
Progress in Perturbative QCD:
Tools & Results @ NLO

Pierpaolo Mastrolia
Centro Enrico Fermi, Roma
Dip. di Fisica, Universita’ di Salerno
INFN, Napoli

LC10 - INFN LNF - 02.12.2010







LC Physics
source: G. Heinrich



Outline

Motivation and State-of-the art

Unitarity-based Methods vs Theory of  Complex Functions

Analytic Techniques 

Seminumerical Tools

SAMURAI
a tool for the seminumerical evaluation of  one-loop amplitudes

Conclusion



Why NLO ?

Less Sensitivity to unphysical input scales (renormalization & factorization)
first predictive normalization of  observables at NLO
more accurate estimates of  backgrounds to new-physics
confidence on cross-sections for precision measurements

More realistic process modeling
initial state radiation
jet clustering
richer virtuality

Crossing path with other techniques
matching with resummed calculations
NLO parton showers



Where NLO ?

Front-line in Theoretical Particle Physics

Hard Interactions of Quarks and Gluons: a Primer for LHC Physics 60

Figure 43. Schematic cartoon of a 2 → 2 hard scattering event.

The cutoff, pTmin, is the main free parameter of the model and basically corresponds
to an inverse colour screening distance. A tuning of the PYTHIA underlying event

parameters (Tune A) basically succeeds in describing most of the global event properties

in events at the Tevatron. With the new version of PYTHIA (version 6.4) [85, 16], a

new model for the underlying event is available, similar in spirit to the old multiple

parton interaction model, but with a more sophisticated treatment of colour, flavour

and momentum correlations in the remnants.

5.3. Inclusive jet production

It is useful to consider the measurement of inclusive jet production at the Tevatron as

(1) it probes the highest transverse momentum range accessible at the Tevatron, (2)

it has a large impact on global pdf analyses, and (3) many of the subtleties regarding
measurements with jets in the final state and the use of jet algorithms come into play.

As shown in Figure 43, a dijet event at a hadron-hadron collider consists of a hard

collision of two incoming partons (with possible gluon radiation from both the incoming

and outgoing legs) along with softer interactions from the remaining partons in the

colliding hadrons (“the underlying event energy”).

The inclusive jet cross section measured by the CDF Collaboration in Run 2 is
shown in Figure 44, as a function of the jet transverse momentum [130]. Due to the

higher statistics compared to Run 1, and the higher centre-of-mass energy, the reach in

transverse momentum has increased by approximately 150 GeV. The measurement uses

the midpoint cone algorithm with a cone radius of 0.7. As discussed in Section 3.6, the

midpoint algorithm places additional seeds (directions for jet cones) between stable cones

having a separation of less than twice the size of the clustering cones. The midpoint
algorithm uses four-vector kinematics for clustering individual partons, particles or

energies in calorimeter towers, and jets are described using rapidity (y) and transverse

Needs of NLO Corrections

• Front-line in Theoretical Particle Physics

@ LHC Phenomenology

H H H

H

Signals:

• Decays: H →VV (V = !,W,Z)
• PP→ H+0,1,2 jets (Gluon Fusion)

• PP→ H+2 jets (Weak Boson Fusion)

• PP→ H+ tt̄

• PP→ H+W,Z

Backgrounds:

• PP→ tt̄+0,1,2 jets
• PP→VV +0,1,2 jets
• PP→V +0,1,2,3 jets
• PP→VVV +0,1,2,3 jets
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Where NLO ?Needs of NLO Corrections

• Front-line in Theoretical Particle Physics

@ LHC Phenomenology

@ QFT Stucture

- ElectroWeak Symmetry Breaking: Higgs mechanism

- Beyond the Standard Model (SuSy, Dark Matter, . . . )

- Unveiling the Iterative Structure of Scattering Amplitudes in gauge-Theory

=
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Front-line in Theoretical Particle Physics

Anastasiou, Bern, Dixon, Kosower
Bern, Dixon, Smirnov; 
Bern, Czakon,Dixon, Kosower;
Beisar, Eden, Staudacher;
Drummond, Korchemsky, Sokatchev;
Brandhuber, Heslop, Travaglini;
Alday, Maldacena;
Roiban, Spradlin, Volovich;
....



Where NLO ?Needs of NLO Corrections

• Front-line in Theoretical Particle Physics

@ LHC Phenomenology

@ QFT Stucture

- ElectroWeak Symmetry Breaking: Higgs mechanism

- Beyond the Standard Model (SuSy, Dark Matter, . . . )

- Unveiling the Iterative Structure of Scattering Amplitudes in gauge-Theory

- Exploring the Finiteness of Supergravity

Gravity Gauge Theory Gauge Theory

= ×
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Front-line in Theoretical Particle Physics

Bern, Dixon, Kosower, Perlestein, Rozowski, Roiban;
Bern, Bjerrum-Borh, Dunbar, Ita, Perkins, Risager; 
Chalmers; Green, Vanhove, Russo;
Badger, Bjerrum-Borh, Vanhove,
Bern, Carrasco, Johanson;
Arkani-Hamed, Cachazo, Kaplan;
....



Recent Progress
• Recent Progress

! 2→ 4@ NLO

• pp→ tTbB [Bredenstein, Denner, Dittmaier, Pozzorini]

[Bevilacqua, Czakon, Papadopoulos, Worek]

• pp→ tT +2jets [Bevilacqua, Czakon, Papadopoulos, Worek]

• pp→ bBbB [Binoth, Greiner, Guffanti, Reuter, Guillet, T. Reiter]

• pp→W +3jets [Berger, Bern Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre]

[Ellis, Zanderighi, Melnikov]

• pp→ Z+3jets [Berger, Bern Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre]

• pp→W+W+ +2jets [Melia, Melnikov, Rontsch, Zanderighi]

! 1→ 5@ NLO

• e+e− → 5jets [Frederix, Frixione, Melnikov, Zanderighi]

! 2→ 5@ NLO

• pp→W +4jets [Berger, Bern Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre]

!... many 2→ 3 became available/refined

• pp→VV +1jet • pp→V +bB • pp→ tT +1jet • pp→VVV • e+e− → µ+µ−! • pp→H+2jet
[Kallweit, Uwer, Campbell, Binoth, Karg, Kauer, Sanguinetti, Ciccolini, Badger, Glover, P.M., Williams, Risager, Sofianatos,

Lazopoulos, Petriello, Campanario, Hankele, Zeppenfeld, Ossola, Pittau, Wackeroth, Reina, Weinzierl, Schultze, Actis,

Tramontano, ... ]

Pierpaolo Mastrolia - Unitarity & Anayticity of Scattering Amplitudes, 11

• Recent Progress

! 2→ 4@ NLO

• pp→ tTbB [Bredenstein, Denner, Dittmaier, Pozzorini]

[Bevilacqua, Czakon, Papadopoulos, Worek]

• pp→ tT +2jets [Bevilacqua, Czakon, Papadopoulos, Worek]

• pp→ bBbB [Binoth, Greiner, Guffanti, Reuter, Guillet, T. Reiter]

• pp→W +3jets [Berger, Bern Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre]

[Ellis, Zanderighi, Melnikov]

• pp→ Z+3jets [Berger, Bern Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre]

• pp→W+W+ +2jets [Melia, Melnikov, Rontsch, Zanderighi]

! 1→ 5@ NLO

• e+e− → 5jets [Frederix, Frixione, Melnikov, Zanderighi]

! 2→ 5@ NLO

• pp→W +4jets [Berger, Bern Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre]

!... many 2→ 3 became available/refined

• pp→VV +1jet • pp→V +bB • pp→ tT +1jet • pp→VVV • e+e− → µ+µ−! • pp→H+2jet
[Kallweit, Uwer, Campbell, Binoth, Karg, Kauer, Sanguinetti, Ciccolini, Badger, Glover, P.M., Williams, Risager, Sofianatos,

Lazopoulos, Petriello, Campanario, Hankele, Zeppenfeld, Ossola, Pittau, Wackeroth, Reina, Weinzierl, Schultze, Actis,

Tramontano, ... ]

Pierpaolo Mastrolia - Unitarity & Anayticity of Scattering Amplitudes, 11

• Recent Progress

! 2→ 4@ NLO

• pp→ tTbB [Bredenstein, Denner, Dittmaier, Pozzorini]

[Bevilacqua, Czakon, Papadopoulos, Worek]

• pp→ tT +2jets [Bevilacqua, Czakon, Papadopoulos, Worek]

• pp→ bBbB [Binoth, Greiner, Guffanti, Reuter, Guillet, T. Reiter]

• pp→W +3jets [Berger, Bern Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre]

[Ellis, Zanderighi, Melnikov]

• pp→ Z+3jets [Berger, Bern Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre]

• pp→W+W+ +2jets [Melia, Melnikov, Rontsch, Zanderighi]

! 1→ 5@ NLO

• e+e− → 5jets [Frederix, Frixione, Melnikov, Zanderighi]

! 2→ 5@ NLO

• pp→W +4jets [Berger, Bern Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre]

!... many 2→ 3 became available/refined

• pp→VV +1jet • pp→V +bB • pp→ tT +1jet • pp→VVV • e+e− → µ+µ−! • pp→H+2jet
[Kallweit, Uwer, Campbell, Binoth, Karg, Kauer, Sanguinetti, Ciccolini, Badger, Glover, P.M., Williams, Risager, Sofianatos,

Lazopoulos, Petriello, Campanario, Hankele, Zeppenfeld, Ossola, Pittau, Wackeroth, Reina, Weinzierl, Schultze, Actis,

Tramontano, ... ]

Pierpaolo Mastrolia - Unitarity & Anayticity of Scattering Amplitudes, 11

• Recent Progress

! 2→ 4@ NLO

• pp→ tTbB [Bredenstein, Denner, Dittmaier, Pozzorini]

[Bevilacqua, Czakon, Papadopoulos, Worek]

• pp→ tT +2jets [Bevilacqua, Czakon, Papadopoulos, Worek]

• pp→ bBbB [Binoth, Greiner, Guffanti, Reuter, Guillet, T. Reiter]

• pp→W +3jets [Berger, Bern Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre]

[Ellis, Zanderighi, Melnikov]

• pp→ Z+3jets [Berger, Bern Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre]

• pp→W+W+ +2jets [Melia, Melnikov, Rontsch, Zanderighi]

! 1→ 5@ NLO

• e+e− → 5jets [Frederix, Frixione, Melnikov, Zanderighi]

! 2→ 5@ NLO

• pp→W +4jets [Berger, Bern Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre]

!... many 2→ 3 became available/refined

• pp→VV +1jet • pp→V +bB • pp→ tT +1jet • pp→VVV • e+e− → µ+µ−! • pp→H+2jet
[Kallweit, Uwer, Campbell, Binoth, Karg, Kauer, Sanguinetti, Ciccolini, Badger, Glover, P.M., Williams, Risager, Sofianatos,

Lazopoulos, Petriello, Campanario, Hankele, Zeppenfeld, Ossola, Pittau, Wackeroth, Reina, Weinzierl, Schultze, Actis,

Tramontano, ... ]

Pierpaolo Mastrolia - Unitarity & Anayticity of Scattering Amplitudes, 11

• Recent Progress

! 2→ 4@ NLO

• pp→ tTbB [Bredenstein, Denner, Dittmaier, Pozzorini]

[Bevilacqua, Czakon, Papadopoulos, Worek]

• pp→ tT +2jets [Bevilacqua, Czakon, Papadopoulos, Worek]

• pp→ bBbB [Binoth, Greiner, Guffanti, Reuter, Guillet, T. Reiter]

• pp→W +3jets [Berger, Bern Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre]

[Ellis, Zanderighi, Melnikov]

• pp→ Z+3jets [Berger, Bern Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre]

• pp→W+W+ +2jets [Melia, Melnikov, Rontsch, Zanderighi]

! 1→ 5@ NLO

• e+e− → 5jets [Frederix, Frixione, Melnikov, Zanderighi]

! 2→ 5@ NLO

• pp→W +4jets [Berger, Bern Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre]

!... many 2→ 3 became available/refined

• pp→VV +1jet • pp→V +bB • pp→ tT +1jet • pp→VVV • e+e− → µ+µ−! • pp→H+2jet
[Kallweit, Uwer, Campbell, Binoth, Karg, Kauer, Sanguinetti, Ciccolini, Badger, Glover, P.M., Williams, Risager, Sofianatos,

Lazopoulos, Petriello, Campanario, Hankele, Zeppenfeld, Ossola, Pittau, Wackeroth, Reina, Weinzierl, Schultze, Actis,

Tramontano, ... ]

Pierpaolo Mastrolia - Unitarity & Anayticity of Scattering Amplitudes, 11

• Recent Progress

! 2→ 4@ NLO

• pp→ tTbB [Bredenstein, Denner, Dittmaier, Pozzorini]

[Bevilacqua, Czakon, Papadopoulos, Worek]

• pp→ tT +2jets [Bevilacqua, Czakon, Papadopoulos, Worek]

• pp→ bBbB (quark-initiated) [Binoth, Greiner, Guffanti, Reuter, Guillet, T. Reiter]

• pp→W +3jets [Berger, Bern Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre]

[Ellis, Zanderighi, Melnikov]

• pp→ Z+3jets [Berger, Bern Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre]

• pp→W+W+ +2jets [Melia, Melnikov, Rontsch, Zanderighi]

! 1→ 5@ NLO

• e+e− → 5jets [Frederix, Frixione, Melnikov, Zanderighi]

! 2→ 5@ NLO

• pp→W +4jets [Berger, Bern Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre]

!... many 2→ 3 became available/refined

• pp→VV +1jet • pp→V +bB • pp→ tT +1jet • pp→VVV • e+e− → µ+µ−! • pp→H+2jet
[Kallweit, Uwer, Campbell, Binoth, Karg, Kauer, Sanguinetti, Ciccolini, Badger, Glover, P.M., Williams, Risager, Sofianatos,

Lazopoulos, Petriello, Campanario, Hankele, Zeppenfeld, Ossola, Pittau, Wackeroth, Reina, Weinzierl, Schultze, Actis,

Tramontano, ... ]

Pierpaolo Mastrolia - Unitarity & Anayticity of Scattering Amplitudes, 11

• Recent Progress

! 2→ 4@ NLO

• pp→ tTbB [Bredenstein, Denner, Dittmaier, Pozzorini]

[Bevilacqua, Czakon, Papadopoulos, Worek]

• pp→ tT +2jets [Bevilacqua, Czakon, Papadopoulos, Worek]

• pp→ bBbB (quark-initiated) [Binoth, Greiner, Guffanti, Reuter, Guillet, T. Reiter]

• pp→W +3jets [Berger, Bern Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre]

[Ellis, Zanderighi, Melnikov]

• pp→ Z+3jets [Berger, Bern Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre]

• pp→W+W+ +2jets [Melia, Melnikov, Rontsch, Zanderighi]

! 1→ 5@ NLO

• e+e− → 5jets [Frederix, Frixione, Melnikov, Zanderighi]

! 2→ 5@ NLO

• pp→W +4jets [Berger, Bern Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre]

!... many 2→ 3 became available/refined

• pp→VV +1jet • pp→V +bB • pp→ tT +1jet • pp→VVV • e+e− → µ+µ−! • pp→H+2jet
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Actis, Van Hameren, Tramontano, ... ]
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• Recent Progress (cont’d)

! some analytic results

• gg→ gggg (QCD-virtual) Bern, Dixon, Dunbar, Kosower ’96; ... (we are here) ...; Xiao, Yang, Zhu ’08

• !!→ !!!! (QED-virtual) Mahlon’ 96; Binoth, Gehrmann, Heinrich, P.M. ’07

• pp→ H+2jets (QCD-Virtual)
[Badger, Berger, Campbell, Del Duca, Dixon, Ellis, Glover, Risager, Sofianatos, Williams, Zanderighi, P.M.]

