PROGRESS IN PERTURBATIVE QCD: TOOLS \& RESULTS @ NLO

PIERPAOLO MASTROLIA
CENTRO ENRICO FERMI, ROMA
DIP. DI FISICA, UNIVERSITA' DI SALERNO INFN, NAPOLI

LC10 - INFN LNF - 02.12.2010

ORGANIZING COMMITTEES CONVENERS AND ADVISORY COMMITTEE ELENA ACCOMANDO MARCO BATTAGLA FRANGESCA BORZUMATI CARLO CARLONI GALAME
DENIS COMELLI GENNARO CORGELLA ALDO DEANDREA GIUSEPPE DEGRASSI Ezio MAINA MASSIMO PASSERA FULVIO PICCININI MARCO RICGI

ORGANIZING COMMITTEE

STEFANIA DE CURTIS
STEFANO MORETTI
GIULIA PANCHERI
ORLANDO PANELLA
MARCELLO PICCOLO

LOCAL ORGANIZING COMMITTEE

GIULIA PANCHERI
MARCELLO PICCOLO
MARCO RICCI

SECRETARY

Maria Cristina D'Amato
Tel: +390694032373 , Fax: +390694032475

Corso di formazione INFN

INFN - Laboratori Nazionali di Frascati 30th November - $3^{\text {rd }}$ December 2010

ORGANIZING COMMITTEES CONVENERS AND ADVISORY COMMITTEE ELENA ACCOMANDO MARCO BATTAGLA
FRANCESCA BORZUMATI CARLO GARLONI GALAME
DENIS COMELLI
GENNARO CORGELLA
ALDO DEANDREA GIUSEPPE DEGRASSI Ezio MAINA
MASSIMO PASSERA FULVIO PICCININJ MARCO RICCI

ORGANIZING COMMITTEE

STEFANIA DE CURTIS
STEFANO MORETTI
GIULIA PANCHERI
ORLANDO PANELLA
MARCELLO PICCOLO

LOcAL ORGANIZING COMMITTEE

GIULIA PANCHERI
MARCELLO PJCCOLO
MARCO RICCI

SECRETARY

Maria Cristina D'Amato
Tel: +390694032373 , Fax: +390694032475

INFN - Laboratori Nazionali di Frascati 30th November - $3^{\text {rd }}$ December 2010

Tuscolo: Teatro

ORGANIZING COMMITTEES CONVENERS AND ADVISORY COMMITTEE ELENA ACCOMANDO MARCO BATTAGLA FRANGESCA BORZUMATI CARLO CARLONI GALAME
DENIS COMELLI GENNARO CORGELLA ALDO DEANDREA GIUSEPPE DEGRASSI Ezio MAINA
MASSIMO PASSERA FULVIO PICCININJ MARCO RICCI

ORGANIZING COMMITTEE

STEFANIA DE CURTIS
STEFANO MORETTI
GIULIA PANCHERI
ORLANDO PANELLA
MARCELLO PICCOLO

LOCAL ORGANIZING COMMITTEE

GIULIA PANCHERI
MARCELLO PICCOLO
MARCO RICCI

SECRETARY

Maria Cristina D'Amato
Tel: +390694032373 , Fax: +390694032475

INFN - Laboratori Nazionali di Frascati 30th November - $3^{\text {rd }}$ December 2010

Corso di formazione INFN

Tuscolo: Teatro
htip://www.Inf́.infn.it/conference/lc 10

OUTLINE

- Motivation and State-of-the art
- Unitarity-based Methods vs Theory of Complex Functions
- Analytic Techniques
- Seminumerical Tools
- SAMURAI
a tool for the seminumerical evaluation of one-loop amplitudes
- Conclusion

WHY NLO ?

- Less Sensitivity to unphysical input scales (renormalization \& factorization)
- first predictive normalization of observables at NLO
- more accurate estimates of backgrounds to new-physics
- confidence on cross-sections for precision measurements
- More realistic process modeling
- initial state radiation
- jet clustering
- richer virtuality
- Crossing path with other techniques
- matching with resummed calculations
- NLO parton showers

Where NLO ?

Front-line in Theoretical Particle Physics
@ LHC Phenomenology

Signals:

- Decays: $H \rightarrow V V \quad(V=\gamma, W, Z)$
- $P P \rightarrow H+0,1,2$ jets (Gluon Fusion)
- $P P \rightarrow H+2$ jets (Weak Boson Fusion)
- $P P \rightarrow H+t \bar{t}$
- $P P \rightarrow H+W, Z$

Backgrounds:

- $P P \rightarrow t \bar{t}+0,1,2$ jets
- $P P \rightarrow V V+0,1,2$ jets
- $P P \rightarrow V+0,1,2,3$ jets
- $P P \rightarrow V V V+0,1,2,3$ jets

Where NLO ?

