Minimum bias and soft QCD ATLAS Results @ 0.9 and 7 TeV #### Roberto Di Nardo University & INFN Roma Tor Vergata, On behalf of the ATLAS Collaboration #### Introduction - > ATLAS at LHC is a general purpose experiment: - ➤ Main physics goal are: Higgs Boson searches, SUSY, new Heavy Bosons, extradimension... - ➤ At the LHC start, in a low luminosity regime, the properties of Minimum Bias events have been investigated, since they are crucial for understanding high-p_T physics. - ➤ Moreover, the study of identified particle is important from the physics point of view, but also to evaluate the tracking performance and calibrate the detector. - ➤ Tuning MC generators - Compare the production in proton-proton and Heavy Ion collision - Tracking reconstruction and efficiency, momentum scale - ➤ Secondary vertexing and tracking for long-lived particles - ► dE/dx validation - **➤** Alignment #### Minimum Bias Events - Soft QCD processes are unavoidable background to all collider observables (in particular jet cross-section, missing energy, isolation cuts...) - ➤ Not well understood since non-perturbative physics is involved. - ➤ Soft QCD distributions have to be used to test the phenomenological models and "tune" the Monte-Carlo event generators to give the best description of the data. - ➤ Visible effect in the tuning also at high-p_T (e.g. colour reconnection) #### **Outline** - The ATLAS experiment and the Inner Detector - Reconstruction of known particles in Minimum Bias Events - Charged particle multiplicity spectra - Underlying event measurement - Angular correlations between charged particles - New observable to probe different MB physics models ### The ATLAS Experiment ### Inner Detector and MB trigger Minimum Bias Trigger Scintillator (MBTS) - ➤ Inside the endcap calorimeters - ▶3.6m from interaction point - \triangleright Coverage 2.1< $|\eta|$ < 3.8 in 2 disks - Covers $|\eta| < 2.5$ with 3 subdetectors - ➤ Pixel detector (Silicon Modules) - 1774 modules, ~80 M channels - Resolutions: $\sim 10 \mu m (r\phi) \sim 115 \mu m (rz)$ - ➤ SCT detector (Silicon Strip) - 4088 modules, ~6.3 M channels - Resolutions ~ 17 μ m (r ϕ) ~580 μ m (rz) - \triangleright TRT detector (straw drift tubes, $|\eta| < 2$) - 176 modules, ~0.4 M channels - Intrinsic tube resolution ~130 μm (rφ) - $•e^{+/-}$ PID by detection of transition radiation γ ### Detector performances ➤ Good data/MC agreement in the comparison of the average number of silicon hits on track - ➤ Uncertainty in the detector material description in simulation → largest systematic uncertainties in the measurement - ➤ 10 % material uncertainty reflects into 3% difference in the efficiency ### Known particle reconstruction # K_{s}^{0} and Λ^{0} reconstruction >~190 μb⁻¹ of 7 TeV minimum-bias collision data compared with non-diffractive minimum bias simulation (Pythia ATLAS MC09 tune) >MC signal and background adjusted separately to match signal/background ratio in data > Pre-selection: tracks with opposite charge, p_T>100MeV, at least 2 silicon hit (Pixel +SCT) $$K_{s}^{0} \rightarrow \pi^{+}\pi^{-}$$ (c τ =2.7cm, BF~69%) ➤ Transverse Flight Distance > 4 mm >Cos(θ_k)> 0.999 Angle between momentum and flight direction $\Lambda \rightarrow p^+\pi^- + c.c.