• ud̄ →WbB (massive b-pair) [Badger, Campbell, Ellis]
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High sensitivity to scale choice
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⇒ 78% uncertainty

ATLAS scale choice µ0 = Ethr/2 = mt + mbb̄/2

• tt̄H signal receives small K-factor (1.2)

• tt̄bb̄: large K-factor and scale dep. (K = 1.67 ± 34%)

QCD dynamics of tt̄H/tt̄bb̄ completely different

• various channels involving g → bb̄ splittings

• tt̄bb̄ is a multi-channel multi-scale process
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FIG. 2: Scale dependence of the total cross section for pp →

tt̄jj +X at the LHC with µR = µF = ξ · µ0 where µ0 = mt.
The blue dotted curve corresponds to the LO, the red solid to
the NLO result whereas the green dashed to the NLO result
with a jet veto of 50 GeV.

tive transverse momenta. Clearly, not only will it be neg-
ative, but it will also have to grow more negative with
diminishing scale (since this is almost entirely governed
by the behavior of the strong coupling constant alone).
At this point it is difficult to decide whether a jet veto
will or will not be necessary for the complete Higgs bo-
son analysis. What we can give is the lower bound on the
corrections, assuming that a jet veto of less than pT = 50
GeV is likely to endanger the stability of the perturba-
tive expansion. The total cross section with a jet veto of
50 GeV is

σNLO
pp→tt̄jj+X (pT,X < 50 GeV) = (76.58± 0.17) pb ,

with a scale variation of -54% and -0.3%, see Fig. 2. The
plots show that choosing a higher scale in the case of
the jet veto, would lead to a result with virtually no
scale dependence. This should be considered as severely
underestimating the error.
While the size of the corrections to the total cross sec-

tion is certainly interesting, it is crucial to study the cor-
rections to the distributions. The most important for us
is the invariant mass of the two tagging (highest pT ) jets,
since this is the observable entering Higgs boson studies.
We plot the LO and NLO results in Fig. 3. While we no-
tice a long tail, we keep the dependence only in a modest
range up to 400 GeV due to our phenomenological moti-
vation. The distribution starts above about 45 GeV due
to the ∆R and pT cuts, and shows tiny corrections up to
at least 200 GeV, which means that the size of the cor-
rections to the cross section is transmitted to the most
relevant distribution.
Of course, there are observables showing much larger

effects. The classic example is the transverse jet mo-
mentum distribution at high pT . We illustrate the
phenomenon in Figs. 4 and 5, which demonstrate the
strongly altered shapes in the cases of the hardest and

FIG. 3: Distribution of the invariant mass mjj of the first
and the second hardest jet for pp → tt̄jj+X at the LHC. The
red solid line refers to the NLO result while the blue dotted
line to the LO one.

FIG. 4: Distribution in the transverse momentum pTj of the
1st hardest jet for pp → tt̄jj +X at the LHC. The red solid
line refers to the NLO result while the blue dotted line to the
LO one.

second hardest jets. It is well known that this kind of
corrections can only be correctly described by higher or-
der calculations. On the other hand, the behavior at low
pT is certainly further altered by soft-collinear emissions,
which are best simulated by parton showers. With our
lower cut of pT,min = 50 GeV, we expect to be mostly
in the safe range, where fixed order perturbation theory
does not break down.
While the above comments conclude our analysis of

tt̄jj, we would like to make a few statements about the
process with only one jet, tt̄j. While preparing our cal-

2

detector bounds). We note that the kT algorithm spec-
ifies not only which partons are combined into jets, but
also the momentum of the resulting jets. In our simula-
tion, we assume that the four-momenta of the partons are
added. We will comment on the importance of this point,
when we compare with the tt̄j calculation of [10, 11]. We
further assume that the jets are separated by ∆R = 1
and have |yjet| < 4.5. Their transverse momentum is re-
quired to be larger than 50 GeV. It is mostly in ∆R and
pT,min that the present setup is different from that used
in the case of tt̄bb̄ [5, 6]. Here, we use a higher pT cut
similarly to the tt̄j case of [11]. The additional separa-
tion in ∆R is only used to demonstrate the flexibility of
our tools, but is believed to bear no impact on the final
conclusions. Notice, that our jets are allowed to contain
b quarks, and therefore also the final state tt̄bb̄. This is
irrelevant, since we know that this contribution is tiny
and can be simply subtracted from our results (the sum-
mation is incoherent). Finally, we note that the third jet,
which stems from real radiation, is not restricted. Nev-
ertheless, we will also study the impact of a jet veto with
pT = 50 GeV.
The production of jets in hadronic collisions can be

decomposed into many processes at the parton level. In
Tab. I, we summarize the LO contributions of different
subclasses. These were obtained with the kinematics
specified above using the CTEQ6L1 LO parton distribu-
tion functions [12, 13] and the LO running of the strong
coupling constant up to the scale (common for renor-
malization and factorization) µ0 = mt. There are two
interesting conclusions to be drawn here. First, it comes
as a surprise that the mixed channel qg is more impor-
tant than gg. The proportions between the two depend,
however, on the pT cut. If pT,min = 20 GeV, the situ-
ation is reversed. The reason is that the lower the cut,
the larger the soft gluon enhancement. If there are more
gluons in the final state the enhancement will be higher,
and therefore at some point gg → tt̄gg must be larger
than qg → tt̄qg. The second, more important, point is
that the channels related to the tt̄bb̄ final states, in par-
ticular gg → tt̄qq̄ are almost negligible compared to the
two dominant (we referred to this before). This implies
that whatever the result on the size of the corrections in
the tt̄bb̄ case, tt̄jj requires a separate study.
Before we give our results for the next-to-leading order

(NLO) corrections, we are compelled to present the com-
putational framework used for the simulations. Similarly
to our previous publication [6], we have used the Helac-

Phegas framework [14–16] and in particular Helac-1L

[17] for the evaluation of the virtual corrections. This tool
uses the OPPmethod [18] and CutTools [19–21] for the
reduction of tensor integrals, as well as OneLOop for
numerical values of scalar integrals. The practical tech-
niques involve re-weighting of events and sampling over
polarization and color, for details see [6]. The real ra-
diation corrections were evaluated with Helac-Dipoles

Process σLO [pb] Contribution

pp → tt̄jj 120.17(8) 100 %

qg → tt̄qg 56.59(5) 47.1 %

gg → tt̄gg 52.70(6) 43.8 %

qq′ → tt̄qq′, qq̄ → tt̄q′q̄′ 7.475(8) 6.2 %

gg → tt̄qq̄ 1.981(3) 1.6 %

qq̄ → tt̄gg 1.429(1) 1.2 %

TABLE I: The LO cross section for pp → tt̄jj production at
the LHC. The individual contributions of the various partonic
channels are also presented separately. Both q and q′ span all
quarks and anti-quarks.

[22], which is an implementation of the Catani-Seymour
subtraction formalism [23, 24]. In order to check our re-
sults, we have explored the independence of the results
on the unphysical cutoff in the dipole subtraction phase
space, see [22] and references therein for details. We have
also verified the cancellation of divergences between the
real and virtual corrections. Finally, the numerical pre-
cision of the latter was assured by using gauge invariance
tests and use of quadruple precision. We note that the
only new virtual amplitudes are those involving a top
quark pair and four gluons. These were presented for the
first time in [17] and, due to their notorious complexity,
still await an independent check by other groups.
For the evaluation of the NLO corrections, we have

used the CTEQ6M parton distribution functions with
NLO running of the strong coupling constant. At the
central scale µ0 = mt, we obtain

σNLO
pp→tt̄jj+X = (106.94± 0.17) pb ,

where the error comes from Monte Carlo integration.
Compared to the LO result from Tab. I, this represents
a negative shift of 11%, and allows us to conclude that
the corrections to this process are small.
The scale dependence of the corrections is illustrated

in Fig. 2. At first, we observe a dramatic reduction of the
scale uncertainty while going from LO to NLO. Varying
the scale up and down by a factor 2 changes the cross
section by +72% and -39% in the LO case, while in the
NLO case we have obtained a variation of -13% and -
12%. Second, the central scale that we have chosen is
very close to the point of minimal corrections and slightly
above the point of maximum of the NLO cross section.
Indeed, both µ = 1/2µ0 and µ = 2µ0 give smaller values.
Taking into account the above dependence on the scale

choice, it is to be expected that adding a jet veto will only
worsen the result. In order to make this more transpar-
ent, it is best to consider the difference between the cross
section without and with the jet veto. This difference is
given by a LO calculation, since it requires the existence
of three separated jets with a lower cut on their respec-
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Figure 3: ALEPH LEP1 data compared to leading and next-to-leading order predictions in QCD,
without hadronization corrections. We use αs(MZ) = 0.130 at the leading and αs(MZ) = 0.118 at
the next-to-leading order in perturbative QCD. The renormalization scale is chosen to be 0.3MZ.
The uncertainty bands are obtained by considering the scale variation 0.15 MZ < µ < 0.6 MZ .
Solid lines refer to NLO QCD results evaluated with µ = 0.3MZ.

with resummations suggests that L ! 5 is what can be considered as a large logarithm.

Clearly, 5 " L < 6 leaves very little room for the validity of this approach. It should be

possible to improve on the resummation by including sub-leading logarithms and matching

to NLO QCD computations. However, since we do not perform any resummation in this

paper, we require ln y−1
45 , ln y

−1
cut

<
∼ 6 for the comparison of the NLO QCD computation with

data. Interestingly, a similar upper bound on ln y−1
45 appears because we neglect the mass of

b-quarks in our computation. This implies that the resolution parameter times the center

of mass energy should be larger than the b-quark mass, i.e. sy45 > m2
b , which translates

into ln(y−1
45 ) < ln(s/m2

b)
<
∼ 6, for s = M2

Z .

When fixed-order perturbative QCD calculations are compared to experimental data,

the choice of the renormalization scale becomes an important issue. Traditionally, multi-

jet observables in e+e− annihilations are computed in perturbative QCD by evaluating

the strong coupling constant at the center-of-mass energy. However, for large numbers of

jets this choice should be reconsidered, since the hardness of each jet decreases with their

number. Dynamical renormalization scales used in event generators account for this effect

by relating the choice of the renormalization scale to the event kinematics. Our choice

of the renormalization scale is also motivated by dynamical considerations. To this end,

we consider the clustering history of five- and six-parton configurations that results from

using the Durham jet algorithm. We compute the average value of
√
y23, where y23 is the

three-jet resolution parameter, using only phase-space weights. We find this average to be

approximately equal to 0.3. Since
√
y23s is, roughly, the relative transverse momentum of

production in the range 3 < ln y−1
cut < 7.
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With five massless flavors, the number of independent partonic subprocesses that con-

tribute to the five-jet cross section is 25. Using the entries of table 1, this implies 81 FKS

pairs in total, i.e. 81 independent integrations. On the other hand, the complexity of the

kinematics is such that even in the context of an adaptive integration it may be very dif-

ficult to map correctly all the peaks of the Feynman diagrams, and thus to have a stable

numerical behavior. We have therefore preferred to adopt a multi-channelling integration

strategy, that in MadFKS follows the same procedure as in MadGraph [59]. In doing so,

the numbers of integration channels we deal with at the real-emission and virtual level are

equal to 3620 and 2×1408 respectively (the factor of two in the virtual amplitudes being due

to the independent integration of the leading- and subleading-color contributions). These

numbers are much larger than the 81 FKS pairs we started with; however, the Feynman-

diagrams peaks can now be mapped accurately by the integration routines, and relatively

small statistics is sufficient in each channel to obtain numerical stability. We conclude

by stressing that the MadFKS integration channels are fully independent. Furthermore,

they are not determined dynamically (e.g. by performing a preliminary integration of the

cross section), but are defined a priori, by considering the topologies of the Feynman di-

agrams that contribute to the relevant partonic processes. The whole organization of the

calculation is therefore inherently parallel.

3. Phenomenology of five-jet production

In this Section we present the results of our calculation. We consider e+e− → jets and define

jets using the Durham jet algorithm [25] with resolution parameter ycut. The following

distance between each pair of particles is used in the Durham jet algorithm

yij =
2min(E2

i , E
2
j )

s
(1− cos θij) , (3.1)

where s is the center-of-mass energy of the collision squared, Ei is the energy of the parton

i, and θij is the relative angle between the partons i and j, in the e+e− center-of-mass

reference frame. The pair of particles with the smallest distance is clustered together by

adding their four-momenta, as long as yij < ycut, and the procedure is then iterated. When

all distances yij are larger than ycut, the recombination stops and the number of jets in the

event is defined to be equal to the number of (pseudo)-particles left at that stage.

In this paper we consider two observables which we define with the Durham jet al-

gorithm. The first observable is the differential distribution with respect to the five-jet

resolution parameter y45, normalized to the total cross section for e+e− → hadrons, σtot
(which we compute at the NLO, i.e. at O(αs)). The resolution parameter y45 is the maxi-

mal value of ycut such that a given event is classified as a five-jet event by the Durham jet

algorithm. We note that

1

σtot

1
∫

ycut

dy45
dσ

dy45
=

σ5−jet
incl (ycut)

σtot
, (3.2)
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five-jet resolution parameter distribution and R5 separately, we obtain 0.1168+0.0076
−0.0060 and

0.1151+0.0071
−0.0056 respectively. These values are consistent with the result of the combined fit

shown in table 2 but have slightly larger errors. From table 2, it is clear that the sensitivity

of the five-jet observables to αs is very high, as illustrated by the tiny statistical errors.

This sensitivity is ultimately related to the high power of αs that enters the five-jet ob-

servables. In spite of this, the overall error is not particularly small, since the perturbative

uncertainty is still quite sizable at this order in perturbative QCD.

Compared to LEP1, there are important differences when we extract αs by fitting to the

LEP2 data. Firstly, because hadronization corrections are negligible at LEP1, and because

these corrections decrease with energy, we do not consider them for LEP2. Secondly, for

the reasons explained above, we do not consider the data points at small values of ln y−1
45

and ln y−1
cut. This fact, combined with coarser binning of data, pushes us to the region of

y45 that may be affected by large logarithms of the resolution parameter. As a result, we

find larger fit-range errors at LEP2 than at LEP1. The statistical errors are also much

larger at LEP2 than at LEP1, as one expects given the luminosities collected. On the other

hand, since the effective strong coupling is smaller at LEP2, the perturbative uncertainty

affecting five-jet observables decreases, making the αs extraction at LEP2 competitive with

that done at LEP1. In table 3 we present the αs values obtained by fitting separately the

five-jet resolution parameter and R5 at LEP2, since they differ from each other by a larger

amount than at LEP1. Still, both values are within one standard deviation from the strong

coupling constant that we obtain by performing a simultaneous fit to the two observables.

We take the latter value, given in the third column of table 3, as our best determination

of αs from LEP2 data.

We obtain our final estimate of the strong coupling constant by combining the values

of αs(MZ) extracted from LEP1 and LEP2 data. We assume that the statistical and sys-

tematic errors of the two results are not correlated (an assumption which is strictly correct

for the former, and a very good approximation for the latter), while the perturbative errors

are considered to be fully correlated. The correlation of the perturbative uncertainties is

due to the fact that we estimated them by varying the renormalization scale, which results

in changes of the cross sections whose pattern is independent of the center-of-mass energy.