\odot
Front-line in Theoretical Particle Physics
@
LHC Phenomenology
@ QFT Stucture

- ElectroWeak Symmetry Breaking: Higgs mechanism
- Beyond the Standard Model (SuSy, Dark Matter, ...)
- Unveiling the Iterative Structure of Scattering Amplitudes in gauge-Theory

Anastasiou, Bern, Dixon, Kosower Bern, Dixon, Smirnov;
Bern, Czakon,Dixon, Kosower;
Beisar, Eden, Staudacher;
Drummond, Korchemsky, Sokatchev; Brandhuber, Heslop, Travaglini;
Alday, Maldacena;
Roiban, Spradlin, Volovich;

Where NLO ?

\odot

Front-line in Theoretical Particle Physics

@ LHC Phenomenology
@ QFT Stucture

- ElectroWeak Symmetry Breaking: Higgs mechanism
- Beyond the Standard Model (SuSy, Dark Matter, ...)
- Unveiling the Iterative Structure of Scattering Amplitudes in gauge-Theory
- Exploring the Finiteness of Supergravity


```
Bern, Dixon, Kosower, Perlestein, Rozowski, Roiban;
Bern, Bjerrum-Borh, Dunbar, Ita, Perkins, Risager;
Chalmers; Green, Vanhove, Russo;
Badger, Bjerrum-Borh, Vanhove,
Bern, Carrasco, Johanson;
Arkani-Hamed, Cachazo, Kaplan;
```


RECENT PROGRESS

$\triangleright 2 \rightarrow 4$ @ NLO

- $p p \rightarrow t T b B$ [Bredenstein, Denner, Dittmaier, Pozzorini]
[Bevilacqua, Czakon, Papadopoulos, Worek]
- $p p \rightarrow t T+2$ jets [Bevilacqua, Czakon, Papadopoulos, Worek]
- $p p \rightarrow b B b B$ (quark-initiated) [Binoth, Greiner, Guffanti, Reuter, Guillet, T. Reiter]
- $p p \rightarrow W+3$ jets [Berger, Bern Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre]
[Ellis, Zanderighi, Melnikov]
- $p p \rightarrow Z+3$ jets [Berger, Bern Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre]
- $p p \rightarrow W^{+} W^{+}+2$ jets [Melia, Melnikov, Rontsch, Zanderighi]
$\triangleright 1 \rightarrow 5$ @ NLO • $e^{+} e^{-} \rightarrow$ 5jets [Frederix, Frixione, Melnikov, Zanderighi]
$\triangleright 2 \rightarrow 5 @ \mathrm{NLO} \bullet p p \rightarrow W+4$ jets [Berger, Bern Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre]
$\triangleright \ldots$ many $2 \rightarrow 3$ became available/refined
$\bullet p p \rightarrow V V+1$ jet $\bullet p p \rightarrow V+b B \bullet p p \rightarrow t T+1$ jet $\bullet p p \rightarrow V V V \bullet e^{+} e^{-} \rightarrow \mu^{+} \mu^{-} \gamma \bullet p p \rightarrow H+2$ jet [Kallweit, Uwer, Campbell, Binoth, Karg, Kauer, Sanguinetti, Ciccolini, Badger, Glover, P.M., Williams, Risager, Sofianatos, Lazopoulos, Petriello, Campanario, Figy, Hankele, Oleari, Zeppenfeld, Ossola, Pittau, Wackeroth, Reina, Weinzierl, Schultze, Actis, Van Hameren, Tramontano, ...]
\triangleright some analytic results
- $g g \rightarrow g g g g$ (QCD-virtual) Bern, Dixon, Dunbar, Kosower '96; ... (we are here) ...; Xiao, Yang, Zhu '08
- $\quad \gamma \gamma \rightarrow \gamma \gamma \gamma \gamma$ (QED-virtual) Mahlon' 96; Binoth, Gehrmann, Heinrich, P.M. '07
- $p p \rightarrow H+2$ jets (QCD-Virtual)
[Badger, Berger, Campbell, Del Duca, Dixon, Ellis, Glover, Risager, Sofianatos, Williams, Zanderighi, P.M.]
- $u \bar{d} \rightarrow W b B$ (massive b-pair) [Badger, Campbell, Ellis]

QCD dynamics of $t \bar{t} H / t \bar{t} b \bar{b}$ completely different

LO and NLO scale dependence of $\sigma_{\mathrm{t} \overline{\mathrm{t}} \mathrm{b} \overline{\mathrm{b}}}$
Variations around new central scale

$$
\mu_{0}^{2}=m_{\mathrm{t}} \sqrt{p_{\mathrm{T}, \mathrm{~b}} p_{\mathrm{T}, \overline{\mathrm{~b}}}}
$$