(c\tau=7.9cm, BF\sim64\%)$ ➤ Flight Distance > 30 mm > Cos(θ_{k})> 0.9998 M_{oπ} [MeV] Fitted masses and widths consistent with MC and PDG mass values # η for K_s^0 , Λ and $\overline{\Lambda}$ candidates No Correction for detector effect applied #### Candidates definitions - $> |M(K_s)-M(K_{PDG})| < 20 \text{ MeV}$ - $> |M(\Lambda)-M(\Lambda_{PDG})| < 7 \text{ MeV}$ - >MC consistent with data within 10% # Proper decay time for K_s^0 , Λ and $\bar{\Lambda}$ ➤ No Correction for detector effect applied #### **Candidates definitions** - $> |M(K_s)-M(K_{PDG})| < 20 \text{ MeV}$ - $> |M(\Lambda)-M(\Lambda_{PDG})| < 7 \text{ MeV}$ - >MC in good agreement with data - ➤ Worts in background dominated #### region for Λ and $\overline{\Lambda}$ # Not only K_s^0 and Λ Fitted masses and widths consistent with MC and PDG mass values # Charged particle multiplicity spectra #### **Dataset and Event Selection** #### The Datasets: $$\sqrt{s}=0.9 \text{ TeV}$$ $(\sim 7 \text{ µb-1})$ 360k events 4.5M tracks $$\sqrt{s}$$ =7 TeV 10M events (~190 µb-1) 210M tracks #### **The Event Selection:** - ➤ MBTS single-cell trigger in coincidence with the BPTX (beam pickup) - ≥1 Vertex reconstructed - ≥ 2 tracks + Beam Spot - ➤ No pileup (seconadry vtx with >3 tracks) #### Most inclusive **≥**≥2 good tracks $p_T > 100 \text{ MeV}; |\eta| \le 2.5$ Additional tracking algorithm at low p_T #### Negligible diffractive contribution ≥≥6 good tracks $p_T > 500 \text{ MeV}$; $|\eta| \le 2.5$ ➤ Additional tracking algorithm at low p_T ### Correction procedure > Event-wise correction for trigger and vertex efficiencies $$w_{ev}(n_{sel}^{BS}) = \frac{1}{\varepsilon_{trig}(n_{sel}^{BS})} \cdot \frac{1}{\varepsilon_{vertex}(n_{sel}^{BS})}$$ n_{sel}^{BS}: number of tracks; cuts as close to final selection as possible without a vertex ➤ Track-wise correction (e.g. tracking efficiency) Fraction of tracks out of kinematic range $$w_{ev} \big(p_T, \eta \big) = \frac{1}{\varepsilon_{trk} \big(p_T, \eta \big)} \cdot \big(1 - f_{Sec} \big(p_T, \eta \big) \big) \cdot \big(1 - f_{okr} \big(p_T, \eta \big) \big)$$ Fraction of secondaries - Takes in to account secondary contamination and tracks out of kinematic range - e.g. Track p_T<100 MeV but particle p_T>100 MeV - \triangleright N_{ch} and p_T both corrected using a Bayesian unfolding - > < p_T > vs n_{ch} \rightarrow bin-by-bin correction of average p_T and the n_{ch} migration #### **Efficiencies** Tracking efficiency from MC – systematic dominated by knowledge of material budget # $1/N_{\rm ev}dN_{\rm ch}/d\eta$ - > Different models differ in normalization but the shape are almost similar - Track multiplicity underestimated. - ➤ Very little shape variation between models - $g > n_{ch} \ge 6$, pT>500MeV measurement used in AMBT1 tune # $1/(2\pi p_T)1/N_{ev}d^2N_{ch}/d\eta dp_T$ - ➤ Measurement spans 10 orders of magnitude - Large disagreement at low p_T and high p_T - ➤ Improvement at medium p_T for AMBT1 tune # $1/N_{\rm ev}dN_{\rm ev}/dN_{\rm ch}$ - \triangleright The low n_{ch} region not well modeled by any MC - ➤ large contribution from diffraction - ➤ The peak at 10 particles well described by AMBT1 # $< p_T > vs N_{ch}$ - ➤ Best description from AMBT1 and Pythia8 - ➤ Shape at high p_T well modelled - \triangleright High sensitivity of the low n_{ch} shape linked to the different ND,SD,DD fractions # Underlying event # Underlying event - >"Underlying Event": everything else in addition the hard scattering process - MPI, ISR-FSR contributions, beam-beam remnants - ➤ The sentive region to the UE is the one perpendicular to the hard scattering (transverse region) Used the leading track to identify the leading jet - $60^{\circ} < |\Delta \varphi| < 120^{\circ}$ - > same correction for trigger, vertex and tracking efficiency as in the Minimum Bias # Angular distributions vs p_T lead - Charged particle number density for tracks other than the leading track - plot reflected wrt $\Delta \varphi = 0$ - Jet-like shape (higher tracks population in the toward and the away region)is much evident for harder leading tracks different densities and different angular distributions between data and MC ### Mulitplicity ► Density of cherged particle (p_T >500MeV | η |<2.5) as function of the leading track p_T in the transverse region increase of a factor 2 form 900 GeV to 7 TeV. Plateau value is a factor 2 larger as seen in the Minimum Bias events (due to the high p_T track selection effect: more momentum exchange and lack of diffractive contributions in events with p_T^{lead} in plateau region) ### **Angular Correlations** ### Angular correlations $\triangleright \Delta \Phi$ = difference of the azimuthal angle between the p_T-leading track and all the other non leading tracks in the event Studied the "Toward" and "Away" components (width and weight of the "Toward" and "Away" peaks) – variable sensible to differences between models \triangleright This variable has been measured in the same and in the opposite regions with respect to the leading one (in η) More particles produced in the same region "same minus opposite" $\Delta\Phi$ normalized 0.04 0.02 ATLAS Preliminary - ➤ Good consistency in central pseudorapidity region $|\eta| < 1$ - > Considering also the forward regions comes out that models poorly constrained at forward direction where reach of previous experiments limited - Same discrepancy observed @ 0.9 TeV #### **Conclusions** ➤ Spectra of charged particle measured from 100 MeV @ #### 0.9, 2.36 and 7 TeV - ➤ no model dependent correction applied (well-defined phase-space and no correction back to a particular component (e.g. NSD)) - $p_T>100 \text{ MeV}$ - ➤ Models underestimate the particle multiplicity - **>**p_T>500 MeV - ➤ Good description of the data by AMBT1 - Track based underlying event measurements have been performed by ATLAS - ➤ None of the current models can decribe accurately all the UE measurement - Can be used as input to improve de models - ➤ Angular correlations: new osservable sensible to differents models - Can be used to improve the tunings #### References **ATLAS-CONF-2010-081** #### Reconstruction of known particle @ 7 TeV K_s^0 and Λ^0 reconstruction ATLAS-CONF-2010-033 Xi, Omega, $K^*(890)$ ATLAS-CONF-2010-032 D* mesons reconstruction ATLAS-CONF-2010-034 #### Inclusive charged particle spectra @ 0.9 and 7 TeV pT>100 MeV, Nch>1, $|\eta|$ < 2.5 ATLAS-CONF-2010-046 pT>500 MeV, Nch>9, $|\eta|$ < 2.5 Phys. Lett. B 688, 1, ATLAS-CONF-2010-024 ATLAS-CONF-2010-047 (2.36 TeV) pT>500 MeV, Nch>6, $|\eta|$ < 2.5 ATLAS-CONF-2010-031 (diffraction suppressed sample, used to derive AMBT1) #### **Underlying event using tracks** Angular correlation between