It is quite likely that a more sophisticated approach to estimating perturbative errors (see

e.g. ref. [66]) will result in a smaller uncertainty on αs. Hence, the procedure that we

employ in this paper is rather conservative. Using the results of tables 2 and 3, we finally

obtain

αs(MZ) = 0.1156+0.0041
−0.0034 . (4.1)

We note that if we perform the fit to both LEP1 and LEP2 data simultaneously, we obtain

αs(MZ) = 0.1156+0.0045
−0.0041 , in perfect agreement with eq. (4.1).

The value of αs(MZ) that we extract from five-jet observables at LEP can be compared

with other recent determinations of this quantity, shown in table 4. We see that both the

central value of αs and its error, obtained from fitting five-jet observables, compare well

with other determinations. On the other hand, it is interesting that αS(MZ) in eq. (4.1)

is lower than the world average. It is peculiar that a number of recent determinations of
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FIG. 2: A comparison of the pT distributions of the leading four jets in W− + 4-jet production at the LHC at
√
s = 7 TeV.

In the upper panels the NLO distribution is the solid (black) histogram and the LO predictions are shown as dashed (blue)
lines. The thin vertical line in the center of each bin (where visible) gives its numerical integration error. The lower panels
show the distribution normalized to the central NLO prediction. The scale-dependence bands are shaded (gray) for NLO and
cross-hatched (brown) for LO.

no. jets W− LO W− NLO W+/W− LO W+/W− NLO W−n/(n−1) LO W−n/(n−1) NLO

0 1614.0(0.5)+208.5
−235.2 2077(2)+40

−31 1.656(0.001) 1.580(0.004) — —

1 264.4(0.2)+22.6
−21.4 331(1)+15

−12 1.507(0.002) 1.498(0.009) 0.1638(0.0001)+0.044
−0.031 0.159(0.001)

2 73.14(0.09)+20.81
−14.92 78.1(0.5)+1.5

−4.1 1.596(0.003) 1.57(0.02) 0.2766(0.0004)+0.051
−0.037 0.236(0.002)

3 17.22(0.03)+8.07
−4.95 16.9(0.1)+0.2

−1.3 1.694(0.005) 1.66(0.02) 0.2354(0.0005)+0.034
−0.025 0.216(0.002)

4 3.81(0.01)+2.44
−1.34 3.56(0.03)+0.08

−0.30 1.817(0.003) — 0.2212(0.0004)+0.026
−0.020 0.211(0.003)

TABLE I: Total cross sections in pb for W + n jet production at the LHC at
√
s = 7 TeV, using the anti-kT jet algorithm

with R = 0.5. The NLO result for W + 4 jets uses the leading-color approximation discussed in the text. The fourth and
fifth columns give the cross-section ratios for W+ production to W− production. The last column gives the ratios of the cross
section for the given process to that with one jet less. The numerical integration uncertainty is in parentheses, and the scale
dependence is quoted in super- and subscripts.

trast, the ratios of W+ to W− cross sections are un-
changed within errors.

In fig. 2, we show the pT distributions of the leading
four jets in W− + 4-jet production at LO and NLO; the
predictions are normalized to the central NLO predic-
tion in the lower panels. With our central scale choice,
there is a noticeable shape difference between the LO and
NLO distributions for the first three leading jets, while
fourth-jet distribution is very similar at LO and NLO.
Similarly, in W + 3-jet production, the pT distributions
of the leading two jets exhibit shape changes from LO to
NLO, while the third-jet distribution does not [1].

Fig. 3 shows the distribution of the total transverse
energy HT , given by the scalar sum of the jet and lep-
ton transverse energies, HT =

∑

j E
jet
T,j + Ee

T + Eν
T . We

show the NLO and LO predictions, along with their scale-

dependence bands. As in the pT distributions, the NLO
band is narrower. The shapes at LO and NLO are similar
above 200 GeV, where the integration errors are small.

In order to compare our parton-level results to forth-
coming experimental data, the size of non-perturbative
effects (such as hadronization and the underlying event)
need to be estimated, for example using LO parton-
shower Monte Carlo programs. As NLO parton-shower
programs are developed [30], the virtual corrections com-
puted here should be incorporated into them.

A related process that contributes an irreducible back-
ground to certain missing energy signals of new physics is
Z+4-jet production. We expect that the currentBlack-

Hat along with SHERPA will allow us to compute NLO
corrections to it, as well as to other complex processes,
thereby providing an unprecedented level of theoretical

4

no. jets W− LO W− NLO W+/W− LO W+/W− NLO W−n/(n−1) LO W−n/(n−1) NLO

0 1614.0(0.5)+208.5
−235.2 2077(2)+40

−31 1.656(0.001) 1.580(0.004) — —

1 264.4(0.2)+22.6
−21.4 324(1)+14

−11 1.507(0.002) 1.499(0.009) 0.1638(0.0001)+0.044
−0.031 0.156(0.001)

2 74.17(0.09)+21.08
−15.12 76.2(0.5)+0.8

−3.4 1.597(0.003) 1.56(0.02) 0.2805(0.0004)+0.051
−0.038 0.235(0.002)

3 18.42(0.03)+8.61
−5.29 17.0(0.1)+0.0

−1.0 1.694(0.005) 1.66(0.02) 0.2483(0.0005)+0.036
−0.026 0.223(0.002)

4 4.41(0.01)+2.82
−1.55 3.84(0.04)+0.00

−0.44 1.817(0.003) — 0.2394(0.0004)+0.028
−0.021 0.226(0.003)

TABLE II: The same quantities as in table I, but with R = 0.4.
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precision for such backgrounds at the LHC.
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2

offering a solution to these difficulties.

We use the same basic setup as in our earlier computa-
tions [1, 2] ofW+ 3-jet and Z, γ∗+ 3-jet production. The
virtual contributions are computed using on-shell meth-
ods via the BlackHat package [14]. We show represen-
tative virtual diagrams in fig. 1. We use a leading-color
approximation in the finite virtual contributions1, while
keeping the full color dependence in all other contribu-
tions. We have confirmed that this approximation is an
excellent one for W + 1, 2, 3-jet production, shifting the
total cross section by about 3%, which is significantly
smaller than uncertainties from parton distributions or
higher-order terms in αs. Subleading-color corrections
to W + 4-jet production should also be small.

The remaining NLO ingredients, the real-emission
and dipole-subtraction terms [15], are computed by
AMEGIC++ [16], part of the SHERPA package [17].
We also use SHERPA to perform phase-space integra-
tion. The efficiency of the integrator has been improved
significantly with respect to ref. [1] through the use of
QCD antenna structures [18, 19]. BlackHat computes
the real-emission tree amplitudes using on-shell recur-
sion relations [10], along with efficient analytic forms ex-
tracted from N = 4 super-Yang-Mills theory [20].
Compared to LO, NLO cross sections and distributions

generally depend much less on the common (unphysical)
renormalization and factorization scale µ. However, it is
still important to select a scale characteristic of the typ-
ical kinematics. A scale that performs well for many dis-
tributions is the total partonic transverse energy. We set
µ = Ĥ ′

T /2, where Ĥ
′

T =
∑

j p
j
T +EW

T ; the sum runs over

all final-state partons j, and EW
T =

√

M2
W + (pWT )2 is the

transverse energy of the W boson2. Refs. [5, 22] present
other satisfactory choices. We follow the conventional
procedure of varying the chosen central scale up and
down by a factor of two to construct scale-dependence
bands, taking the minimum and maximum of the ob-
servable evaluated at five values: µ/2, µ/

√
2, µ,

√
2µ, 2µ.

Fixed-order perturbation theory may break down in
special kinematic regions, where large logarithms of scale
ratios emerge. For instance, threshold logarithms can af-
fect production at very large mass scales, which can be
reached in inclusive single-jet production [24]. Using this
study one can argue [2] that at the mass scales probed
in W + 4-jet production, such logarithms should remain
quite modest. Similarly, the sort of large logarithms aris-
ing in vector-boson production in association with a sin-
gle jet [25] do not appear in the case of multiple jets.

1 Our definition of leading-color terms follows ref. [2]; it includes
virtual quark loops in addition to the terms identified in ref. [3].

2 In refs. [1, 2] we used the scalar sum of the decay leptons’ trans-
verse energies instead of EW

T
. The present choice is preferred for

studies of W polarization effects [1, 23].

In our study, we consider the inclusive process pp →
W + 4 jets at an LHC center-of-mass energy of

√
s =

7 TeV. We impose the following cuts: Ee
T > 20 GeV,

|ηe| < 2.5, /ET > 20 GeV, pjetT > 25 GeV, |ηjet| < 3,
and MW

T > 20 GeV. Here, pT are transverse momenta;
η, pseudorapidities; and MW

T , the transverse mass of the
eν pair. The missing transverse energy, /ET , corresponds
to the neutrino transverse energy, Eν

T . Jets are defined
using the anti-kT algorithm [26] with parameter R =
0.5, and are ordered in pT . (We also quote results for
R = 0.4.) We use the CTEQ6M [27] parton distribution
functions and αs at NLO, and the CTEQ6L1 set at LO.
Electroweak couplings are as in ref. [1].
In table I, we present LO and NLO parton-level cross

sections for inclusive W−-boson production accompanied
by zero through four jets. We include all subprocesses,
using the leading-color virtual approximation only inW+
4-jet production. The upward scale-variation figures for
the NLO cross sections are quite small for W + 3- and
W + 4-jet production, because the values at the central
scale choice are close to the maximum values across scale
variations. We also display the ratios of the W+ to W−

cross sections, and the “jet-production” ratios ofW−+ n-
jet to W− + (n−1)-jet production. Both kinds of ratios
should be less sensitive to experimental and theoretical
systematics than the absolute cross sections.
The W+/W− ratios are greater than one because the

LHC is a pp machine, and because the parton luminos-
ity ratio u(x)/d(x) exceeds one. As the number of jets
increases, production of a W requires a larger value of x,
driving u(x)/d(x) and hence the W+/W− ratio to larger
values. These ratios have been discussed recently [28] as
a probe of certain new-physics processes; our results ex-
tend the NLO analysis to W production accompanied by
three jets. This ratio changes very little under correlated
variations of the scale in numerator and denominator;
hence we do not exhibit such scale variation here. The
NLO W+ + 4-jet cross section needed for the four-jet
ratio will be reported on elsewhere.
Standard lore [29] says that the jet-production ratio

should be roughly independent of the number of jets. The
results for the ratios displayed here for n > 1 are indeed
consistent with this lore. However, they are rather sensi-
tive to the experimental cuts, and can depend strongly on
n when binned in the vector-boson pT [2]. The W + 1-
jet/W + 0-jet ratio is much smaller because of the re-
stricted kinematics of the leading contribution to W + 0-
jet production.
In table II, we give cross sections for narrower jets,

using the anti-kT jet algorithm with R = 0.4. For two
or more jets, the LO cross sections are larger than for
R = 0.5, and the effect increases with the number of jets.
However, at NLO, the effect is greatly diminished; only
for four jets is the NLO cross section for R = 0.4 signifi-
cantly above that for R = 0.5. The NLO jet-production
ratio is somewhat larger for R = 0.4, for n > 2; in con-
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Figure 1: Transverse momentum distribution of the third-hardest jet in Z0 + 3 j events at the Tevatron (left)

and the LHC (right) to LO and NLO. Figure taken from [73].

Several NLO calculations of 2 → 3 reactions at hadron colliders were completed recently.

These include the production of two vector bosons and one jet [47–52], of a Higgs boson and two

jets [53–56], of tt̄Z [57], and of three vector bosons [58–62]. Of a similar kinematical type are vec-

tor boson fusion processes, which are computed to NLO accuracy in the VBFNLO package [63].

The current frontier of complexity are NLO calculations of 2 → 4 reactions. Several very important

processes of this type have been computed most recently.

An important channel for Higgs boson searches, and for subsequent determinations of Yukawa

couplings, is the associated production of a Higgs with a heavy quark-antiquark pair, with the Higgs

boson decaying into bb̄. The QCD background processes yielding tt̄bb̄ final states were computed

recently to NLO [64–67], displaying moderate but non-constant QCD corrections, which show a

non-trivial dependence on the event selection cuts. A natural extension of these calculations are

tt̄ +2 j final states [68]. Extended Higgs sectors predict a sizable rate of associated production with

bottom quark pairs, and the calculation of bb̄bb̄ final states is in progress [69].

The final state signature of a vector boson and three hadronic jets is often relevant in generic

new physics searches. NLO corrections of W +3 j were obtained by two groups in the Rocket [70]

and in the Blackhat+Sherpa [71,72] framework. The corrections to Z0+3 j were also obtained with

Blackhat+Sherpa [73]. For both observables, corrections are moderate, and stabilize the QCD pre-
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Figure 1: Scale dependence for the Higgs + 2 jet cross section, with the Higgs decay intoW−(→ µ−ν̄)W+(→ νe+),
at the Tevatron and using the a central scale µ0 = MH . Results are shown for the minimal set of cuts in Eq. (2)

(upper curves) and for cuts that mimic the latest CDF H → WW ! analysis (lower curves).

2 Tevatron results

We have checked the scale dependence of the NLO cross section using both a very simple set of
inclusive cuts, with no requirements on the Higgs boson decay products,

pt(jet) > 15 GeV, |ηjet| < 2.5, Rjet,jet > 0.4 , (2)

and cuts which more closely resemble the experimental setup of CDF. The results are shown in
Fig. 1, the overall shape of the scale variation is not sensitive to the cuts on the decay products
of the Higgs. At the Tevatron the search for the Higgs boson has been divided into jet bins. As
such it has been argued 11 that one should estimate the overall scale uncertainty by using the
appropriate PDF’s and αs running for the order in perturbation theory to which the Higgs plus
number of jets amplitudes are known. Anastasiou et al. 11 use NNLO results for the 0-jet bin,
NLO results for the 1-jet bin and LO results for the 2-jet bin, which dominates the overall scale
uncertainty. However, with our NLO result we can update Anastasiou et al’s Eq. (4.3).
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(3)

The result in Eq. (3) updates the Anastasiou et al. 11 result (+20%,−16.9%), reducing the
overall scale uncertainty.

3 LHC results

In order to study the impact of the NLO corrections at the LHC, we adopt a different set of
cuts to define the jets. The rapidity range of the detectors is expected to be much broader,
allowing for a larger jet separation too, and we choose a somewhat higher minimum transverse
momentum,

pt(jet) > 40 GeV, |ηjet| < 4.5, Rjet,jet > 0.8 . (4)

In this section we do not consider the decay of the Higgs boson for the sake of simplicity.
Since results for this scenario have already been discussed at some length 3, we restrict

ourselves to a short survey of the essential elements of the phenomenology at the lower centre-
of-mass energy,

√
s = 7 TeV. We present the scale dependence of the LHC cross section for Higgs

+ 2 jets (mH = 160 GeV) in Figure 2. As noted in the earlier paper 3, the corrections are quite
modest using our central scale choice, µ0 = µH , increasing the cross section by approximately
21%. Once again, although the scale dependence is much reduced it is still substantial.
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and cuts which more closely resemble the experimental setup of CDF. The results are shown in
Fig. 1, the overall shape of the scale variation is not sensitive to the cuts on the decay products
of the Higgs. At the Tevatron the search for the Higgs boson has been divided into jet bins. As
such it has been argued 11 that one should estimate the overall scale uncertainty by using the
appropriate PDF’s and αs running for the order in perturbation theory to which the Higgs plus
number of jets amplitudes are known. Anastasiou et al. 11 use NNLO results for the 0-jet bin,
NLO results for the 1-jet bin and LO results for the 2-jet bin, which dominates the overall scale
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cuts to define the jets. The rapidity range of the detectors is expected to be much broader,
allowing for a larger jet separation too, and we choose a somewhat higher minimum transverse
momentum,

pt(jet) > 40 GeV, |ηjet| < 4.5, Rjet,jet > 0.8 . (4)

In this section we do not consider the decay of the Higgs boson for the sake of simplicity.
Since results for this scenario have already been discussed at some length 3, we restrict

ourselves to a short survey of the essential elements of the phenomenology at the lower centre-
of-mass energy,

√
s = 7 TeV. We present the scale dependence of the LHC cross section for Higgs

+ 2 jets (mH = 160 GeV) in Figure 2. As noted in the earlier paper 3, the corrections are quite
modest using our central scale choice, µ0 = µH , increasing the cross section by approximately
21%. Once again, although the scale dependence is much reduced it is still substantial.