Good news for theory: improved convergence

[^0][Bredenstein, Denner, Dittmaier, Pozzorini]
Bad news for experiment: $\sigma_{t \bar{t} b \bar{b}}$ enhanced by factor 2.2 ${ }^{a}$ wrt LO ATLAS simulations

$\sigma_{\mathrm{t} \overline{\mathrm{t}} \overline{\mathrm{b}}}$	LO	NLO	$\mathrm{NLO} / \mathrm{LO}$
$\mu_{\mathrm{R}, \mathrm{F}}=E_{\mathrm{thr}} / 2$	449 fb	751 fb	1.67
$\mu_{\mathrm{R}, \mathrm{F}}^{2}=m_{\mathrm{t}} \sqrt{p_{\mathrm{T}, \mathrm{b}} p_{\mathrm{T}, \overline{\mathrm{b}}}}$	786 fb	978 fb	1.24

- $p p \rightarrow t T+2 \mathrm{jets}$

For the evaluation of the NLO corrections, we have used the CTEQ6M parton distribution functions with NLO running of the strong coupling constant. At the central scale $\mu_{0}=m_{t}$, we obtain

$$
\sigma_{p p \rightarrow t \bar{t} j j+X}^{\mathrm{NLO}}=(106.94 \pm 0.17) \mathrm{pb}
$$

[Bevilacqua, Czakon, Papadopoulos, Worek]

FIG. 2: Scale dependence of the total cross section for $p p \rightarrow$ $t \bar{t} j j+X$ at the LHC with $\mu_{R}=\mu_{F}=\xi \cdot \mu_{0}$ where $\mu_{0}=m_{t}$. The blue dotted curve corresponds to the LO, the red solid to the NLO result whereas the green dashed to the NLO result with a jet veto of 50 GeV .

- $e^{+} e^{-} \rightarrow 5 \mathrm{jets}$

$$
\alpha_{s}\left(M_{Z}\right)=0.1156_{-0.0034}^{+0.0041}
$$

Figure 3: ALEPH LEP1 data compared to leading and next-to-leading order predictions in QCD, without hadronization corrections. We use $\alpha_{s}\left(M_{Z}\right)=0.130$ at the leading and $\alpha_{s}\left(M_{Z}\right)=0.118$ at the next-to-leading order in perturbative QCD. The renormalization scale is chosen to be $0.3 M_{Z}$. The uncertainty bands are obtained by considering the scale variation $0.15 M_{Z}<\mu<0.6 M_{Z}$. Solid lines refer to NLO QCD results evaluated with $\mu=0.3 M_{Z}$.
[Frederix, Frixione, Melnikov, Zanderighi]
[Berger, Bern Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre]

- $p p \rightarrow Z+3 \mathrm{jets}$

- $p p \rightarrow W+4 \mathrm{jets}$

FIG. 3: The H_{T} distribution for $W^{-}+4$ jets.
$\mu=\hat{H}_{T}^{\prime} / 2$, where $\hat{H}_{T}^{\prime}{ }^{\wedge}=\sum_{j} p_{T}^{j}+E_{T}^{W} \quad E_{T}^{W}=\sqrt{M_{W}^{2}+\left(p_{T}^{W}\right)^{2}}$

Higgs +2 jets it

- arXiv:0608194v2 was based on a semi-numerical method of calculation of virtual corrections. Code was never released.
- now updated in arXiv:1001.4495
(Campbell,Ellis,Williams), to use compact, analytic expressions for virtual amplitudes.
- Much faster code, obtainable in MCFMv5.7 or greater,
- $\sim 5 \mathrm{~ms}$ per virtual point, (2.66GHz iMac, gfortran, no opt.)
- Fast enough to include Higgs decays, such as $\mathrm{H} \rightarrow \mathrm{WW}^{*} \rightarrow$ Ilvv.

$p_{t}($ jet $)>40 \mathrm{GeV}, \quad\left|\eta_{\text {jet }}\right|<4.5, \quad R_{\text {jet, jet }}>0.8$
$p_{t}($ jet $)>40 \mathrm{GeV}, \quad\left|\eta_{\text {jet }}\right|<4.5, \quad R_{\text {jet, jet }}>0.8$
$p_{t}($ jet $)>40 \mathrm{GeV}, \quad\left|\eta_{\text {jet }}\right|<4.5, \quad R_{\text {jet, jet }}>0.8$

Ellis

Figure 1: Scale dependence for the Higgs +2 jet cross section, with the Higgs decay into $W^{-}\left(\rightarrow \mu^{-} \bar{\nu}\right) W^{+}\left(\rightarrow \nu e^{+}\right)$, at the Tevatron and using the a central scale $\mu_{0}=M_{H}$. Results are shown for the minimal set of cuts in Eq. (2) (upper curves) and for cuts that mimic the latest CDF $H \rightarrow W W^{\star}$ analysis (lower curves).

