

NEW QCD RESULTS FROM CMS

Luigi Benussi Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Frascati On behalf of CMS Collaboration

LC10 Workshop New Physics: complementarities between direct and indirect searches Laboratori Nazionali di Frascati - Italy 30 November - 3 December 2010

OUTLINE

CMS detector overview (very fast!)

Bulk properties

- Transverse momentum and pseudo-rapidity
- Charged particle multiplicities
- Two-particle correlations
- Underlying event measurement
- Inclusive jet studies
 - Measurement of the Inclusive Jet Cross
 - Hadronic Event Shapes
 - Jet Transverse Structure
 - Measurement of the 3-jet to 2-jet Cross Section Ratio
- Conclusions

L. Benussi

LC10 Workshop Frascati

CMS DETECTOR OVERVIEW

CHARGED PARTICLE PSEUDO-RAPIDITY DISTRIBUTIONS

Phys. Rev. Lett. : 105 (2010) , pp. 022002

- Events reconstructed using the silicon pixel and strip tracker
- inelastic non-single-diffractive (NDS) interactions event selected
- The charged particle multiplicity (dN_{ch}/dη) distribution was calculated as the weighted average of the following three different reconstruction methods
 - Pixel hits, Pixel hit pairs, Reconstructed tracks
- The measurement at $\sqrt{s} = 0.9$ TeV is in agreement with the previous measurements.

L. Benussi

LC10 Workshop Frascati

CHARGED HADRON PT SPECTRA

PAS :QCD-10-06

Events reconstructed using the silicon pixel and strip tracker in range $|\eta|$ < 2.4

- Charged-hadron yield (NSD) vs P_{T} data have systematics errors smaller that symbols!
- The average transverse momentum of charged hadrons was obtained from the fits of the transverse-momentum spectrum
- CMS data follow, with previous experiment data, a quadratic function of ln(s) [Nucl. Phys. B335]

L. Benussi

CMS

LC10 Workshop Frascati

- Multiplicity (n) is measured by counting the number of tracks associated with primary vertex
- results shown needing to improve (tuning of) models
- so far no model is able to describe simultaneously multiplicity and p_T distributions over whole range and at different \sqrt{s}

Wednesday, December 1, 2010

PAS :QCD-10-04

TWO-PARTICLE CORRELATIONS

- Two particle angular correlation (R_N) is obtained using the charged tracks with p_T > 0.5 GeV/c
- Signal distribution (S_N) is obtained from the tracks with in the same event
- Background distribution (B_N) is obtained using the tracks from different events (mixing).

$$S_N(\Delta\eta,\Delta\phi) = \frac{1}{N(N-1)} \frac{d^2 N^{\text{signal}}}{d\Delta\eta d\Delta\phi}$$

$$B_N(\Delta\eta,\Delta\phi) = \frac{1}{N^2} \frac{d^2 N^{\text{mixed}}}{d\Delta\eta d\Delta\phi}$$

LC10 Workshop Frascati

Wednesday, December 1, 2010

TWO-PARTICLE CORRELATIONS

PYTHIA describes the correlation data poorly both K_{eff} and decay width δ

Wednesday, December 1, 2010

L. Benussi

10⁴

PYTHIA p+p, default

10²

PAS: QCD-10-02

 10^{3}

LC10 Workshop Frascati

√s (GeV)

PYTHIA p+p, D6T

TWO-PARTICLE CORRELATIONS

2-D two-particle correlation functions for 7 TeV pp minimum bias events (a and b) and for high multiplicity track events (N>110) (c and d). The sharp near-side peak from jet correlations is cut off in order to better illustrate the structure outside that

region. Pronounced structure at large $\delta\eta$ around $\delta\phi$ ~0

LC10 Workshop Frascati

UNDERLYING EVENT (UE) STUDIES

- Clusters of tracks, "track jet", with the largest p_T are called the leading object. These are expected to reflect the direction of the parton in the hard scattering.
- Three topological directions defined are
 - Towards , Away, Transverse
- Transverse region is expected to be sensitive to underlying event
- Main observables: charged multiplicity density (dN_{ch}/d η d ϕ) and energy density Σ p_T/d η d ϕ
- A good description of UE properties is crucial fro precision measurements of SM processes and the search of new physics at LHC
 PAS QCD-10-001

. Benussi

LC10 Workshop Frascati

UE: DENSITIES IN TRANSVERSE REGIONS

Fast rise for $p_T < 8$ GeV/c (4 GeV/c), attributed mainly to the increase of MPI activity, followed by a Plateau-like region with \approx constant average number of selected particles and a slow increase of $\sum p_T$, in a saturation regime.

Increase of the activity with \sqrt{s} also corroborates MPIs (growth with PDFs).

• Poor description of the rise. P0 has the worst shape. CW underestimates the plateau regions. D6T, with slower energy dependency of the p_T cut-off, overestimates the plateau regions.