Figure 2: Scale dependence for the Higgs boson + 2 jet cross section, using the basic set of cuts in Eq. (4) and a
central scale choice µ0 = mH .

3.1 Weak boson fusion

The Higgs plus two jet process produces the same final state as expected from Higgs production
via weak boson fusion (WBF). Therefore the contribution from gluon fusion must be taken into
account when considering measurements of the Higgs coupling to W and Z bosons.

To address this issue, in this section we present a study of the rate of events expected using
typical WBF search cuts. In addition to the cuts already imposed (Eq. (4)), these correspond
to,

|ηj1 − ηj2 | > 4.2 , ηj1 · ηj2 < 0 , (5)

where j1 and j2 are the two jets with the highest transverse momenta. These cuts pick out the
distinctive signature of two hard jets in opposite hemispheres separated by a large distance in
pseudorapidity.

In Fig 3 we show the dependence of the cross section on the c.o.m. energy, from
√
s = 7 TeV

to
√
s = 14 TeV.
We show the cross section both before and after application of the additional WBF search

cuts given in Eq. (5), together with the corresponding results for the WBF process. The QCD
corrections to both processes decrease slightly as

√
s is increased, whilst the ratio of the gluon

fusion to WBF cross sections after the search cuts are applied increases from 20% at 7 TeV to
35% at 14 TeV. This indicates that, viewed as a background to the weak boson fusion process,
the hadronic Higgs + 2 jet process is less troublesome at energies below the nominal design
value.

4 Conclusions

We have presented phenomenological predictions for the production of a Higgs boson and two jets
through gluon fusion. These predictions have been made possible through the implementation
of recent compact analytic results for the relevant 1-loop amplitudes 4,5,6,7,8,9,10. The speed
with which these amplitudes can be evaluated has enabled us to improve upon an existing semi-
numerical implementation of the same process 3, with various decays of the Higgs boson now
included.

We have investigated the behaviour of the NLO cross section at the Tevatron, where con-
tributions from this channel form part of the event sample for the latest Higgs searches. We
find that corrections to the event rate in the Higgs + ≥ 2 jet bin are modest and that the scale
variation is reduced from ≈ (+90%,−44%) at LO to ≈ (+37%,−30%) at NLO.

For the LHC we have provided a brief study of the behaviour of our predictions for collisions
at

√
s = 7 TeV. We have also performed an analysis of this channel in the context of detecting a
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inclusive cuts, with no requirements on the Higgs boson decay products,

pt(jet) > 15 GeV, |ηjet| < 2.5, Rjet,jet > 0.4 , (2)

and cuts which more closely resemble the experimental setup of CDF. The results are shown in
Fig. 1, the overall shape of the scale variation is not sensitive to the cuts on the decay products
of the Higgs. At the Tevatron the search for the Higgs boson has been divided into jet bins. As
such it has been argued 11 that one should estimate the overall scale uncertainty by using the
appropriate PDF’s and αs running for the order in perturbation theory to which the Higgs plus
number of jets amplitudes are known. Anastasiou et al. 11 use NNLO results for the 0-jet bin,
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3 LHC results

In order to study the impact of the NLO corrections at the LHC, we adopt a different set of
cuts to define the jets. The rapidity range of the detectors is expected to be much broader,
allowing for a larger jet separation too, and we choose a somewhat higher minimum transverse
momentum,

pt(jet) > 40 GeV, |ηjet| < 4.5, Rjet,jet > 0.8 . (4)

In this section we do not consider the decay of the Higgs boson for the sake of simplicity.
Since results for this scenario have already been discussed at some length 3, we restrict

ourselves to a short survey of the essential elements of the phenomenology at the lower centre-
of-mass energy,

√
s = 7 TeV. We present the scale dependence of the LHC cross section for Higgs

+ 2 jets (mH = 160 GeV) in Figure 2. As noted in the earlier paper 3, the corrections are quite
modest using our central scale choice, µ0 = µH , increasing the cross section by approximately
21%. Once again, although the scale dependence is much reduced it is still substantial.

Figure 3: The
√
s dependence of the cross section for mH = 160 GeV at LO (dashed) and NLO (solid). Results

are shown for the minimal set of cuts in Eq. (4) (two upper red curves) and after application of the additional
WBF Higgs search cuts given in Eq. (5) (two lower red curves). The cross section for the weak boson fusion

process is also shown for comparison (four central blue curves).

Higgs boson via weak boson fusion, where the improved theoretical prediction presented in this
paper is essential in the long-term for making a measurement of the Higgs boson couplings to
W and Z bosons.
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through gluon fusion. These predictions have been made possible through the implementation
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with which these amplitudes can be evaluated has enabled us to improve upon an existing semi-
numerical implementation of the same process 3, with various decays of the Higgs boson now
included.
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                    Higgs + 2 jets !

• arXiv:0608194v2 was based on a semi-numerical 
method of calculation of virtual corrections. Code 

was never released.

•  now updated in arXiv:1001.4495 

(Campbell,Ellis,Williams), to use compact, analytic 
expressions for virtual amplitudes.

• Much faster code, obtainable in MCFMv5.7 or greater,

•  ~5ms per virtual point, (2.66GHz iMac, gfortran, no opt.)

• Fast enough to include Higgs decays, such as 

H!WW*
!ll"".
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I. INTRODUCTION

In the coming years the hadron colliders at Fermilab and CERN will focus on the hunt

for the Higgs boson. The large data sample currently being collected at the Tevatron will

certainly lead to improved limits on the Higgs mass [1], or even evidence for its existence. The

Large Hadron Collider has the potential to confirm the existence of the Higgs boson [2, 3]

between the lower limit set by LEP [4] and the upper bound suggested by perturbative

unitarity [5, 6].

Such claims are based on detailed analyses that clearly require reliable theoretical pre-

dictions for the production cross sections and characteristics. It is well-known that leading

order predictions for such quantities, based on tree-level Feynman diagrams alone, are not

sufficiently trustworthy for this purpose. The calculations are plagued by large uncertainties

in their overall normalization and moreover, important kinematic effects are often missed.

In this paper we present results for the production of a Higgs boson in association with

two jets. Our calculation is performed at next-to-leading order (NLO) using an effective

Lagrangian to express the coupling of gluons to the Higgs field [7],

Lint
H =

C

2
H trGµν G

µν . (1)

where the trace is over the color degrees of freedom. At the order required in this paper,

the coefficient C is given in the MS scheme by [8, 9],

C =
αS

6πv

(

1 +
11

4π
αS

)

+O(α3
S) . (2)

Here v is the vacuum expectation value of the Higgs field, v = 246 GeV.

This Lagrangian replaces the full one-loop coupling of the Higgs boson to the gluons via

an intermediate top quark loop by an effective local operator. The effective Lagrangian

approximation is valid in the limit mH < 2mt and, in the presence of additional jets,

when the transverse momenta of the jets is not much larger than the top mass mt [10]. A

commonly used improvement of the effective Lagrangian approximation is to multiply the

resulting differential jet cross section by a ratio R given by,

R =
σfinite mt

(gg → H)

σmt→∞(gg → H)
, (3)

where σ(gg → H) is the total cross section. Setting x = 4m2
t/m

2
H the correction for the

2

[Campbell, Ellis, Williams]



NLO Building Blocks

tree-graphs with (n+1)-partons
soft/collinear divergences

virtual-graphs with n-partons
divergences from loop-integration

extracting IR-singularities from both and combining them
phase-space slicing, subtractions, dipoles, antennas

• Perturbative Approach: improving the theoretical accuracy by including higher-order corrections

! =
∣∣∣∣ + + + + . . .

∣∣∣∣
2

=

= + + + . . . + . . . . . .

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
Leading Order (LO) Next to Leading Order (NLO) NN . . .LO

• the importance of loop-diagrams:

- improving accuracy of known-physics processes

- key to access new-physics (heavier particles circulating the loops)
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• NLO Building-Blocks

! tree-graphs with n+1 partons

)( virtual graphs with n partons → Iµ!"...=
Z
dD!

!µ!!!" . . .

D1D2 . . .

! Subtraction terms

• More particles→ many scales→ lenghty analytic expressions

• Integrals are complicated and process specific

• Standard Passarino-Veltman reduction in terms of scalar integrals requires the solution of systems
of equations:

- large intermediate expressions

- spurious singularities

Pierpaolo Mastrolia - Unitarity & Anayticity of Scattering Amplitudes, 12



8.4 Renormalisation d’une théorie. 69

De même, l’intéraction de l’électron avec le vide engendre autour de l’électron un nuage de paires
électron-positron virtuelles, qui « modifient » la charge de l’électron de δe. La charge réelle mesurée
est :

ee = e + δe. (8.43)

Les lagrangiens nus ne nous donnent pas les valeurs expérimentales. On rajoute donc des contre-
termes, contenant les valeur δm et δe aux lagrangiens nus, pour qu’ils deviennent « habillés »
et qu’ils contiennent les valeurs expérimentales me et ee, On contraint les constantes des contres
termes afin d’éliminer les divergences ultraviolettes. On ajoutera des diagrammes et des règles de
Feynman associés à ces contre-termes. Ici, le but n’est pas de faire un développement complet de
la renormalisation, mais d’expliquer le calcul à une boucle et le traitement des divergences. Dans
l’étude du processus ee → γγ, on fera la renormalisation de la théorie QED scalaire.

8.4.3 Renormalisation de la QED

D’après les deux propositions 8.2.3 et 8.2.4, il y a seulement quatre diagrammes connexes
et irréductibles divergents en QED. Ils sont donnés dans la figure 8.1. Le premier diagramme
correspond à l’énergie propre du photon, le deuxième à l’énergie propre de l’électron, le troisième
à la correction du vertex et la quatrième à la diffusion photon-photon.

µ ν k
p2

p3

p p p p
p2

p1

p4

p1

Fig. 8.1 – Diagrammes divergents en QED

Considérons le diagramme de l’énergie propre du photon d’amplitude P (p). Le développement
de cette amplitude autour de l’impulsion nulle du photon externe :

P (p) = −e2

∫
dnQ

tr (γµ #q1γ
ν #q2)

D2
1D

2
2

= P (0) + pµP1µ +
pµpν

2
P2µν + PR(p), (8.44)

fait introduire quatre constantes qui sont égales à des dérivées premières et secondes. Par comptage
de puissance, comme une dérivée apporte une puissance supplémentaire au dénominateur, alors
les tenseurs P (0), P1µ et P2µν sont à priori infinies alors que la constante PR(p) est finie : c’est
l’intégrale renormalisée. Cependant l’invariance relativiste entrâıne que le développement ne dépend
que de p2 donc Pµ

1 .p1µ = 0 et pµpν

2 P2µν = p2P2. De même, pour le diagramme de l’énergie propre
de l’électron Σ(p), le développement limité de l’amplitude autour de la valeur p0 de l’électron :

Σ(p) = −e2

∫
dnQ

〈Pγµ #Q1γµP 〉
D2

1D
2
2

= Σ(p0) + Σ1(p0) (#p− #p0) + ΣR(p), (8.45)

fait intervenir trois constantes dont Σ(p0) et Σ1(p0) sont infinies par comptage de puissance et
ΣR(p) correspond à l’intégrale renormalisée. Enfin, si on note Λ(p1, p2, k)µ l’amplitude du vertex
et Ω(p1, p2, p3, p4) l’amplitude de la diffusion photon-photon alors ils s’écrivent :

Λ(p1, p2, k)µ = Λ(p1, p2, 0)γµ + ΛR(p1, p2, k)µ (8.46)
Ω(p1, p2, p3, p4) = Ω0 + ΩR(p1, p2, p3, p4), (8.47)

où les constantes Λ(p1, p2, 0) et Ω0 sont infinies alors que le tenseur ΛR(p1, p2, k)µ ainsi que la
constante ΩR(p1, p2, p3, p4) correspondent au vertex et à l’amplitude photon-photon renormalisés.

Nous avons donc six constantes infinies P (0), P2,Σ(p0), Σ1(p0),Λ(p1, p2, 0) et Ω0. À partir des
trois principes physiques, on peut faire disparâıtre les « infinies » de ces constantes. Les trois prin-
cipes physiques sont : la renormalisation de la charge, la renormalisation de la masse et l’invariance

feynman diagrams complexity…

consider

!

Passarino-Veltmann

reduction

feynman diagrams complexity…

consider

!

Passarino-Veltmann

reduction

All-plus photon helicity-amplitude = -8 + O(ε)

Feynman Integrals Complexity



Looking for Simplicity behind Complexity?



Looking for Simplicity behind Complexity?

Use simple tools!

anthropic principle

(the landscape)

scalar fields

(quintessence)

Tools for the Right-Hand SideTools for the RightTools for the Right--Hand SideHand Side

Duct Tape

source: Kolb



The Dawn of Simplicity
• Singularity Classification

Master Integrals characterized by the location of the poles.

• momentum of propagating particles

q2 = p2 = !±
2 = 0= !± · p= !± ·q , !µ = x1 pµ+ x2 qµ+ x3 !

+
µ + x4 !

−
µ

gµ" =
1

2p ·q

(
pµq"+qµp"− !+

µ !
−
" − !−µ !

+
"

)

pµ =
〈p|#µ|p]
2

qµ =
〈q|#µ|q]
2

!+
µ =

〈q|#µ|p]
2

!−µ =
〈p|#µ|q]
2
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Spinor-notation

• Singularity Classification

Master Integrals characterized by the location of the poles.

• momentum of propagating particles

q2 = p2 = !±
2 = 0= !± · p= !± ·q , !µ = x1 pµ+ x2 qµ+ x3 !

+
µ + x4 !

−
µ

gµ" =
1

2p ·q

(
pµq"+qµp"− !+

µ !
−
" − !−µ !

+
"

)

pµ =
〈p|#µ|p]
2

, qµ =
〈q|#µ|q]
2

!+
µ =

〈q|#µ|p]
2

, !−µ =
〈p|#µ|q]
2
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Pittau, de l’Aguila
Ossola, Papadopoulos, Pittau

Parametrization in terms of  the Isotropic Tetrads  [Anderev, Bondarev]



One-Loop Scattering Amplitudes
One-Loop Scattering Amplitudes

• n-particle Scattering: 1+2→ 3+4+ . . .+n

• Reduction to a Scalar-Integral Basis Passarino-Veltman

1-Loop = !
102−103

Z
dD!