NLO BUILDING BLOCKS

区 tree-graphs with $(\mathrm{n}+1)$-partons
soft/collinear divergences

- virtual-graphs with n-partons

$$
\geqslant<I^{\mu \nu \rho \ldots}=\int d^{D} \ell \frac{\ell^{\mu} \ell^{v} \ell^{\rho} \ldots}{D_{1} D_{2} \ldots}
$$

■ extracting IR-singularities from both and combining them
$\not \approx$ phase-space slicing, subtractions, dipoles, antennas

FEYNMAN INTEGRALS COMPLEXITY

Passarino-Veltmann

reduction

All-plus photon helicity-amplitude $=-8+\mathrm{O}(\boldsymbol{\epsilon})$

Looking for Simplicity behind Complexity?

Looking for Simplicity behind Complexity?

Use simple tools!

The Dawn of Simplicity

- momentum of propagating particles

Parametrization in terms of the Isotropic Tetrads [Anderev, Bondarev]

$$
\begin{aligned}
& \ell_{\mu}=x_{1} p_{\mu}+x_{2} q_{\mu}+x_{3} \varepsilon_{\mu}^{+}+x_{4} \varepsilon_{\mu}^{-} \\
& q^{2}=p^{2}=\varepsilon^{ \pm 2}=0=\varepsilon^{ \pm} \cdot p=\varepsilon^{ \pm} \cdot q
\end{aligned}
$$

Pittau, de l'Aguila
Ossola, Papadopoulos, Pittau

- Spinor-notation

$$
\begin{array}{ll}
p_{\mu}=\frac{\left.\langle p| \gamma_{\mu} \mid p\right]}{2}, & q_{\mu}=\frac{\left.\langle q| \gamma_{\mu} \mid q\right]}{2} \\
\varepsilon_{\mu}^{+}=\frac{\left.\langle q| \gamma_{\mu} \mid p\right]}{2}, & \varepsilon_{\mu}^{-}=\frac{\left.\langle p| \gamma_{\mu} \mid q\right]}{2}
\end{array}
$$

One-Loop ScAtTERing Amplitudes

- n-particle Scattering: $1+2 \rightarrow 3+4+\ldots+n$
- Reduction to a Scalar-Integral Basis Passarino-Veltman

- Known: Master Integrals [QCDLoop - AvH_OLO - GOLEM]
$\square=\int d^{D} \ell \frac{1}{D_{1} D_{2} D_{3} D_{4}}, ~ \searrow=\int d^{D} \ell \frac{1}{D_{1} D_{2} D_{3}}, \quad \supseteq=\int d^{D} \ell \frac{1}{D_{1} D_{2}}, \quad \complement=\int d^{D} \ell \frac{1}{D_{1}}$
- Unknowns: c_{i} are rational functions of external kinematic invariants

ANALYTIC UNITARITY-METHODS

Important for Phenomenology
Crossing path with Numerical Methods

- Important for understanding the structure of QFT

PROCESS-INDEPENDENT STRATEGY

* Properties of the S-Matrix
- a general mathematical property: Analyticity of Scattering-Amplitudes
\triangleright Scattering Amplitudes are determined by their poles and branch-cuts
- a general physical property: Unitarity of Scattering-Amplitudes
\triangleright The residues at poles and branch-points are products of simpler amplitudes, with lower number of particles and/or less loops

CUTTing RULES

- Discontinuity of Feynman Integrals Landau \& Cutkosky

Cut Integral in the P_{12}^{2}-channel

$$
d^{4} \Phi=d^{4} \ell_{1} d^{4} \ell_{2} \delta^{(4)}\left(\ell_{1}+\ell_{2}-P_{12}\right) \delta^{(+)}\left(\ell_{1}^{2}\right) \delta^{(+)}\left(\ell_{2}^{2}\right)
$$

UNITARITY \& CUTTING RULES

- Optical Theorem from Unitarity $S \equiv 1+i T: \quad S^{\dagger} S=1 \quad \Rightarrow \quad 2 \operatorname{Im} T=-i\left(T-T^{\dagger}\right)=T^{\dagger} T$
- One-loop Amplitude:

- Discontinuity of Feynman Amplitudes Cutkosky-Veltman; Bern, Dixon, Dunbar \& Kosower

Method \triangleright Matching the cuts of any amplitudes onto the cuts of Master Integrals
Advantage $1 \triangleright$ iterative construction: one-loop amplitudes by sewing tree-level amplitudes
Advantage $2 \triangleright$ simplified input: tree-amplitudes vs Feynman graphs tree-amplitudes are gauge-invariant on-shell quantities, corresponding to sums of off-shell Feynman diagrams.