charged particles -Measurements probing event topologies @ 0.9 and 7TeV (pT>500 MeV) ATLAS-CONF-2010-082 ### Extra #### **ATLAS HI hot results** - ➤ The LHC heavy ion program Pb-Pb collisions → opportunity to study jet quenching at much higher jet energies than achieved at RHIC. - \triangleright Data taken since the beginning of November, $\sqrt{s_{NN}} = 2.76 \text{ TeV} 1.7 \,\mu\text{b}^{-1}$ of data used - >At this energy, NLO calulation predict high rate of jets above 100GeV in $|\eta|$ < 4.5 - Focus on the balance between pair of jets with highest E_T and $\Delta \varphi$ separation $|\varphi 1 \varphi 2| > \pi/2$ - >Jet Enegy unbalance studied in terms of asymmetry $$A_J = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}}, \Delta \phi > \frac{\pi}{2}$$ $E_{T1} > 100 \text{GeV, } E_{T2} > 25 \text{ GeV}$ - \triangleright Dijet events are expected to have A_I near zero - Deviations from gluon radiation falling outside the jet cone and instrumental effects. Histogram: MC (PYTHIA+HIJING) | open points: 7 TeV pp data filled: Pb-Pb data - Dijet asymmetry obserbed in PbPb data and not in p-p collisions - May point to an interpretation in terms of strong jet energy loss in a hot, dense medium # Backup # **Tunings** - The basic components of Pythia that require tuning are the descriptions of: - Final state radiation and hadronisation, - Initial state radiation and primordial kT, - > Underlying event, beam remnants, colour reconnection, and - Energy scaling. - **≻**Perugia0 - ▶PYTHIA Tune based on Minimum bias results from CDF and UA5. No UE data used - > CTEQ5L parton distribution functions used - > DW - >PYTHIA Tune that use CDF UE and Drell-Yan data (no Min Bias Data) - >ATLAS MC09 - ➤ PYTHIA Tune based on CDF Minnimum Bias and UE Measurements (RUN I and II) plus the D0 results on dijet angular correlations #### ATLAS data in AMBT1 | Analysis | Observable | Tuning range | |---|---|--------------| | ATLAS 0.9 TeV, minimum bias, $n_{ch} \ge 6$ | $\frac{1}{N_{\rm ev}} \cdot \frac{dN_{\rm ch}}{d\eta}$ | -2.5 – 2.5 | | ATLAS 0.9 TeV, minimum bias, $n_{ch} \ge 6$ | $\frac{1}{N_{\text{ev}}} \cdot \frac{1}{2\pi p_{\text{T}}} \cdot \frac{d^2 N_{\text{ch}}}{d\eta dp_{\text{T}}}$ | ≥ 5.0 | | ATLAS 0.9 TeV, minimum bias, $n_{ch} \ge 6$ | $\frac{1}{N_{\rm ev}} \cdot \frac{{\rm d}N_{\rm ev}}{{\rm d}n_{\rm ch}}$ | ≥ 20 | | ATLAS 0.9 TeV, minimum bias, $n_{ch} \ge 6$ | $\langle p_{\rm T} \rangle$ vs. $n_{\rm ch}$ | ≥ 10 | | ATLAS 0.9 TeV, UE in minimum bias | $\langle \frac{d^2 N_{\text{chg}}}{d\eta d\phi} \rangle$ (towards) | ≥ 5.5 GeV | | ATLAS 0.9 TeV, UE in minimum bias | $\langle \frac{d^2 N_{\text{chg}}}{d\eta d\phi} \rangle$ (transverse) | ≥ 5.5 GeV | | ATLAS 0.9 TeV, UE in minimum bias | $\langle \frac{d^2 N_{\text{chg}}}{d\eta d\phi} \rangle$ (away) | ≥ 5.5 GeV | | ATLAS 0.9 TeV, UE in minimum bias | $\langle \frac{d^2 \sum p_{\rm T}}{d\eta d\phi} \rangle$ (towards) | ≥ 5.5 GeV | | ATLAS 0.9 TeV, UE in minimum bias | $\langle \frac{d^2 \sum p_{\rm T}}{d\eta d\phi} \rangle$ (transverse) | ≥ 5.5 GeV | | ATLAS 0.9 TeV, UE in minimum bias | $\langle \frac{d^2 \sum p_{\rm T}}{d\eta d\phi} \rangle$ (away) | ≥ 5.5 GeV | | ATLAS 7 TeV, minimum bias, $n_{ch} \ge 6$ | $\frac{1}{N_{\rm ev}} \cdot \frac{dN_{\rm ch}}{d\eta}$ | -2.5 - 2.5 | | ATLAS 7 TeV, minimum