B_c^{\pm}) \sim 0.001(?)$ and $f(b
ightarrow B^{\pm}) \sim 0.38$ (transition probabilities)

• $V_{cb}(\sim 0.04) \gg V_{ub}(\sim 0.004)$ compensates for small $f(b \rightarrow B_c^{\pm})$

Magnitude of $B_c^{\pm} \rightarrow \tau^{\pm} \nu$ contribution

How large can N_c/N_u be? How does N_c affect LEP limits on $B^{\pm} \to \tau^{\pm} \nu$? Mangano/Slabospitsky 97

- N_u is known quite well (main uncertainty from f_B and V_{ub})
- Much larger uncertainty for N_c
- i) Decay constant f_{B_c} 400 $MeV < f_{B_c} < 600MeV$?

Only one (?) quenched lattice calculation: $f_{B_c} = 489 \pm 5$ MeV TWQCD Collaboration 07

ii) Transition probability $f(b \rightarrow B_c^{\pm})$

Transition probability $f(b \rightarrow B_c^{\pm})$

- $f(b \rightarrow B_c^{\pm})$ is now being measured at the Tevatron
- Can be determined from $\mathcal{R}_{\ell} = \frac{\sigma(B_c^+) \cdot \mathsf{BR}(B_c^{\pm} \to J/\psi \ell^{\pm} \nu_{\ell})}{\sigma(B^+) \cdot \mathsf{BR}(B^{\pm} \to J/\psi K^{\pm})}$
- $\sigma(B^+) \cdot \mathsf{BR}(B^\pm \to J/\psi K^\pm)$ already determined by experiment
- $B_c^{\pm} \to J/\psi \ell^{\pm} \nu_{\ell}$ is predicted by theory
- $f(b \rightarrow B_c^{\pm})$ can be extracted from \mathcal{R}_{ℓ}
- \mathcal{R}_{ℓ} is measured in two channels:
- i) $B_c^{\pm} \to J/\psi e^{\pm} \nu_e$: $\mathcal{R}_e = 0.28 \pm 0.07$ with 0.36 fb⁻¹ ii) $B_c^{\pm} \to J/\psi \mu^{\pm} \nu_{\mu}$: $\mathcal{R}_{\mu} = 0.29 \pm 0.07$ with 1 fb⁻¹

Contours of \mathcal{R}_{ℓ} in the plane of $\mathsf{BR}(B_c \to J/\psi e^+\nu_e)$ and transition probability $f(b \to B_c)$.

 $\mathcal{R}_{\ell} = 0.28$ suggests $0.004 < f(b \rightarrow B_c) < 0.005$ (larger than expected value)

Number of $\tau^{\pm}\nu$ events from $B^{\pm}/B_c^{\pm} \rightarrow \tau^{\pm}\nu$

LEP limits constrain "effective branching ratio" Number of $\tau^{\pm}\nu$ originating from $B_c^{\pm} \rightarrow \tau^{\pm}\nu$ and $B^{\pm} \rightarrow \tau^{\pm}\nu$ can be written as $\sigma_{B^{\pm}} \times BR_{eff}$ where:

$$\mathsf{BR}_{\mathsf{eff}} = \mathsf{BR}(B^{\pm} \to \tau^{\pm} \nu) \left(1 + \frac{N_c}{N_u}\right)$$

 $N_c = 0$ gives $\sigma_{B^{\pm}} \times BR(B^{\pm} \to \tau^{\pm}\nu)$

Effective $BR(B^{\pm}/B_c^{\pm} \to \tau^{\pm}\nu)$ in the plane $[f(b \to B_c^{\pm}), f_{B_c}]$

Red region ($BR_{eff} > 5.7 \times 10^{-4}$) ruled out by L3. Green region denotes $4 \times 10^{-4} < BR_{eff} < 5.7 \times 10^{-4}$

Use of LEP (L3 Collaboration) data for $B^{\pm}/B_c^{\pm} \rightarrow \tau^{\pm}\nu$

Current limit on $B^{\pm}/B_c^{\pm} \rightarrow \tau^{\pm}\nu$ set with $1.5 \times 10^6 \ Z$ bosons

- Constrains the plane $[f_{B_c}, f(b \rightarrow B_c^{\pm})]$
- Only experimental information on f_{B_c}
- L3 recorded $3.6 \times 10^6 Z$ bosons. Reanalysis might:

i) See signal for $B^{\pm}/B^{\pm}_c \to \tau^{\pm}\nu$ (first observation of $B^{\pm}_c \to \tau^{\pm}\nu$)

i) Central values of f_{B_c} (lattice) and $f(b \rightarrow B_c^{\pm})$ (Tevatron) suggest BR_{eff} > 4 × 10⁻⁴, which is reachable(?)