The Strategy: Generalised Unitarity

- One-loop Amplitude:

Replacing the original amplitude with simpler integrals fulfilling the same algebraic decomposition

Bern, Dixon, Dunbar, Kosower

Bern, Dixon, Dunbar, Kosower
 Brandhuber, McNamara, Spence, Travaglini Britto, Buchbinder, Cachazo, Feng, \oplus P.M. Anastasiou, Britto, Feng, Kunszt, P.M.

$=\quad c_{4}$

CUT-CONDITIONS

- Loop momentum decomposition

$$
q^{2}=p^{2}=\varepsilon^{ \pm 2}=0=\varepsilon^{ \pm} \cdot p=\varepsilon^{ \pm} \cdot q, \quad \ell_{\mu}=x_{1} p_{\mu}+x_{2} q_{\mu}+x_{3} \varepsilon_{\mu}^{+}+x_{4} \varepsilon_{\mu}^{-}
$$

- under Multiple On-shellness Conditions :
- On-shell condition
- the loop-momentum becomes complex ;
- some of its components (if not all) are frozen;
- the left over free components are integration-variable

$$
\delta\left(\ell_{i}^{2}-m_{i}^{2}\right)
$$

CUT-CONDITIONS

- Loop momentum decomposition

$$
q^{2}=p^{2}=\varepsilon^{ \pm 2}=0=\varepsilon^{ \pm} \cdot p=\varepsilon^{ \pm} \cdot q, \quad \ell_{\mu}=x_{1} p_{\mu}+x_{2} q_{\mu}+x_{3} \varepsilon_{\mu}^{+}+x_{4} \varepsilon_{\mu}^{-}
$$

- under Multiple On-shellness Conditions :
- On-shell condition
- the loop-momentum becomes complex ;
- some of its components (if not all) are frozen;
- the left over free components are integration-variable

$$
\delta\left(\ell_{i}^{2}-m_{i}^{2}\right)
$$

- Closer look at the Integrand Structure

Numerator and denominator of the n-particle cut-integrand are mutivariate-polynomials in ($4-n$) complex-variables:

$$
\mathrm{Cut}_{n}=\oint d x_{1} \ldots d x_{4-n} \frac{P\left(x_{1}, \ldots, x_{4-n}\right)}{Q\left(x_{1}, \ldots, x_{4-n}\right)}
$$

\triangleright Contour Integrals of Rational Functions ~ Integrals by partial fractioning

- Residue Theorem

$$
\frac{1}{2 \pi i} \int_{\gamma} f(z) d z=\sum_{i=1}^{n} \operatorname{Res}\left(f, z_{i}\right)
$$

QUADRUPLE-CUT

Britto, Cachazo, Feng (2004)
The discontinuity across the leading singularity, via quadruple cuts, is unique, and corresponds to the coefficient of the master box

- 4PLE-cut integrand: $I_{4}(\ell)=A_{1}^{\text {tree }} \times A_{2}^{\text {tree }} \times A_{3}^{\text {tree }} \times A_{4}^{\text {tree }}$
- Momentum-decomposition ansatz: $\ell_{\mu}=\alpha_{1} p_{\mu}+\alpha_{2} q_{\mu}+\alpha_{3} \frac{\left.\langle q| \gamma_{\mu} \mid p\right]}{2}+\alpha_{4} \frac{\left.\langle p| \gamma_{\mu} \mid q\right]}{2}$

$$
p^{\mu}=\frac{K_{1}^{\mu}-\left(K_{1}^{2} / \gamma\right) K_{2}^{\mu}}{1-\left(K_{1}^{2} K_{2}^{2} / \gamma\right)}, \quad q^{\mu}=\frac{K_{2}^{\mu}-\left(K_{2}^{2} / \gamma\right) K_{1}^{\mu}}{1-\left(K_{1}^{2} K_{2}^{2} / \gamma\right)}, \quad q^{2}=p^{2}=0,
$$

- Cut-conditions: $D_{1}=D_{2}=D_{3}=D_{4}=0 \quad \Leftrightarrow \quad$ coefficient constraints
- Solutions: $\ell_{\mu}^{ \pm}=\alpha_{1} p_{\mu}+\alpha_{2} q_{\mu}+\alpha_{3}^{ \pm} \frac{\left.\langle q| \gamma_{\mu} \mid p\right]}{2}+\alpha_{4}^{ \pm} \frac{\left.\langle p| \gamma_{\mu} \mid q\right]}{2}$

$$
c_{\left[K_{1}\left|K_{2}\right| K_{3} \mid K_{4}\right]}=\frac{I_{4}\left(\ell_{+}\right)+I_{4}\left(\ell_{-}\right)}{2}
$$