!µ!"!# . . .

D1D2 . . .Dn

= c4 + c3 + c2 + c1

• Known: Master Integrals

=
Z
dD!

1

D1D2D3D4
, =

Z
dD!

1

D1D2D3
, =

Z
dD!

1

D1D2
, =

Z
dD!

1

D1

• Unknowns: ci are rational functions of external kinematic invariants

Pierpaolo Mastrolia - Unitarity & Anayticity of Scattering Amplitudes, 15

[QCDLoop - AvH_OLO - GOLEM]



Process-Independent Strategy

Properties of  the S-MatrixProcess-Independent Strategy

• a general mathematical property: Analyticity of Scattering-Amplitudes

! Scattering Amplitudes are determined by their poles and branch-cuts

• a general physical property: Unitarity of Scattering-Amplitudes

! The residues at poles and branch-points are products of simpler amplitudes,
with lower number of particles and/or less loops

Pierpaolo Mastrolia - Unitarity & Anayticity of Scattering Amplitudes, 14

Analytic Unitarity-Methods

Important for Phenomenology

Crossing path with Numerical Methods

Important for understanding the structure of  QFT



Cutting Rules
Cutting Rule

• Discontinuity of Feynman Integrals Landau & Cutkosky

Cut Integral in the P2
12
-channel

!("1) =

1

2

!1

!2

!("2) =

1

2

!1

!2

!("1)+!("2) =
A
tree

1

2

!1

!2
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Cutting Rule

• Discontinuity of Feynman Integrals Landau & Cutkosky

Cut Integral in the P2
12
-channel

!("1) =

1

2

!1

!2

d
4# = d

4!1 d
4!2 $

(4)
(

!1+ !2−P12

)

$(+)
(

!2
1

)

$(+)
(

!2
2

)

Pierpaolo Mastrolia - Unitarity & Anayticity of Scattering Amplitudes, 18



Unitarity & Cutting Rules

• Optical Theorem from Unitarity S≡ 1+ iT : S†S= 1 ⇒ 2ImT = −i(T −T †) = T †T

• One-loop Amplitude:

A1-loopn = 1−loop = c4 + c3 + c2 + c1

• Discontinuity of Feynman Amplitudes Cutkosky-Veltman; Bern, Dixon, Dunbar & Kosower

2Im
{
A1-loopn

}
= tree

i

j

tree

!1

!2

= c4 + c3 + c2

on− shell condition :
1

(!2i −m2i + i0)
→ !

(
!2i −m2i

)
(i= 1,2)
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Unitarity & Cutting Rules

• Optical Theorem from Unitarity S≡ 1+ iT : S†S= 1 ⇒ 2ImT = −i(T −T †) = T †T

• One-loop Amplitude:

A1-loopn = 1−loop = c4 + c3 + c2 + c1

• Discontinuity of Feynman Amplitudes Cutkosky-Veltman; Bern, Dixon, Dunbar & Kosower

2Im
{
A1-loopn

}
= tree

i

j

tree

!1

!2

= c4 + c3 + c2

on− shell condition :
1

(!2i −m2i + i0)
→ !

(
!2i −m2i

)
(i= 1,2)

Method ! Matching the cuts of any amplitudes onto the cuts of Master Integrals

Advantage 1 ! iterative construction: one-loop amplitudes by sewing tree-level amplitudes

Advantage 2 ! simplified input: tree-amplitudes vs Feynman graphs
tree-amplitudes are gauge-invariant on-shell quantities,

corresponding to sums of off-shell Feynman diagrams.

Pierpaolo Mastrolia - Unitarity & Anayticity of Scattering Amplitudes, 17

Unitarity & Cutting Rules



The Strategy: Generalised Unitarity

The Strategy: Generalised Unitarity

• Multiple-cuts as optical filters

Replacing the original amplitude with simpler integrals fulfilling the same algebraic decomposition

= c4 Britto, Cachazo, Feng

= c4 + c3

Bern, Dixon, Dunbar, Kosower

P.M.

Forde

Bjerrum-Bohr, Dunbar, Perkins

= c4 + c3 + c2

Bern, Dixon, Dunbar, Kosower

Brandhuber, McNamara, Spence, Travaglini

Britto, Buchbinder, Cachazo, Feng, ⊕ P.M.

Anastasiou, Britto, Feng, Kunszt, P.M.

Forde; Badger

= c4 + c3 + c2 + c1 Glover, Williams

Britto, Feng
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Britto, Mirabella
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Cut-ConditionsComplex Solutions of the Cut-conditons

• Loop momentum decomposition

q2 = p2 = 0= !± · p= !± ·q , !µ = x1 pµ+ x2 qµ+ x3 !
+
µ + x4 !

−
µ

• under Multiple On-shellness Conditions :

- the loop-momentum becomes complex ;

- some of its components (if not all) are frozen;

- the left over free components are integration-variable

• Closer look at the Integrand Structure

Numerator and denominator of the n-particle cut-integrand are mutivariate-polynomials in (4− n)
complex-variables:

Cutn =
I

dx1 . . .dx4−n
P(x1, . . . ,x4−n)
Q(x1, . . . ,x4−n)

! Contour Integrals of Rational Functions ∼ Integrals by partial fractioning

! Analytic functions: Multi-pole Decomposition (think of CMB and Harmonic Decomposition)

• Singularity Classification

Master Integrals characterized by the location of the poles.

Pierpaolo Mastrolia - Unitarity & Anayticity of Scattering Amplitudes, 23

Complex Solutions of the Cut-conditons

• Loop momentum decomposition

q2 = p2 = !±
2 = 0= !± · p= !± ·q , !µ = x1 pµ+ x2 qµ+ x3 !

+
µ + x4 !

−
µ

gµ" =
1

2p ·q
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+
"
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On-shell condition
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- some of its components (if not all) are frozen;

- the left over free components are integration-variable

q2 = p2 = 0= !± · p= !± ·q , !µ = x1 pµ+ x2 qµ+ x3 !
+
µ + x4 !

−
µ

• Closer look at the Integrand Structure

Numerator and denominator of the n-particle cut-integrand are mutivariate-polynomials in (4− n)
complex-variables:

Cutn =
I

dx1 . . .dx4−n
P(x1, . . . ,x4−n)
Q(x1, . . . ,x4−n)

! Contour Integrals of Rational Functions ∼ Integrals by partial fractioning

! Analytic functions: Multi-pole Decomposition (think of CMB and Harmonic Decomposition)
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! Contour Integrals of Rational Functions ∼ Integrals by partial fractioning

! Analytic functions: Multi-pole Decomposition (think of CMB and Harmonic Decomposition)

• Singularity Classification

Master Integrals characterized by the location of the poles.
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Unitarity & Cutting Rules

• Optical Theorem from Unitarity S≡ 1+ iT : S†S= 1 ⇒ 2ImT = −i(T −T †) = T †T

• One-loop Amplitude:

A1-loopn = 1−loop = c4 + c3 + c2 + c1

• Discontinuity of Feynman Amplitudes Cutkosky-Veltman; Bern, Dixon, Dunbar & Kosower

2Im
{
A1-loopn

}
= tree

i

j

tree

!1

!2

= c4 + c3 + c2

on− shell condition :
1

(!2i −m2i + i0)
→ !

(
!2i −m2i

)
(i= 1,2)

Method ! Matching the cuts of any amplitudes onto the cuts of Master Integrals

Advantage 1 ! iterative construction: one-loop amplitudes by sewing tree-level amplitudes

Advantage 2 ! simplified input: tree-amplitudes vs Feynman graphs
tree-amplitudes are gauge-invariant on-shell quantities,

corresponding to sums of off-shell Feynman diagrams.
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Corollary 1.4 (Generalized Cauchy Integral formulas)

Assume f ∈ Cω(D) and D ⊂ C simply connected, and δD = γ. For all n ∈ N
one has f (n)(z) ∈ Cω(D) and for any z /∈ γ

f (n)(z) =
n!

2πi

∫

γ

f(w) dz

(w − z)n+1
.

Proof. Just differentiate Cauchy’s integral formula n times.

It follows that f ∈ Cω(D) is arbitrary often differentiable.

Definition Let f ∈ Cω(D \ {a}) and a ∈ D with simply connected D ⊂ C with boundary γ. Define the residue of
f at a as

Res(f, a) :=
1

2πi

∫

γ
f(z) dz .

By Cauchy’s theorem, the value does not depend on D.

Example. f(z) = (z − a)−1 and D = {|z − a| < 1}. Our calculation in the example at the beginning of the section
gives Res(f, a) = 1.

A generalization of Cauchy’s theorem is the following residue theorem:

Corollary 1.5 (The residue theorem)

f ∈ Cω(D \ {zi}n
i=1), D open containing {zi} with boundary δD = γ.

1

2πi

∫

γ
f(z) dz =

n
∑

i=1

Res(f, zi) .

Proof. Take ε so small that Di = {|z − zi| ≤ ε} are all disjoint and contained in D. Applying Cauchy’s theorem to
the domain D \

⋃n
1=1 Di leads to the above formula.

2 Calculation of definite integrals

The residue theorem has applications in functional analysis, linear algebra, analytic number theory, quantum field
theory, algebraic geometry, Abelian integrals or dynamical systems.

In this section we want to see how the residue theorem can be used to computing definite real integrals.

The first example is the integral-sine

Si(x) =

∫ x

0

sin(t)

t
dt ,

a function which has applications in electrical engineering. It is used also in the proof of the prime number
theorem which states that the function π(n) = {p ≤ n | p prime} satisfies π(n) ∼ x/log(x) for x → ∞.

Si(∞) =

∫

∞

0

sin(x)

x
dx =

π

2

Proof. Let f(z) = eiz

z which satisfies f ∈ Cω(C \ {0}. For z = x ∈ R, we have Im(f(z)) = sin(x)
x . Define for

R > ε > 0 the open set D enclosed by the curve γ =
⋃4

i=1 γi, where

294 Chapter 8 ! Residue Theory

x

y

z1

z2 z3

C3
C2

C1

C

D

. . .

zn – 1Cn – 1

Cn

zn

Figure 8.1 The domain D and contour C and the singular points z1, z2,. . . , zn in the
statement of Cauchy’s residue theorem.

expansion, we seek a method to calculate the residue from special information
about the nature of the singularity at z0.

Residue Theorem

anthropic principle

(the landscape)

scalar fields

(quintessence)
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Forde (2008)
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Quadruple Cuts

Britto, Cachazo, Feng (2004)

The discontinuity across the leading singularity, via quadruple cuts, is unique, and corresponds to
the coefficient of the master box

K1 K4

K3K2

A1

A2

A4

A3

= c[K1|K2|K3|K4] ×

K1 K4

K3K2

• 4PLE-cut integrand: I4(!) = Atree
1

×Atree
2

×Atree
3

×Atree
4

• Momentum-decomposition ansatz: !µ = !1 pµ+!2 qµ+!3
〈q|"µ|p]
2

+!4
〈p|"µ|q]
2

• Cut-conditions: D1 = D2 = D3 = D4 = 0 ⇔ coefficient constraints

• Solutions: !±µ = !1 pµ+!2 qµ+!±
3

〈q|"µ|p]
2

+!±
4

〈p|"µ|q]
2

c[K1|K2|K3|K4] =
I4(!+)+ I4(!−)

2
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Novel Double-Cut
Novel Double-Cut Phase-Space

!= AL AR =
Z
d4" Atree

L (!0) × A tree
R (!0) , !µ

0
=
K2

2

〈!|#µ|!]
〈!|K|!]

• Change of Variables with special p and q :

i) q2 = p2 = 0

ii) Kµ≡ pµ+qµ , K2 ≡ 2p ·q= 2p ·K = 2q ·K

iii) |!〉 ≡ |p〉+ z|q〉 & |!] ≡ |p]+ z̄|q]

⇔ !µ
0

=
1

(1+ zz̄)

(
pµ+ z z̄ qµ+ z

〈q|#µ|p]
2

+ z̄
〈p|#µ|q]
2

)

• Simplified parametrization of the Phase-Space

Z
d4"= −K2

I

z̄=z∗
dz

Z
dz̄

Z
t dt

(1+ zz̄)
$

(
t− 1

(1+ zz̄)

)
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where pµ and qµ are two massless momenta with the
requirements,

pµ + qµ = Kµ ,

p2 = q2 = 0 ,

2 p · q = 2 p · K = 2 q · K ≡ K2 ; (4)

the vectors εµ
+ and εµ

− are orthogonal to both pµ and
qµ, with the following properties 1,

ε2+ = ε2− = 0 = ε± · p = ε± · q , (5)
2 ε+ · ε− = −K2 . (6)

The parameter ρ is the pseudo-threshold,

ρ =
K2 + m2

1 −m2
2 −

√
λ(K2,m2

1,m
2
2)

2K2
, (7)

with the Källen function defined as,

λ(K2,m2
1,m

2
2) = (K2)2 + (m2

1)
2 + (m2

2)
2

−2K2m2
1 − 2K2m2

2 − 2m2
1m

2
2 ,(8)

and depends only on the kinematics.
The complex conjugated variables z and z̄
parametrize the degrees of freedom left over by
the cut-conditions.

Analogously to the massless case [8], corresponding
to the ρ → 0 limit, because of (3), the LIPS in (2)
reduces to the remarkable expression,

∫
d4Φ = (1− 2ρ)

∫∫
dz ∧ dz̄

(1 + zz̄)2
. (9)

The double-cut of a generic n-point amplitude in
the K2-channel is defined as

∆ ≡
∫

d4Φ Atree
L ($1) Atree

R ($1) , (10)

where Atree
L,R are the tree-level amplitudes sitting at

the two sides of the cut, see Fig.1. By using (9) for

1In terms of spinor variables that are associated to
massless momenta, we can define pµ = (1/2)〈p|γµ|p] and
qµ = (1/2)〈q|γµ|q], hence εµ

+ = (1/2)〈q|γµ|p] and εµ
− =

(1/2)〈p|γµ|q].

Figure 1: Double-cut of one-loop amplitude in the K2-channel.

the LIPS, and (3) for the loop-momentum $µ
1 , one

has,

∆ = (1− 2ρ)
∫∫

dz ∧ dz̄
Atree

L (ρ, z, z̄) Atree
R (ρ, z, z̄)

(1 + zz̄)2
, (11)

where the tree-amplitudes Atree
L and Atree

R are ratio-
nal in z and z̄. Notice that ρ is independent of z
and z̄, therefore its presence in the integrand does
not affect the integration algorithm. For ease of no-
tation, we give the ρ-dependence of the integrand as
understood.

In [8] we aimed at proposing an efficient method
for computing the double-cut of one-loop scattering
amplitudes. Accordingly, by applying a special ver-
sion of the so called Generalised Cauchy Formula also
known as the Cauchy-Pompeiu Formula [10], one can
write the two-fold integration in z- and z̄-variables
appearing in Eq.(11) simply as a convolution of an
unbounded z̄-integral and a contour z-integral 2,

∆ = (1− 2ρ)
∮

dz

∫
dz̄

Atree
L (z, z̄) Atree

R (z, z̄)
(1 + zz̄)2

, (12)

where the integration contour has to be chosen as
enclosing all the complex z-poles.

In this letter we rather want to focus on what links
Eq.(11) and Eq.(12), namely Stokes’ Theorem [8],
and on the geometrical interpretation of its conse-
quence: the double-cut ∆ in (11) is the flux of a
2-form. It corresponds to an integral over the com-
plex tangent bundle of the Riemann sphere, where

2The roles of z and z̄ can be equivalently exchanged.