PAS QCD-10-001

LC10 Workshop Frascati

L. Benussi

UE: PARTICLE DENSITIES IN TRANSVERSE REGION

- Normalized distributions for multiplicity, Σp_T and p_T are presented for leading track jet of $p_T > 3 \& 20 \text{ GeV/c}$
- The distributions get harder upon on the selection of harder scale indicating the increase in the UE as the hard scale increases
- The observation of 10 GeV/c in p_T indicates the presence of hard component in the transverse region
 PAS QCD-10-001

L. Benussi

LC10 Workshop Frascati

INCLUSIVE JET CROSS-SECTION

- Events are collected from a combination of Minimum Bias and jet triggers.

- Inclusive jet cross section uses ansatz unfolding to get to the particle level

- Main systematics for inclusive jet cross section, as for most other jet analyses: jet energy scale (5%), jet resolutions (10%) and luminosity (11%)

Inclusive jet p_T spectra are in good agreement with NLO theory

LC10 Workshop Frascati

HADRONIC EVENT SHAPES

• Event shapes provide geometric information about energy flow in hadronic events

- Essential for tuning parton shower and non-perturbative components of Monte Carlo event generators
- Event shapes are less sensitive to jet reconstruction and jet energy scale and experimental resolution
- The event shape distributions from PYTHIA 6 and HERWIG++ show satisfactory agreement with the data, while discrepancies are found between the data and predictions from ALPGEN, MadGraph and PYTHIA 8.

PAS QCD-10-013

LC10 Workshop Frascati

. Benussi

JETTRANSVERSE SHAPE

- Jet transverse shapes probe transition between hard pQCD and soft gluon radiation
- Good agreement between the data and theoretical models is observed
 - At low jet transverse momentum (20< p_T<30 GeV) the predicted transverse jet shape as measured from charged particles differs slightly from the measured data, with Pythia tune D6T predicting too narrow and Herwig predicting too broad jets.

PAS QCD-10-014

LC10 Workshop Frascati

Wednesday, December 1, 2010

Benussi

DI-JET MASS DISTRIBUTION

• Search for narrow resonances in di-jet final states. Sensitive to coupling of any new massive object to quarks and gluons.

 95% CL mass limits String resonances >2.1TeV, Excited quarks >1.14TeV Axigluons/Colorons >1.06TeV, E6 Diquarks>0.58TeV. e

L. Benussi

LC10 Workshop Frascati

• Systematic due to jet energy correction and luminosity is minimal in the ratios

- The overall multiplicative correction factor to the data is within $\pm 5\%$ of unity
- The ratio plateaus at value of about 0.8 in agreement with predictions of PYTHIA and MadGraph MC calculations

CONCLUSIONS

- The CMS experiment at the LHC performs extremely well: has recorded ≈50 pb⁻¹ (pp) of data and will continue recording more data next year.
- Less than 6 months after start-up at 7 TeV, with 3 pb⁻¹ in hand there is already an amazing plethora of results
- QCD studies progressing well on all fronts (high and low-pt)
- Starting to make comparisons with theoretical predictions
- Stay tuned for more updates and new results....

LC10 Workshop Frascati

References: Gateway to collection of all CMS Results: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults</u>

- PAS QCD-09-10 : "Transverse momentum and pseudo-rapidity distributions of charged hadrons in proton-proton collisions at SQRT(s)=0.9 and 2.36 TeV"
- PAS QCD-10-06 : "Transverse-momentum and pseudo-rapidity distributions of charged hadrons in pp collisions at sqrt(s) = TeV"
- PAS QCD-10-04 : "Charged particle multiplicities at sqrt(s)=0.9, 2.36 and 7 TeV"
- PAS QCD-10-02 : "Two-particle correlations and cluster properties from two-particle angular correlations in p+p collisions at sqrt(s) = 0.9, 2.36TeV and 7 TeV"
- PAS QCD-10-011 : "Measurement of the Inclusive Jet Cross Section in pp Collisions at 7 TeV"
- PAS QCD-10-013 : "Hadronic Event Shapes in pp Collisions at 7 TeV"
- PAS QCD-10-014 : "Jet Transverse Structure and Momentum Distribution in pp Collisions at 7 TeV"
- PAS QCD-10-012 : "Measurement of the 3-jet to 2-jet Cross Section Ratio in pp Collisions at sqrt(s) = 7 TeV"
- PAS QCD-10-001 & CERN-PH-EP/2010-014, submitted to EPJC: "First Measurement of the Underlying Event Activity at the LHC with $\sqrt{s} = 0.9 \text{ TeV}$ ".
- PAS QCD-10-010: "Measurement of the Underlying Event Activity at the LHC with $\sqrt{s} = 7$ TeV and Comparison with $\sqrt{s} = 0.9$ TeV".
- PAS QCD-10-005: "Measurement of the Underlying Event Activity with the Jet Area/Median Approach at 0.9 TeV".

L. Benussi

LC10 Workshop Frascati