TRIPLE-CUT

- 3ple-cut integrand: $I_{3}(\ell)=A_{1}(\ell) \times A_{2}(\ell) \times A_{3}(\ell)$
- Loop-Momentum decomposition:

$$
\ell_{\mu}=\alpha_{1} p_{\mu}+\alpha_{2} q_{\mu}+t \frac{\left.\langle q| \gamma_{\mu} \mid p\right]}{2}+\frac{\alpha_{1} \alpha_{2}}{t} \frac{\left.\langle p| \gamma_{\mu} \mid q\right]}{2}
$$

$$
p^{\mu}=\frac{K_{1}^{\mu}-\left(K_{1}^{2} / \gamma\right) K_{2}^{\mu}}{1-\left(K_{1}^{2} K_{2}^{2} / \gamma\right)}, \quad q^{\mu}=\frac{K_{2}^{\mu}-\left(K_{2}^{2} / \gamma\right) K_{1}^{\mu}}{1-\left(K_{1}^{2} K_{2}^{2} / \gamma\right)}, \quad q^{2}=p^{2}=0,
$$

- Cut-conditions: $D_{1}=D_{2}=D_{3}=0 \quad \Leftrightarrow \quad$ coefficient constraints

$$
\alpha_{1}=\frac{K_{1}^{2}\left(\gamma-K_{2}^{2}\right)}{\gamma^{2}-K_{1}^{2} K_{2}^{2}}, \quad \alpha_{2}=\frac{K_{2}^{2}\left(\gamma-K_{1}^{2}\right)}{\gamma^{2}-K_{1}^{2} K_{2}^{2}}, \quad \gamma=\left(K_{1} \cdot K_{2}\right) \pm \sqrt{\Delta}, \quad \Delta=\left(K_{1} \cdot K_{2}\right)^{2}+K_{1}^{2} K_{2}^{2} .
$$

$$
c_{\left[K_{1}, K_{2}, K_{3}\right]}=\frac{\operatorname{Res}_{t=0}\left\{I_{3}\left(\ell^{+}\right)+I_{3}\left(\ell^{-}\right)\right\}}{2}=\frac{\operatorname{Res}_{t=0} I_{3}\left(\ell^{ \pm}\right)+\operatorname{Res}_{t=\infty} I_{3}\left(\ell^{ \pm}\right)}{2}
$$

NOVEL DOUBLE-CUT

$$
\begin{aligned}
\Delta & \left.=A_{L}\right\} \oint A_{R}=\int d^{4} \Phi A_{L}^{\text {tree }}\left(\ell_{1}\right) A_{R}^{\text {tree }}\left(\ell_{1}\right)=c_{[K]} \times K_{K} \\
\int d^{4} \Phi & =\int d^{4} \ell_{1} \delta^{(+)}\left(\ell_{1}^{2}-m_{1}^{2}\right) \delta^{(+)}\left(\left(\ell_{1}-K\right)^{2}-m_{2}^{2}\right)
\end{aligned}
$$

- Change of Variables with special p and q :
$p_{\mu}+q_{\mu}=K_{\mu}$,

$$
p^{2}=q^{2}=0
$$

$$
\begin{aligned}
\epsilon_{+}^{2}=\epsilon_{-}^{2} & =0=\epsilon_{ \pm} \cdot p=\epsilon_{ \pm} \cdot q \\
2 \epsilon_{+} \cdot \epsilon_{-} & =-K^{2}
\end{aligned}
$$

$2 p \cdot q=2 p \cdot K=2 q \cdot K \equiv K^{2} ;$

$$
\ell_{1}^{\mu}=\frac{1-2 \rho}{1+z \bar{z}}\left(p^{\mu}+z \bar{z} q^{\mu}+z \epsilon_{+}^{\mu}+\bar{z} \epsilon_{-}^{\mu}\right)+\rho K^{\mu}
$$

$$
\begin{aligned}
& \rho=\frac{K^{2}+m_{1}^{2}-m_{2}^{2}-\sqrt{\lambda\left(K^{2}, m_{1}^{2}, m_{2}^{2}\right)}}{2 K^{2}} \\
& \lambda\left(K^{2}, m_{1}^{2}, m_{2}^{2}\right)=\left(K^{2}\right)^{2}+\left(m_{1}^{2}\right)^{2}+\left(m_{2}^{2}\right)^{2} \\
&-2 K^{2} m_{1}^{2}-2 K^{2} m_{2}^{2}-2 m_{1}^{2} m_{2}^{2} \\
& \text { massless case: } \rho=0
\end{aligned}
$$

- Simplified parametrization of the Phase-Space

$$
\int d^{4} \Phi=(1-2 \rho) \iint \frac{d z \wedge d \bar{z}}{(1+z \bar{z})^{2}}
$$

it is an integral over the complex tangent bundle of the Riemann Sphere

Generalised Cauchy Formula $2 \pi i \mathcal{F}\left(z_{0}\right)=\int_{\partial D} \frac{\mathcal{F}(z)}{z-z_{0}} d z-\iint_{D} \frac{\mathcal{F}_{\bar{z}}}{z-z_{0}} d \bar{z} \wedge d z$.