2

Unitarity and geometric phases are two ubiquitous
properties of physical systems.

The Berry phase is the phase acquired by a system
when it is subjected to a cyclic evolution, resulting
only from the geometrical properties of the path tra-
versed in the parameter space because of anholonomy
[1, 2].

Unitarity represents the probability conservation in
particle scattering processes described by the unitary
scattering operator, S. The relation, S = 1 + i T ,
between the S-operator and the transition operator,
T , leads to the Optical Theorem,

−i(T − T †) = T †T . (1)

The matrix elements of this equation between ini-
tial and final states are expressed, in perturbation
theory, in terms of Feynman diagrams. The evalua-
tion of the right hand side requires the insertion of a
complete set of intermediate states. Therefore, since
−i(T − T †) = 2 ImT , Eq.(1) yields the computation
of the imaginary part of Feynman integrals from a
sum of contributions from all possible intermediate
states. A Feynman diagram is thus responsible for
an imaginary part of the scattering amplitudes when
the intermediate, virtual particles go on-shell.

The Cutkosky-Veltman rules, implementing the
unitarity conditions, allow the calculation of the dis-
continuity across a branch cut of an arbitrary Feyn-
man amplitude, which corresponds to its imaginary
part [3]. Accordingly, the imaginary part of a given
Feynman integral can be computed by evaluating
the phase-space integral obtained by cutting two in-
ternal particles, which amounts to applying the on-
shell conditions and replacing their propagators by
the corresponding δ-function, (p2 − m2 + i0)−1 →
(2πi) δ(+)(p2 −m2).

In later studies the problem of finding the disconti-
nuity of a Feynman integral associated to a singular-
ity was addressed in the language of homology theory
and differential forms [4].

More recently multi-particle cuts have been com-
bined with the use of complex momenta [5] for on-
shell internal particles into very efficient techniques,
by-now known as unitarity-based methods, to com-
pute scattering amplitudes for arbitrary processes -
see [6, 7] for a comprehensive list of references.

In this letter we establish an explicit relation be-
tween Unitarity and Berry’s phase, by showing that
the imaginary part of a general one-loop Feynman
amplitude, computed by applying the Optical The-
orem, can be interpreted as a Berry phase, result-
ing from the curved geometry in effective momentum
space experienced by the two on-shell particles going
around the loop.

In a recent work [8] it has been shown that double-
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ficiently evaluated by using the well-known Gen-
eralised Cauchy Formula, also known as Cauchy-
Pompeiu Formula, or Cauchy-Green Formula as well
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nally carried out by using Generalised Cauchy For-
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nal function of two complex-conjugated variables. As
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given by the product of the two tree-level amplitudes
sewn along the cut.
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where pµ and qµ are two massless momenta with the
requirements,

pµ + qµ = Kµ ,

p2 = q2 = 0 ,

2 p · q = 2 p · K = 2 q · K ≡ K2 ; (4)

the vectors εµ
+ and εµ

− are orthogonal to both pµ and
qµ, with the following properties 1,

ε2+ = ε2− = 0 = ε± · p = ε± · q , (5)
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The parameter ρ is the pseudo-threshold,
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and depends only on the kinematics.
The complex conjugated variables z and z̄
parametrize the degrees of freedom left over by
the cut-conditions.

Analogously to the massless case [8], corresponding
to the ρ → 0 limit, because of (3), the LIPS in (2)
reduces to the remarkable expression,

∫
d4Φ = (1− 2ρ)

∫∫
dz ∧ dz̄

(1 + zz̄)2
. (9)

The double-cut of a generic n-point amplitude in
the K2-channel is defined as

∆ ≡
∫

d4Φ Atree
L ($1) Atree

R ($1) , (10)

where Atree
L,R are the tree-level amplitudes sitting at

the two sides of the cut, see Fig.1. By using (9) for

1In terms of spinor variables that are associated to
massless momenta, we can define pµ = (1/2)〈p|γµ|p] and
qµ = (1/2)〈q|γµ|q], hence εµ

+ = (1/2)〈q|γµ|p] and εµ
− =

(1/2)〈p|γµ|q].

Figure 1: Double-cut of one-loop amplitude in the K2-channel.

the LIPS, and (3) for the loop-momentum $µ
1 , one

has,

∆ = (1− 2ρ)
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dz ∧ dz̄
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L (ρ, z, z̄) Atree
R (ρ, z, z̄)

(1 + zz̄)2
, (11)

where the tree-amplitudes Atree
L and Atree

R are ratio-
nal in z and z̄. Notice that ρ is independent of z
and z̄, therefore its presence in the integrand does
not affect the integration algorithm. For ease of no-
tation, we give the ρ-dependence of the integrand as
understood.

In [8] we aimed at proposing an efficient method
for computing the double-cut of one-loop scattering
amplitudes. Accordingly, by applying a special ver-
sion of the so called Generalised Cauchy Formula also
known as the Cauchy-Pompeiu Formula [10], one can
write the two-fold integration in z- and z̄-variables
appearing in Eq.(11) simply as a convolution of an
unbounded z̄-integral and a contour z-integral 2,

∆ = (1− 2ρ)
∮

dz

∫
dz̄

Atree
L (z, z̄) Atree

R (z, z̄)
(1 + zz̄)2

, (12)

where the integration contour has to be chosen as
enclosing all the complex z-poles.

In this letter we rather want to focus on what links
Eq.(11) and Eq.(12), namely Stokes’ Theorem [8],
and on the geometrical interpretation of its conse-
quence: the double-cut ∆ in (11) is the flux of a
2-form. It corresponds to an integral over the com-
plex tangent bundle of the Riemann sphere, where

2The roles of z and z̄ can be equivalently exchanged.
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Integration in two steps

• Double Cut:

After the trivial t-integration
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P(z, z̄)
Q(z, z̄)
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Z
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c[K] =

∣∣∣∣∣
rat

=
I
dz F rat(z,z∗) = Resz=0 F rat(z,z∗)+Resz "=0 Frat(z,z∗)

pole @ z= 0 (pure bubble);

poles @ z "= 0 (triangles reduction)

• The result will NOT depend on the choices of p and q, and it is symmetric under p↔ q.
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Novel Double-Cut Phase-Space

!= AL AR =
Z
d4" Atree

L (!0) × A tree
R (!0) , !µ

0
=
K2

2

〈!|#µ|!]
〈!|K|!]

• Change of Variables with special p and q :

i) q2 = p2 = 0

ii) Kµ≡ pµ+qµ , K2 ≡ 2p ·q= 2p ·K = 2q ·K

iii) |!〉 ≡ |p〉+ z|q〉 & |!] ≡ |p]+ z̄|q]

⇔ !µ
0

=
1

(1+ zz̄)

(
pµ+ z z̄ qµ+ z

〈q|#µ|p]
2

+ z̄
〈p|#µ|q]
2

)

• Simplified parametrization of the Phase-Space

Z
d4"= −K2

I

z̄=z∗
dz

Z
dz̄

Z
t dt

(1+ zz̄)
$

(
t− 1

(1+ zz̄)

)
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– Coefficient of the 2-point Function. The expres-
sion of the 2-point coefficient can be finally obtained
by taking the ratio of ∆rat in (19) and the double-cut
of I2 in (22),

c2 ≡
∆rat

∆I2
=

= −Resz=0F
rat(z, z̄)− Resz !=0F

rat(z, z̄) . (23)

– Hermite Polynomial Reduction. To optimize the
integration algorithm, one can use the so called Her-
mite Polynomial Reduction (HPR), a technique en-
abling the direct extraction of the rational term of
the primitive of a rational function, without comput-
ing the integral as a whole. Based on the square-free
factorization of the integrand, HPR can be used to
write the result of any integral of a rational function
as a pure rational term plus another integral that, if
explicitly computed, would generate the logarithmic
remainder.

As written in Eq.(23), the coefficient of the 2-point
function comes only from the term F rat, and not from
F log, see Eqs.(15, 17); F rat is the rational term in the
result of the z̄-integration of f , which is rational in z̄,
see Eq.(13). Therefore HPR is suitable for extracting
F rat out of the z̄-integration.

The integration algorithm of Sec.1 can be imple-
mented with S@M [25] together with the routine [26]
for Hermite Polynomial Reduction.

2. Stokes’ Theorem

In this section we give a formal definition of the z-z̄
integration used in Sec.1, as an application of Stokes’
Theorem for differential forms. In what follows, we
use the notation: gz = ∂g/∂z and gz̄ = ∂g/∂z̄.

Let us recall that the complex 1-form

χ =
1

z − z0
dz , (24)

which is defined for all z except z0, is a closed form,

dχ = d

(
1

z − z0

)
∧ dz =

(−1)
(z − z0)2

dz ∧ dz = 0 . (25)

We consider any complex smooth function F and dif-
ferentiate the 1-form ω = Fχ,

ω = (z − z0)−1Fdz , (26)

obtaining the 2-form,

dω = dF ∧ χ = (z − z0)−1Fz̄ dz̄ ∧ dz . (27)

Now we take a domain D in the complex plane and
apply Stokes’ Theorem to dω. Due to the singularity
of ω at z0, we remove a tiny disk D(z0; r), centered at
z0 with radius r, from D. Then ω has no singularity
in the regulated domain Dr = D −D(z0; r), and we
may apply Stokes’ Theorem:

∫∫

Dr

dω =
∫

∂Dr

ω =
∫

∂D
ω −

∫

∂D(z0;r)
ω . (28)

Here ∂D(z0; r) is a circle γ around the point z0, which
is described by the parametric equation γ(t) = z0 +
reit. Since F(z0 + reit) converges to F(z0) as the
radius r shrinks to 0, the last integral in Eq.(28),

∫

∂D(z0;r)
ω = i

∫ 2π

0
F(z0 + reit)dt , (29)

converges to 2πiF(z0) as r goes to 0. Letting r →
0 in Eq.(28), the disk D(z0; r) disappears and Dr

fills up D. Consequently Stokes’ Theorem can be
reformulated as,

∫∫

D
dω =

∫

∂D
ω − 2πiF(z0) . (30)

By using the explicit expression of ω and dω, in
Eqs.(26, 27), and rearranging terms, we obtain the
so called Generalised Cauchy Formula or Cauchy-
Pompeiu Formula,

2πiF(z0) =
∫

∂D

F(z)
z − z0

dz −
∫∫

D

Fz̄

z − z0
dz̄ ∧ dz. (31)

Let us discuss two special cases.
First, when F is analytic, Fz̄ = 0, hence we obtain,

F(z0) =
1

2πi

∫

∂D

F(z)
z − z0

dz (32)
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it is an integral over the complex tangent bundle of 
the Riemann Sphere

Stokes’ Theorem for Double-Cuts



Early Achievements

gg→ gggg

• Numerical Result: Ellis, Giele, Zanderighi (2006)

• Analytical Result:

Amplitude N = 4 N = 1 N = 0|CC N = 0|rat

(−−++++) BDDK’94 BDDK’94 BDDK’94 BDK’05, KF’05

(−+−+++) BDDK’94 BDDK’94 BBST’04 BBDFK’06, XYZ’06

(−++−++) BDDK’94 BDDK’94 BBST’04 BBDFK’06, XYZ’06

(−−−+++) BDDK’94 BBDD’04 BBDI’05, BFM’06 BBDFK’06

(−−+−++) BDDK’94 BBCF’05, BBDP’05 BFM’06 XYZ’06

(−+−+−+) BDDK’94 BBCF’05, BBDP’05 BFM’06 XYZ’06

Quadruple Cuts

Bidder, Bjerrum-Bohr,

Dunbar & Perkins (2005)

Double Cuts Britto, Feng & P.M. (2006)

→

→ &
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!!→ !!!!

• Numerical Result: Nagy & Soper (2006); Ossola, Papadopoulous & Pittau (2007)

• Analytical Result: Mahlon (1996); Binoth, Gehrmann, Heinrich & P.M. (2007)
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gg→ Hgg . . .ggg

! Heavy-top limit

• Numerical: H + 4 partons Campbell, Ellis, Zanderighi (2006)

• Analytical: H + n-gluons

"= 1

2
(H+ iA) ⇒ Atree (" + n-gluons) ∼ Atree(n-gluons) w/out mom. cons. Dixon, Glover & Kohze

• "-nite Berger, Del Duca, Dixon (2006)

• "-MHV amplitudes (nearest neighbour minuses) Badger, Glover, Risager (2007)

• "-MHV amplitudes (generic configuration) Glover, Williams, P.M. (2008)
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k−1
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k+2
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Badger, Glover, Williams, P.M.

! Heavy-top limit

• Representative Feynman Diagrams
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11 11

2

2 22

3 3

3
3

4

4 44 φφ

φ

φ C4;φ4|1|2|3C4;φ|1|2|34C4;φ|34|1|2 C4;φ|1|23|4

Figure 1: Scalar box coefficients for A(1)
4 (φ; 1, 2, 3, 4). From the four topologies we must also

include cyclic permutations of the four gluons.

Here Cj;iIj;i represents a j-point scalar basis integral, with a coefficient Cj;i. The sum

over i represents the sum over the allowed topologies given by the external momentum

in the amplitude. Switching to complex momenta and setting four propagators on-shell

[14] freezes the loop momentum and uniquely determines each of the box coefficients C4;i.

Setting fewer numbers of propagators on-shell no longer freezes the loop momentum com-

pletely, however it has been shown, [15] that by parameterising the loop momentum in

a specific way, one can directly determine the triangle coefficients C3;i. Finally one may

determine the coefficients associated with the scalar bubble integrals using a similar pa-

rameterisation to that used to determine the triangles [15] which now depends on two

variables. A different approach is to use spinor integration [17, 18] which relates double

cuts to residues of complex functions via the holomorphic anomaly, one may also use this

approach to calculate triple cuts [16]. Recently [39], this method has been re-interpreted

as a specific contour integration in momentum space, with the bubble coefficient related

to the residues of an analytic function in the complex plane.

4. Scalar Box Coefficients

We begin our calculation of the φ-NMHV amplitude by considering the coefficients of the

scalar boxes appearing in the cut-constructible part of the amplitude. To obtain these

coefficients we use generalised unitarity with complex momentum [14]. In general there are

16 box topologies, which can be obtained from permutations of those shown in Fig 1. For

the specific helicity configuration we consider the coefficients of the two mass easy boxes

are all zero. This leaves 12 coefficients to determine, those associated with the one-mass

boxes have the following form,

Ĉ4;φ1|2|3|4(φ, 1+, 2−, 3−, 4−) = − s3
234

2〈1|pφ|2]〈1|pφ|4][23][34]
(4.1)

Ĉ4;φ2|3|4|1(φ, 1+, 2−, 3−, 4−) =
〈2|pφ|1]3

2s134〈2|pφ|3][34][41]
+

〈34〉3m4
φ

2s134〈1|pφ|2]〈3|pφ|2]〈41〉
(4.2)

Ĉ4;φ4|1|2|3(φ, 1+, 2−, 3−, 4−) = Ĉ4;φ2|3|4|1(φ, 1+, 4−, 3−, 2−). (4.3)

– 4 –

C3;φ|kk+1|k+2k+3 C3;φ|k|k+1k+2k+3 C3;φ|kk+1k+2|k+3

C3;φkk+1|k+2|k+3 C3;φk+1|k+2k+3|k C3;φk|k+1|k+2k+3

Figure 2: Scalar Triangles for φgggg.