bias, $n_{ch} \ge 6$ | $\frac{1}{N_{\rm ev}} \cdot \frac{1}{2\pi p_{\rm T}} \cdot \frac{{\rm d}^2 N_{\rm ch}}{{\rm d}\eta {\rm d}p_{\rm T}}$ | ≥ 5.0 | | ATLAS 7 TeV, minimum bias, $n_{ch} \ge 6$ | $\frac{1}{N_{\rm ev}} \cdot \frac{{\rm d}N_{\rm ev}}{{\rm d}n_{\rm ch}}$ | ≥ 40 | | ATLAS 7 TeV, minimum bias, $n_{ch} \ge 6$ | $\langle p_{\rm T} \rangle$ vs. $n_{\rm ch}$ | ≥ 10 | | ATLAS 7 TeV, UE in minimum bias | $\langle \frac{d^2 N_{\text{chg}}}{d\eta d\phi} \rangle$ (towards) | ≥ 10 GeV | | ATLAS 7 TeV, UE in minimum bias | $\langle \frac{d^2 N_{\text{chg}}}{d \eta d \phi} \rangle$ (transverse) | ≥ 10 GeV | | ATLAS 7 TeV, UE in minimum bias | $\langle \frac{d^2 N_{\text{chg}}}{d\eta d\phi} \rangle$ (away) | ≥ 10 GeV | | ATLAS 7 TeV, UE in minimum bias | $\langle \frac{d^2 \sum p_{\rm T}}{d\eta d\phi} \rangle$ (towards) | ≥ 10 GeV | | ATLAS 7 TeV, UE in minimum bias | $\langle \frac{d^2 \sum p_{\rm T}}{d\eta d\phi} \rangle$ (transverse) | ≥ 10 GeV | | ATLAS 7 TeV, UE in minimum bias | $\langle \frac{d^2 \sum p_{\rm T}}{d\eta d\phi} \rangle$ (away) | ≥ 10 GeV | #### **Tevatron data in AMBT1** CDF Run I underlying event in dijet events[13] (leading jet analysis) $N_{\rm ch}$ density vs leading jet p_T (transverse), JET20 $N_{\rm ch}$ density vs leading jet p_T (toward), JET20 $N_{\rm ch}$ density vs leading jet p_T (away), JET20 $\sum p_T$ density vs leading jet p_T (transverse), JET20 $\sum p_T$ density vs leading jet p_T (toward), JET20 $\sum p_T$ density vs leading jet p_T (away), JET20 $N_{\rm ch}$ density vs leading jet p_T (transverse), min bias N_{ch} density vs leading jet p_T (toward), min bias $N_{\rm ch}$ density vs leading jet p_T (away), min bias $\sum p_T$ density vs leading jet p_T (transverse), min bias $\sum p_T$ density vs leading jet p_T (toward), min bias $\sum p_T$ density vs leading jet p_T (away), min bias p_T distribution (transverse), leading $p_T > 5$ GeV p_T distribution (transverse), leading $p_T > 30$ GeV D0 Run II dijet angular correlations[15] Dijet azimuthal angle, $p_T^{\text{max}} \in [75, 100]$ GeV Dijet azimuthal angle, $p_T^{\text{max}} \in [100, 130]$ GeV Dijet azimuthal angle, $p_T^{\text{max}} \in [130, 180]$ GeV Dijet azimuthal angle, $p_T^{\text{max}} > 180 \text{ GeV}$ CDF Run II minimum bias[16] $\langle p_T \rangle$ of charged particles vs. N_{ch} , $\sqrt{s} = 1960 \,\text{GeV}$ CDF Run I Z $p_T[17]$ $\frac{d\sigma}{dp_T^2}$, $\sqrt{s} = 1800 \,\text{GeV}$ CDF Run I underlying event in MIN/MAX-cones[14] ("MIN-MAX" analysis) $\langle p_T^{\text{max}} \rangle$ vs. E_T^{lead} , $\sqrt{s} = 1800 \,\text{GeV}$ $\langle p_T^{\text{min}} \rangle$ vs. E_T^{lead} , $\sqrt{s} = 1800 \,\text{GeV}$ $\langle p_T^{\text{diff}} \rangle$ vs. E_T^{lead} , $\sqrt{s} = 1800 \,\text{GeV}$ $\langle N_{\text{max}} \rangle$ vs. E_T^{lead} , $\sqrt{s} = 1800 \,\text{GeV}$ $\langle N_{\text{min}} \rangle$ vs. E_T^{lead} , $\sqrt{s} = 1800 \,\text{GeV}$ Swiss Cheese p_T^{sum} vs. E_T^{lead} (2 jets), $\sqrt{s} = 1800 \,\text{GeV}$ $\langle p_T^{\text{max}} \rangle$ vs. E_T^{lead} , $\sqrt{s} = 630 \,\text{GeV}$ $\langle p_T^{\text{min}} \rangle$ vs. E_T^{lead} , $\sqrt{s} = 630 \,\text{GeV}$ $\langle p_T^{\text{diff}} \rangle$ vs. E_T^{lead} , $\sqrt{s} = 630 \,\text{GeV}$ Swiss Cheese p_T^{sum} vs. E_T^{lead} (2 jets), \sqrt{s} = 630 GeV