EARLY Achievements

$8 g \longrightarrow 8888$ Britto, Feng \& P.M. (2006)

$\gamma \gamma \rightarrow \gamma \gamma \gamma \gamma$ Binoth, Gehrmann, Heinrich \& P.M. (2007)

gg \rightarrow Hgg Badger, Glover, Williams, P.M. (2008-2009)
1 かnonan 2

Coner

ϕ plus four parton amplitudes at one-loop

The helicity amplitudes for $\phi+4 g$ have been calculated,

H amplitude	ϕ amplitude	ϕ^{\dagger} amplitude
$\mathcal{A}(H,+,+,+,+)$	$\mathcal{A}(\phi,+,+,+,+)$ (Berger,Del Duca, Dixon)	$\mathcal{A}\left(\phi^{\dagger},+,+,+,+\right)$ (Badger,Glover)
$\mathcal{A}(H,-,+,+,+)$	$\mathcal{A}(\phi,-,+,+,+)$ (Berger,Del Duca, Dixon)	$\mathcal{A}\left(\phi^{\dagger},-,+,+,+\right)$ (Badger,Glover,Mastrolia,CW)
$\mathcal{A}(H,-,-,+,+)$	$\mathcal{A}(\phi,-,-,+,+)$ (Badger,Glover,Risager)	$\mathcal{A}\left(\phi^{\dagger},-,-,+,+\right)$ (Badger,Glover,Risager)
$\mathcal{A}(H,-,+,-,+)$	$\mathcal{A}(\phi,-,+,-,+)$ (Glover,Mastrolia,CW)	$\mathcal{A}\left(\phi^{\dagger},-,+,-,+\right)$ (Glover,Mastrolia,CW)

Whilst those with a quark pair and two gluons have also been calculated $\left(Q=1_{\bar{q}}^{-}, q=2_{q}^{+}\right)$

H amplitude	ϕ amplitude	ϕ^{\dagger} amplitude
$\mathcal{A}(H, Q, q,+,+)$	$\mathcal{A}(\phi, Q, q,+,+)$ (Berger,Del Duca, Dixon)	$\mathcal{A}\left(\phi^{\dagger}, Q, q,+,+\right)$ (Badger,Campbell, Ellis,CW)
$\mathcal{A}(H, Q, q,-,-)$	$\mathcal{A}(\phi, Q, q,-,-)$ (Badger,Campbell,Ellis,CW)	$\mathcal{A}\left(\phi^{\dagger}, Q, q,-,-\right)$ (Berger,Del Duca, Dixon)
$\mathcal{A}(H, Q, q,+,-)$	$\mathcal{A}(\phi, Q, q,+,-)$ (Dixon, Sofiantaos)	$\mathcal{A}\left(\phi^{\dagger}, Q, q,+,-\right)$ (Dixon, Sofiantaos)
$\mathcal{A}(H, Q, q,-,+)$	$\mathcal{A}(\phi, Q, q,-,+)$ (Dixon, Sofiantaos)	$\mathcal{A}\left(\phi^{\dagger}, Q, q,-,+\right)$ (Dixon, Sofiantaos)

The $H(\phi) q \bar{q} Q \bar{Q}$ amplitudes have also been calculated, (Ellis, Giele, Zanderighi; Dixon, Sofiantaos) Those marked in red are the most complicated NMHV helicity amplitudes and are the main topic of this talk.

http://mcfm.fnal.gov/
 $\sim 10 \mathrm{~ms} / \mathrm{ps}$-point

- Geometric Phases

Simple Geometry

Aharonov-Bohm effect

$$
\begin{gathered}
\int_{\Sigma} \nabla \times \mathbf{F} \cdot d \mathbf{\Sigma}=\oint_{\partial \Sigma} \mathbf{F} \cdot d \mathbf{r} \\
\nabla \times \mathbf{A}=\mathbf{B} \\
\varphi=\frac{q}{\hbar} \int_{P} \mathbf{A} \cdot d \mathbf{x}
\end{gathered}
$$