C3;φ|41|23(φ, 1+, 2−, 3−, 4−) = C3;φ|23|41(φ, 1+, 2−, 3−, 4−), (5.4)

where

K"
1 = γ
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5.1 ε−2 pole checks

As a check of our amplitude, we combine the ε−2 arising from box and triangle integrals,

we find that,
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Figure 3: The three bubbles topologies appearing in the φgggg amplitudes.

coefficients of each invariant, which we checked numerically with Forde’s method [15]. We

find it most convenient to express our answer for the 2 point coefficients in terms of the

following basis of (finite) functions,

Lk(s, t) =
log (s/t)

(s − t)k
. (6.1)
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Nc

)
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2 (6.2)
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+ (2 ↔ 4) (6.3)
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6.1 ε−1 pole checks

Checking the pure 1
ε pole by summing the bubble coefficients gives:

4∑

k=1

C2;φk + C2;φkk+1 = 0 (6.5)

as expected since β0 = 0 when using the effective interaction for the Higgs.
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φ plus four parton amplitudes at one-loop

The helicity amplitudes for φ + 4g have been calculated,

H amplitude φ amplitude φ† amplitude

A(H, +, +, +, +) A(φ, +, +, +, +) (Berger,Del Duca, Dixon) A(φ†, +, +, +, +) (Badger,Glover)

A(H,−, +, +, +) A(φ,−, +, +, +) (Berger,Del Duca, Dixon) A(φ†, −, +, +, +) (Badger,Glover,Mastrolia,CW)

A(H,−,−, +, +) A(φ,−, −, +, +) (Badger,Glover,Risager) A(φ†, −,−, +, +) (Badger,Glover,Risager)

A(H,−, +, −, +) A(φ,−, +, −, +) (Glover,Mastrolia,CW) A(φ†, −, +, −, +) (Glover,Mastrolia,CW)

Whilst those with a quark pair and two gluons have also been calculated

(Q = 1−q̄ , q = 2+
q )

H amplitude φ amplitude φ† amplitude

A(H, Q, q, +, +) A(φ, Q, q, +, +) (Berger,Del Duca, Dixon) A(φ†, Q, q, +, +) (Badger,Campbell,Ellis,CW)

A(H, Q, q,−,− ) A(φ, Q, q, −,−) (Badger,Campbell,Ellis,CW) A(φ†, Q, q, −,−) (Berger,Del Duca, Dixon)

A(H, Q, q, +, −) A(φ, Q, q, +,−) (Dixon, Sofiantaos) A(φ†, Q, q, +,−) (Dixon, Sofiantaos)

A(H, Q, q,−, +) A(φ, Q, q, −, +) (Dixon, Sofiantaos) A(φ†, Q, q, −, +) (Dixon, Sofiantaos)

The H(φ)qqQQ amplitudes have also been calculated, (Ellis, Giele, Zanderighi; Dixon, Sofiantaos)

Those marked in red are the most complicated NMHV helicity amplitudes and are the

main topic of this talk.

Ciaran Williams (IPPP) H + 2j Radcor 12 / 36

http://mcfm.fnal.gov/
~10 ms/ps-point
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Optical Theorem & Berry’s Phase

The double-cut is the flux of  a 2-form.
The anholonomy phase shift is a 
consequence of  Stokes’ Theorem.

the curvature 2-form, Ω, is defined as 3,

Ω =
dz ∧ dz̄

(1 + |z|2)2 . (13)

The product Atree
L Atree

R is a rational function of z and
z̄, hence it can be written as ratio of two polynomials,
P and Q,

Atree
L (z, z̄) Atree

R (z, z̄) =
P (z, z̄)
Q(z, z̄)

, (14)

with the following relations among their degrees,

degzQ = degzP , degz̄Q = degz̄P . (15)

2. Optical Theorem

In the double-cut integral (11), we did not make
any assumptions on the tree-level amplitudes sewn
along the cut, thus providing a general framework to
the integration method developed in [8]. If we now
choose Atree

L = A∗,treem→2 , that is the conjugate scatter-
ing amplitude of a process m→ 2, and Atree

R = Atree
n→2,

that is the amplitude of a process n → 2, then ∆
reads,

∆ =
∫

d4Φ A∗,treem→2 Atree
n→2 =

= −i
[
Aone−loop

n→m −A∗,one−loop
m→n

]
=

= 2 Im
{

Aone−loop
n→m

}
, (16)

which is the definition of the two-particle disconti-
nuity of the one-loop amplitude Aone−loop

n→m across the
branch cut in the K2-channel, corresponding to the
field-theoretic version of the Optical Theorem (1) for
one-loop Feynman amplitudes.

On the other side, because of Stokes’ Theorem in
(11, 12), one has,

∆ = (1− 2ρ)
∫∫

dz ∧ dz̄
A∗,treem→2 Atree

n→2

(1 + zz̄)2
=

= (1− 2ρ)
∮

dz

∫
dz̄

A∗,treem→2 Atree
n→2

(1 + zz̄)2
, (17)

3In [8] it has been shown that the double-cut of the scalar
2-point function, ∆I2 =

R
d4Φ amounts to the integral

RR
Ω =

−2πi. This result corresponds to the integration of the first
Chern class, (i/π)

RR
Ω = 2.

which provides a geometrical interpretation of the
imaginary part of one-loop scattering amplitudes, as
a flux of a complex 2-form through a surface bounded
by the contour of the z-integral (the contour should
enclose all the poles in z exposed in the integrand
after the integration in z̄ [8]).

Given the equivalence of (16) and (17), a corre-
spondence between the imaginary part of scattering
amplitudes and the anholonomy of Berry’s phase does
emerge, since the latter is indeed defined as the flux
of a 2-form in presence of curved space [1, 2]. In
this context, one could establish a parallel descrip-
tion between the Aharonov-Böhm (AB) effect and
the double-cut of one-loop Feynman integrals.

In the AB-effect [11], an electron-beam splits with
half passing by either side of a long solenoid, be-
fore being recombined. Although the beams are kept
away from the solenoid, so they encounter no mag-
netic field (B = 0), they arrive at the recombination
with a phase-difference that is proportional to the
magnetic flux through a surface encircled by their
paths. The non-trivial anholonomy in this case is a
consequence of Stokes’ Theorem, where the 2-form
Berry curvature is written as the differential of the
1-form vector potential (∇×A).

In the case of the double-cut of one-loop Feynman
integrals, we could describe the evolution of the
system depicted in Fig.1, from the left to the right.
The two particles produced in the AL-scattering,
going around the loop and initiating the AR-process,
at the AR-interaction point would experience a
phase-shift due to the non-trivial geometry in
effective momentum space induced by the on-shell
conditions. As in the AB-effect, the anholonomy
phase-shift is a consequence of Stokes’ Theorem,
and here it corresponds to the imaginary part of the
one-loop Feynman amplitude.

– Acknowledgements. I wish to thank Mario Argeri,
Bruce Campbell, Gero von Gersdorf, Bryan Lynn,
Ettore Remiddi and Aleksi Vuorinen, for stimulating
and clarifying discussions, and Michael Berry for his
feedback on the manuscript.
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Aharonov-Bohm effect

Optical Theorem

P.M. (2009)
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Simple Geometry

• z=0 pole

i) q2 = p2 = 0

ii) Kµ≡ pµ+qµ (5)

!µ
1

=
1

(1+ zz̄)

(
pµ+ z z̄ qµ+ z

〈q|!µ|p]
2

+ z̄
〈p|!µ|q]
2

)
= pµ

is solution of the double-cut

K

p

q

• Geometric Phases
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Trees

Boxes

TrianglesR.T.
(holomorphic)

Generalised R.T.
(non-holomorphic)

Bubbles 
(Stokes’ Theorem)

Tadpoles ???
(Gauss’ Theorem) 

Global R.T.
(multivariate holomorphic)

Higher Loop
Leading Singularities

Cauchy’s Residue Theorem @ Work

Britto, Cachazo, Feng, Witten

Britto, Cachazo, Feng

P.M. Arkani-Hamed, Cachazo, Cheung, Kaplan

Forde



Seminumerical Implementation 
of Unitarity-based Methods

CutTools   
[Ossola, Papadopoulos, Pittau]

BlackHat  
[Berger, Bern, Dixon, Febres Cordero, Forde, Ita, Kosower, Maitre, Gleisberg]

Rocket 
[Giele, Zanderighi]

SAMURAI  
[Ossola, Reiter, Tramontano, P.M.]

• Recent Progress

! 2→ 4@ NLO

• pp→ tTbB [Bredenstein, Denner, Dittmaier, Pozzorini]

[Bevilacqua, Czakon, Papadopoulos, Worek]

• pp→ tT +2jets [Bevilacqua, Czakon, Papadopoulos, Worek]

• pp→ bBbB (quark-initiated) [Binoth, Greiner, Guffanti, Reuter, Guillet, T. Reiter]

• pp→W +3jets [Berger, Bern Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre]

[Ellis, Zanderighi, Melnikov]

• pp→ Z+3jets [Berger, Bern Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre]

• pp→W+W+ +2jets [Melia, Melnikov, Rontsch, Zanderighi]

! 1→ 5@ NLO

• e+e− → 5jets [Frederix, Frixione, Melnikov, Zanderighi]

! 2→ 5@ NLO

• pp→W +4jets [Berger, Bern Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre]

!... many 2→ 3 became available/refined

• pp→VV +1jet • pp→V +bB • pp→ tT +1jet • pp→VVV • e+e− → µ+µ−! • pp→H+2jet
[Kallweit, Uwer, Campbell, Binoth, Karg, Kauer, Sanguinetti, Ciccolini, Badger, Glover, P.M., Williams, Risager, Sofianatos,

Lazopoulos, Petriello, Campanario, Figy, Hankele, Oleari, Zeppenfeld, Ossola, Pittau, Wackeroth, Reina, Weinzierl, Schultze,

Actis, Van Hameren, Tramontano, ... ]
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Rat. Term: 
Effective-Tree Rules

Rat. Term:
D-dim Unit. + on-shell

Rat. Term:
D-dim Unitarity



SAMURAI

Scattering AMplitudes from Unitarity-based 
Reduction Algorithm at the Integrand-level

Ossola, Reiter, Tramontano, & P.M. (2010)



At the Integrand LevelReduction at the Integrand-level

• Reduction to a Scalar-Integral Basis Passarino-Veltman

1-Loop = c4 + c3 + c2 + c1

Z
d4q A(q) = c4
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Z
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Z
d4q
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• Unknowns: ci are rational functions of external kinematic invariants
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OPP-Integrand Reduction (in a nutshell)
OPP Integral-Reduction (in a nutshell)

Ossola, Papadopoulos, Pittau

Ellis, Giele, Kunszt

Giele, Kunszt, Melnikov

• OPP-decomposition

Am =
Z
d4q

N(q)
D0 . . .Dm−1

N(q) =
m−1

!
i0<i1<i2<i3

"i0i1i2i3(q)
m−1

#
i"=i0,i1,i2,i3

Di

+
m−1

!
i0<i1<i2

"i0i1i2(q)
m−1

#
i"=i0,i1,i2

Di

+
m−1

!
i0<i1

"i0i1(q)
m−1

#
i"=i0,i1

Di

+
m−1

!
i0

"i0(q)
m−1

#
i"=i0

Di

• "(q) are known polynomials
• ci are the constant terms of "’s

! Fitting ci by numerical evaluating N(q) at different values of q ⊕ system inversion
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Ossola, Papadopoulos, Pittau

Ellis, Giele, Kunszt

Giele, Kunszt, Melnikov

• OPP-decomposition

Am =
Z
d4q

N(q)
D0 . . .Dm−1
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"i0i1i2i3(q)
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• "(q) are known polynomials
• ci are the constant terms of "’s

! Fitting ci by numerical evaluating N(q) at different values of q ⊕ system inversion
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• q@ Quadruple-cut: Di0 = Di1 = Di2 = Di3 = 0

N(q) = !i0i1i2i3(q)
m−1

"
i"=i0,i1,i2,i3

Di
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• q@ Triple-cut: Di0 = Di1 = Di2 = 0
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"i0i1i2i3(q)
m−1

#
i"=i0,i1,i2,i3

Di

= "i0i1i2(q)
m−1

#
i"=i0,i1,i2

Di
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• q@ Double-cut: Di0 = Di1 = 0

N(q) −
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!
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#
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!
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#
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Di
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Di
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• q@ Single-cut: Di0 = 0

N(q) −
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!
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#
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Di
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solution 2: Polynomials and Discrete Fourier Transform

• OPP-reduction Ossola, Papadopoulos, Pittau (2006)

From the knowledge of the multi-variate polynomial-structure of the Integrand, all n-point coefficients

can be determined by fitting a system of polynomial equations.

Advantage ! No integration required

Pitfall ! Numerical System Inversion (!→ 0)

• Improved Reduction with DFT Ossola, Papadopoulos, Pittau, & P.M. (2008)

Pm(x) = c0+ c1x+ c2x
2+ . . . cmx

m

! step 1: sample Pm(x) at (m+1) equidistant-points on the unit-circle, Pm,k ≡ Pm(xk),

xk = e
−2"i k

(m+1) (k = 0, ...,m) .

! step 2: find ci from orthogonality (plane-waves):

c! =
1

m+1

m

#
k=0

Pm,k e
2"i k

(m+1)!
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Figure 1: Results for the 8-photon amplitude with helicity −−+ + + + ++. The continuous line
represents the analytic results of [83]. The results of samurai are produced in double-precision and
with istop=4.

By exploiting the knowledge that contributions from bubbles and rational terms will vanish,
and therefore removing these terms from the reduction, we verify an improvement on the
final result. Infact, by setting istop = 3 and isolating only the cut-constructible terms (by
subtracting totr diagram by diagram), the results of samurai turn out to be in better
agreement:

s

α3
A(−,−,+,+,+,+) = 11075.040092102 , (4.16)

s

α3
A(+,−,−,+,+,−) = 7814.7620859084 . (4.17)

As expected, the strong cancellations between the 60 diagrams spoil the precision of
the full results even if the number of good digits for this specific phase-space point can still
be considered sufficient for phenomenological studies.

4.3 Eight-photon Amplitudes

The eight-photon amplitudes [83,106,110] are an example of the functionality of samurai

for many-particle scattering.
The numerator function is written along the same lines as in the previous two sections.
In this case, the number of diagrams is 5040. We evaluate the amplitudes for two helicity
choices.
By using the same sampling set as in [106], we show in Fig.1 how the numerical result
produced with samurai in the MHV case, − − + + + + ++, are tight to the analytic
behavior [83]. The NNMHV case, − − − − + + ++, shown in Fig.2, is a new result that
confirms the structure of the amplitude discussed in [110], where only boxes do contribute.
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Figure 2: Results for the 8-photon amplitude with helicity −−−−++++, produced with samurai
in double-precision and with istop=4. 21 points are also given with samurai in quadruple-precision
and with istop=2.

4.4 Drell-Yan

Figure 3: Triangle diagram for Drell-Yan.

The one-loop correction to uū → e+e− [111, 112] is an easy example of a numerator
with ε-dependent terms. The numerator of the diagram in Fig. 3 can be cast in the form

N(q, µ2) = CF g2
s e2 ū(pe−) γµ v(pe+) v̄(pū)

[
2 (2 − d) q̄µ /̄q + [ (d − 2) q̄2

+4 (pu · q̄ − pū · q̄ − pu · pū) ] γµ
]
u(pu)

with denominators
q̄2 (q̄ + pu)2 (q̄ + pu + pe− + pe+)2 .