Prospects at Linear Collider Z peak option

- Has the option of running at the Z peak ("Giga Z option")
- Such operation would be beneficial for checking detector performance (i.e. reproducing and improving LEP1 results)
- High luminosity version of LEP1
- 10^9Z bosons in a few months (LEP1 ~ 3 × 10^6 /experiment)
- Measuring $B^{\pm}/B_c^{\pm} \rightarrow \tau^{\pm}\nu$ does not need polarised beams

- Historically, limits on $B^{\pm} \to \tau^{\pm} \nu$ from Z peak are comparable with limits from $\Upsilon(4S)$ data for similar number of Z and B^{\pm}
- CLEO limit BR $(B^{\pm} \rightarrow \tau^{\pm} \nu) < 8.4 \times 10^{-4}$ with $9.7 \times 10^{6} B^{\pm}$ • L3 limit BR $(B^{\pm} \rightarrow \tau^{\pm} \nu) < 5.7 \times 10^{-4}$ with $1.5 \times 10^{6} Z$
- Assume signal of $BR_{eff} = 4 \pm 2 \times 10^{-4}$ at L3

Error $BR(B^{\pm}/B^{\pm}_{c} \rightarrow \tau^{\pm}\nu)$	High Lum. B Factory (B mesons)	Giga Z (Z bosons)
20%	$2.2 imes 10^{9}$	$3.2 imes 10^{7}$
4%	$8.1 imes10^{10}$	$8 imes 10^8$

• Can offer precision competitive with high-luminosity B factory

Constraining $\tan\beta/m_{H^{\pm}}$ from BR_{eff} at Giga Z

- Main uncertainty in contribution of N_c to BR_{eff} will be substantially reduced by time of operation of Giga Z:
- i) f_{B_c} : precise unquenched lattice QCD calculations
- ii) Transition probability $f(b \rightarrow B_c^{\pm})$
- \rightarrow expect improved measurements from Tevatron and LHC-b

Scale factor r_H from H^{\pm} contribution almost the same Du/Jin/Yang 97 i) $r_H = [1 - m_B^2 \frac{\tan^2 \beta}{m_{H^{\pm}}^2}]^2$ for $B^{\pm} \to \tau^{\pm} \nu$ ($m_B = 5.3$ GeV) ii) $r_H = [1 - m_{B_c}^2 \frac{\tan^2 \beta}{m_{H^{\pm}}^2}]^2$ for $B_c^{\pm} \to \tau^{\pm} \nu$ ($m_{B_c} = 6.4$ GeV)

Conclusions

- $B^{\pm} \rightarrow \tau^{\pm} \nu$ has been measured at $e^+e^- B$ factories
- Important constraints on the parameter $\tan \beta / m_{H^{\pm}}$ (competitive with and complementary to direct H^{\pm} production at LHC)
- At Z peak (LEP1 and Giga Z) $B_c^{\pm} \to \tau^{\pm} \nu$ contributes to the measurement of $B^{\pm} \to \tau^{\pm} \nu$
- L3 (LEP) might see signal for $B^{\pm}/B_c^{\pm} \rightarrow \tau^{\pm}\nu$ if all data used
- Giga Z option of Linear Collider could measure $B^{\pm}/B_c^{\pm} \rightarrow \tau^{\pm}\nu$ with precision comparable to that at High-Luminosity B factories
- Giga Z would provide an additional indirect probe of $tan \beta/m_{H^{\pm}}$

- Both W^{\pm} and H^{\pm} contribution proportional to m_l but for different reasons
- Angular momentum conservation requires that both
- l^{\pm} and ν have the same helicities, $l_R^- \overline{\nu}_R$ and $l_L^+ \nu_L$
- W^- mediated diagram produces $l_L^- \overline{\nu}_R$
- $\rightarrow m_l$ helicity suppression from $l_L^- \rightarrow l_R^-$
- $|H^-$ contribution produces $l_R^- \overline{\nu}_R$.
- $ightarrow m_l$ originates from Yukawa coupling