The value d = 4 in the expression above corresponds to the result in the Dimensional
Reduction (DR) scheme, while the choice d = 4−2ε yields an ε-dependent term, according
to the Conventional Dimensional Regularization (CDR) scheme. samurai can be used

– 20 –

!"#$%&%'(
• )*+&$,-./)012

• '3+1,-,!4,50'6,-,!

• 7898,#+5*:&0&)%'(4,%'3;,<7<8,5+3+=0'&

>?@,5+(:3&,':*+5)A033;,A$+A6+/,=(B,>0$3%',CDEEFG

• (0*#3)'1,(+&,0(,)',H%'1,+&,03,C<88!G

II>?@,5+(:3&,C'+JG,':*+5)A033;,A%'K)5*,&$+,(&5:A&:5+,,

)',L0/1+5,+&,03,C<88EG

M$+,#%)'&(,)',N:0/5:#3+,#5+A)()%',COG,$0=+,,,

P 3 3 & / )&$ ) & < ) & ) )P++',A03A:30&+/,J)&$,)(&%#-<4,)B+B,5+&0)')'1,,,

033,&$+,A:&,A%'(&5:A&P3+,0'/,50&)%'03,#)+A+(

8-Photon in QED

reproducing Mahlon, (1993) NEW, confirming Badger et al. (2009)



!"#$%&'()*+,-#./#0$'0*'$)(12

314)4$2#51+,#6,2,4$)(12#

01%&',),'7 $*)1%$),+01%&',),'7#$*)1%$),+#

)8$29-#)1#$2#

(2:4$-)4*0)*4,#+,4(;,+#

: < ' = .:41%#<1',%>=/.

!"#$%&!!' ()*)+*,)()

SamuraiNumerical Evaluation

call reduction

call numerator

Code Generation

Symbolic Manipulation

Diagram Generation

QGraf

FORM

haggies

Figure 6: Schematic overview of the generation of the numerator. The boxes correspond to the
steps required for the generation of the numerator for a given process using Feynman diagrams.
The actual implementations we have used for each step are given in rounded rectangles (see text).
The dashed arrows indicate control flow, plain arrows indicate data flow.

We work with the helicity projections of the amplitude which are decomposed into
subamplitudes formed by the sum of all diagrams sharing the same set of denominators.
The color information is hidden from the reduction by defining the numerators of the
subamplitudes, N (i)(q̄, ε), as the contraction of the numerators of the one-loop diagrams
with the tree-level amplitude. If we call N{i1i2...in} the numerator stemming from the sum
of all diagrams which have (exactly) the denominator D̄i1D̄i2 · · · D̄in , the corresponding
subamplitude would be

N (i)(q̄, ε) = A†
born · N{i1i2...in}. (4.24)

In our implementation this product is done numerically and does therefore not add to the
complexity of the expressions. In cases where the tree-level matrix element vanishes, one
can always find an appropriate set of color projectors P†

IPI into one-dimensional subspaces
such that

A†
n · An =

∑

I

(PIAn)† · (PIAn). (4.25)

where PI correspond to Wigner-Eckhard symbols. In the cases with no external color, the
only projection is P0 = 1. The objects PI · N{i1i2...in} hence are the objects that undergo
the reduction.

Optionally, one can also group larger sets of diagrams into subamplitudes by also
considering diagrams which contain a subset of the maximal set of denominators. The
numerator of the corresponding subamplitude in the latter sense would be

N (i) =
[
N{i1i2...in} + D̄inN{i1i2...in−1} + D̄in−1N{i1...in−2in} + . . .

+D̄i1D̄i2 · · · D̄in−2D̄nN{in−1} + D̄i1D̄i2 · · · D̄in−1N{in}
]
· A†

born. (4.26)
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Figure 7: Estimate for the precision obtained from the difference between the single (resp. double)
poles of the virtual amplitude and those of the integrated dipoles for q1q̄1 → q2q̄2q2q̄2. The results
have been obtained by integrating 105 phase-space points at

√
s = 14 TeV, where we have used

cuts on pT > 30 GeV and the rapidity η < 2.5 as well as a separation cut of ∆R > 0.8 between
the final state particles. We used the CTEQ6m [124] PDF set with two-loop running for αs with a
renormalisation scale of µ =

√∑
i pT (i)2.

We discussed its application to a series of examples such as the 4-, 6-, and 8-photon
scattering amplitudes in QED, the QCD virtual corrections to Drell-Yan, the leading
color amplitude for V + 1jet production, the six-quark amplitudes, and contributions from
massive-scalar loop to the all-plus helicity 5- and the 6-gluon amplitudes. For the six-
quark scattering q1q̄1 → q2q̄2q3q̄3, we also considered a fully automated reduction, from the
integrand generation to the final result.

Given the versatility of the code, samurai may constitute a useful module for the
systematic evaluation of the virtual corrections, oriented towards the automation of next-
to-leading order calculations relevant for the LHC phenomenology.

The reduction library libsamurai and the examples are publicly available at the web-
page:

http://cern.ch/samurai
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Tensorial Decomposition

Dealing with unstable-points

Tensor Decomposition of  N(q): numerical sampling 

Numerical evaluation of  Tensor integrals: Golem 95

Heinrich, Ossola, Reiter, Tramontano

We first focus on the part of the numeratorN (q) that depends only on the 4-dimensional

part of the loop momentum q. Let’s assume that the numerator has at most R powers in

the integration momentum q. We aim at building numerically the tensorial representation

which reproduces N (q) before integration for each value of q. In the most general case, we

have an expression of the form

N (q) =
R
∑

r=0

Cµ1...µr
qµ1 . . . qµr

, (2.2)

where for each r the set of coefficients Cµ1...µr
forms a contravariant tensor (we keep

lower indices for convenience) and the contraction is performed with the Euclidean metric

(1, 1, 1, 1). For r = 0, we indicate the constant term as C0. We observe that the reconstruc-

tion of Eq. (2.2), namely the calculation of all coefficients Cµ1...µr
, is independent of the

number of denominators D̄i appearing in the original amplitude. It will however depend

on the specific phase space point or helicity configuration that we want to process, in the

same way as the numerator functions of other numerical methods.

In order to determine all the coefficients, we can simply evaluate both sides of Eq. (2.2)

for an arbitrary set of values of the integration momentum. Those values can be chosen

as real four-momenta, thus allowing the treatment of numerators depending on a real

integration momentum.

It is useful to rewrite N (q) by separating the tensorial components. Each of the terms

in Eq. (2.2) can be written as a multivariate polynomial in the components of q, where q4
denotes the energy component

Cµ1...µr
qµ1 · · · qµr

=
∑

(i1,i2,i3,i4)!r

Ĉ(r)
i1 i2 i3 i4

· (q1)
i1(q2)

i2(q3)
i3(q4)

i4 . (2.3)

Here, the notation ! indicates that the indices ij have to form an integer partition of r.

We can now compute the coefficients Ĉ(r); the conversion from Ĉ "→ C is easy since

each component of Cµ1...µr
contributes to one particular Ĉ(r)

i1...i4
where the tuple (µ1, . . . , µr)

contains exactly ij occurrences of the number j. Conversely, when contracting the ten-

sor Cµ1...µr
with a tensor integral of rank r, one has to take into account that Ĉ(r)

i1...i4

already sums over
(
∑4

j=1 ij
)

!
∏4

j=1(ij)!

symmetric components of C. For both C and Ĉ(r) the number of independent components

in four dimensions is

nr =

(
4 + r − 1

r

)

(2.4)

and therefore nr = {1, 4, 10, 20, 35, 56, 82} for r = 0, 1, . . . 6 respectively.

To reconstruct the tensorial coefficients of Eq.(2.2) we will then consider the numerator

for four-dimensional loop momentum q, N (q) = N (x, y, z, w), as a multivariate polynomial

of degree R in the four variables x, y, z and w, being the components of q, i.e. qµ =

– 4 –

In this Section however we explore different uses of the tensorial decomposition, in

particular the advantages that this method can bring when combined with other advanced

approaches for the reduction of one-loop amplitudes, such as OPP/d-dimensional unitarity.

3.1 Dealing with unstable points

One of the major challenges for the new reduction methods, in particular when compared

to algebraic reduction techniques, is to deal efficiently and automatically with phase space

points which are numerically unstable. This is typically in the proximity of a vanishing

Gram determinant.

All the points that do not pass the reconstruction/stability test within any chosen re-

duction algorithm can be reprocessed by using the technique presented here. The tensorial

reconstruction avoids the reduction to scalar integrals and thus the emergence of Gram

determinants; on the other hand, the technique requires the evaluation of tensor integrals,

which is in general more time consuming.

In order to approach continuously a kinematic configuration that is numerically unsta-

ble, we consider a 4-point rank 4 diagram made of a fermion loop with two massless and

two massive vector particles attached to it. We approach the phase space configuration of

a vanishing Gram determinant by taking the limit Q → 0 within the kinematics

p1,2 = (E, 0, 0,±E) p21,2 = 0

p3,4 = (E, 0,±Q sin θ,±Q cos θ) p23,4 = m2

where E =
√

m2 +Q2 changes with Q, while θ and m2 are kept constant (in the follow-

ing plots we set θ = 35
180π and m2 = 7). The Gram determinant is given by detG =

32E4Q2 sin2 θ, while detS, the modified Cayley determinant, goes to a constant as Q → 0.

γ(p1)

γ(p2)

γ
∗(p4)

γ
∗(p3)

Figure 1: For the example in this section we use the above diagram in QED with two massless
and two off-shell photons attached to a massless fermion loop.

The calculation is performed with samurai, using a standard d-dimensional integrand-

level reduction; the results are compared to the improved tensorial technique where we

employ Golem 95 for the evaluation of the tensor integrals.

We present the case of a four-point function because this is typically the case in which

the Gram determinant issue shows up. We would like to note that for kinematics far from

a vanishing Gram determinant, the new method based on tensorial reconstruction and

samurai have similar performances; however, for diagrams with more than four legs, the
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performance of samurai with “standard” reduction at the integral level is naturally better

in these “safe” phase space regions.

As shown in the top panel of Figure 2, at a certain value of detG/detS, the standard

reduction technique starts deviating from the stable result obtained by the improved tensor

reconstruction, exhibiting the sensitivity to the vanishing Gram determinant.
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Figure 2: Top panel: Comparison between standard reduction at the integrand level (Standard)
and tensorial reconstruction combined with an evaluation of the tensor integrals (Tensorial). The
standard method starts deviating from the correct result at detG/ detS ≈ 10−7, the standard
method with quadruple precision (see the text) starts deviating at detG/ detS ≈ 10−8, while the
tensorial method remains stable over the whole range. Middle panels: the behaviour of tests that
trigger the detection of instabilities. Bottom panel: timing of tensorial reduction in double precision
versus standard reduction in quadruple precision, normalized by the timing of standard reduction
in double precision.

The price to pay for the improved stability is an increased run time. The bottom panel

of Figure 2 shows the timing evaluated for the tensorial reconstruction method in double
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Summary: Unitarity-based Methods

Analytic Integration and Theory of  Complex Functions

Integration by Series Expansion (Newton’s legacy)

relevant for LHC-Phenomenology: H+2jets in gluon fusion (heavy-top limit) 

relevant for unveiling hidden structures of  QFT

Light-bulbs were not invented by improving candles
T.W. Haensch

Seminumerical tool for NLO: CutTools, BlackHat, Rocket, ...
SAMURAI: working within Diagrammatic & Unitarity-based approaches
applied to: 4-, 6-, 8-photon; Drell-Yan; V+1jet;  5-, 6-gluon; 6-quark; W+2jets prod.
public Fortran library:

amplitudes, as adopted in the framework of unitarity-based techniques.
For a complete reconstruction of the rational term, the input should contain an explicit
dependence on the dimensional-regularization parameters. In fact, it is expected to have a
polynomial behavior in µ2, being µ the radial integration variable in the extra-dimensional
subspace, and in ε ( = (4 − d)/2 ) according to the choice of the regularization scheme.
The result is given as Laurent expansion in ε up to the finite-order, and accounts for the
full rational terms.

samurai is implemented as a Fortran90 library, publicly available at the webpage:

http://cern.ch/samurai

and it is linked to OneLOop [78] and QCDLoop [95] for the numerical evaluation of the MI.
We applied it to a series of known processes, like the four-, six-photon and eight-photon
scattering in QED, the QCD virtual corrections to Drell-Yan, to the leading-color am-
plitude for V + 1jet production, to the six-quark scattering, q1q̄1 → q2q̄2 q3q̄3, and to the
contributions of the massive-scalar loop-diagrams to the all-plus helicity five- and six-gluon
scattering.
In particular, for the virtual corrections to q1q̄1 → q2q̄2 q3q̄3 [52], we also considered the
reduction of automatically generated integrands, by interfacing samurai with an infras-
tructure derived from golem-2.0 [96], which provides numerators of Feynman integrals.
These examples are thought to be used both as a guide to understand the samurai frame-
work, and as templates to generate the codes for other calculations.

In the context of collaborations among different groups aiming at automated NLO cal-
culations relevant for LHC phenomenology [97], and, therefore, providing complementary
structures to be interfaced [98], samurai could constitute the module for the systematic
evaluation of the virtual corrections.

The paper is organized as follows. The reduction algorithm is discussed in Section 2;
Section 3 describes the key-points of the samurai library, while a series of applications are
illustrated in Section 4. In Section 5, we resume our conclusions.

2. Reduction Algorithm

The reduction method is based on the general decomposition for the integrand of a generic
one-loop amplitude, originally proposed by Papadopoulos, Pittau and one of us [80, 89],
and later extended by Ellis, Giele, Kunszt and Melnikov [87, 88]. Within the dimensional
regularization scheme, any one-loop n-point amplitude can be written as

An =
∫

ddq̄ A(q̄, ε) ,

A(q̄, ε) =
N (q̄, ε)

D̄0D̄1 · · · D̄n−1
,

D̄i = (q̄ + pi)2 − m2
i = (q + pi)2 − m2

i − µ2, (p0 #= 0) . (2.1)

We use a bar to denote objects living in d = 4− 2ε dimensions, following the prescription

/̄q = /q + /µ , with q̄2 = q2 − µ2 . (2.2)
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Jetty backgrounds at LHC demand quantitative control
NLO QCD results are mandatory
Novel methods for One-Loop Amplitudes based on Unitarity and Analiticity are
giving results



Unitarity & Cutting Rules

• Optical Theorem from Unitarity S≡ 1+ iT : S†S= 1 ⇒ 2ImT = −i(T −T †) = T †T

• One-loop Amplitude:

A1-loopn = 1−loop = c4 + c3 + c2 + c1

• Discontinuity of Feynman Amplitudes Cutkosky-Veltman; Bern, Dixon, Dunbar & Kosower

2Im
{
A1-loopn

}
= tree

i

j

tree

!1

!2

= c4 + c3 + c2

on− shell condition :
1

(!2i −m2i + i0)
→ !

(
!2i −m2i

)
(i= 1,2)

Method ! Matching the cuts of any amplitudes onto the cuts of Master Integrals

Advantage 1 ! iterative construction: one-loop amplitudes by sewing tree-level amplitudes

Advantage 2 ! simplified input: tree-amplitudes vs Feynman graphs
tree-amplitudes are gauge-invariant on-shell quantities,

corresponding to sums of off-shell Feynman diagrams.
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One-Loop amplitudes...

...out of  bottleneck !?!