Optical Theorem

$$
\begin{aligned}
\Delta & =\int d^{4} \Phi A_{m \rightarrow 2}^{*, \text { tree }} A_{n \rightarrow 2}^{\text {tree }}= \\
& =-i\left[A_{n \rightarrow m}^{\text {one-loop }}-A_{m \rightarrow n}^{*, \text { one-loop }}\right]= \\
& =2 \operatorname{Im}\left\{A_{n \rightarrow m}^{\text {one-loop }}\right\}
\end{aligned}
$$

$$
\begin{aligned}
\Delta & =(1-2 \rho) \iint d z \wedge d \bar{z} \frac{A_{m \rightarrow 2}^{*, \text { tree }} A_{n \rightarrow 2}^{\text {tree }}}{(1+z \bar{z})^{2}}= \\
& =(1-2 \rho) \oint d z \int d \bar{z} \frac{A_{m \rightarrow 2}^{*, \text { tree }} A_{n \rightarrow 2}^{\text {tree }}}{(1+z \bar{z})^{2}}
\end{aligned}
$$

The double-cut is the flux of a 2-form. The anholonomy phase shift is a consequence of Stokes' Theorem.

CAUCHY's Residue Theorem @ Work

SEMINUMERICAL IMPLEMENTATION OF UNITARITY-BASED METHODS

- CutTools
[Ossola, Papadopoulos, Pittau]
- $p p \rightarrow t T+2$ jets [Bevilacqua, Czakon, Papadopoulos, Worek]
- BlackHat
[Berger, Bern, Dixon, Febres Cordero, Forde, Ita, Kosower, Maitre, Gleisberg]
- $p p \rightarrow W+3$ jets
- $p p \rightarrow Z+3$ jets
- $p p \rightarrow W+4 \mathrm{jets}$
- Rocket
[Giele, Zanderighi]
- $p p \rightarrow W+3$ jets [Ellis, Zanderighi, Melnikov]
- $e^{+} e^{-} \rightarrow 5$ jets [Frederix, Frixione, Melnikov, Zanderighi]
- SAMURAI
[Ossola, Reiter, Tramontano, P.M.]
- $p p \rightarrow b B b B$ (quark-initiated) [Binoth, Greiner, Guffanti, Reuter, Guillet, T. Reiter]

SAMURAI

ScATTERING AMPLITUDES FROM UNITARITY-BASED Reduction Algorithm at the integrand-level

Ossola, Reiter, Tramontano, \& P.M. (2010)

At The Integrand Level

- Reduction to a Scalar-Integral Basis Passarino-Veltman

$$
\begin{aligned}
& \text { C-Loop }=c_{4}+c_{3} \longrightarrow+c_{2} \bigcirc+c_{1} \\
& \int d^{4} q A(q)=c_{4} \int \frac{d^{4} q}{D_{0} D_{1} D_{2} D_{3}}+c_{3} \int \frac{d^{4} q}{D_{0} D_{1} D_{2}}+c_{2} \int \frac{d^{4} q}{D_{0} D_{1}}+c_{1} \int \frac{d^{4} q}{D_{0}}
\end{aligned}
$$

- Unknowns: c_{i} are rational functions of external kinematic invariants

At The Integrand Level

- Reduction to a Scalar-Integral Basis Passarino-Veltman

$$
\begin{aligned}
& \text { T-Loop }=c_{4} \text { + } c_{3} \longrightarrow+c_{2} \bigcirc+c_{1} \\
& \int d^{4} q A(q)=c_{4} \int \frac{d^{4} q}{D_{0} D_{1} D_{2} D_{3}}+c_{3} \int \frac{d^{4} q}{D_{0} D_{1} D_{2}}+c_{2} \int \frac{d^{4} q}{D_{0} D_{1}}+c_{1} \int \frac{d^{4} q}{D_{0}}
\end{aligned}
$$

- Unknowns: c_{i} are rational functions of external kinematic invariants
- At the Integrand-level

$$
A(q) \neq \frac{c_{4}}{D_{0} D_{1} D_{2} D_{3}}+\frac{c_{3}}{D_{0} D_{1} D_{2}}+\frac{c_{2}}{D_{0} D_{1}}+\frac{c_{1}}{D_{0}}
$$

At The Integrand Level

- Reduction to a Scalar-Integral Basis Passarino-Veltman

$$
\begin{aligned}
& \int d^{4} q A(q)=c_{4}=c_{4} \int \frac{d^{4} q}{D_{0} D_{1} D_{2} D_{3}}+c_{3} \int \frac{d^{4} q}{D_{0} D_{1} D_{2}}+c_{2} \int \frac{d^{4} q}{D_{0} D_{1}}+c_{1} \int \frac{d^{4} q}{D_{0}}
\end{aligned}
$$

- Unknowns: c_{i} are rational functions of external kinematic invariants
- At the Integrand-level

$$
\begin{aligned}
& \text { vel } \begin{aligned}
A(q) \neq & \frac{c_{4}}{D_{0} D_{1} D_{2} D_{3}}+\frac{c_{3}}{D_{0} D_{1} D_{2}}+\frac{c_{2}}{D_{0} D_{1}}+\frac{c_{1}}{D_{0}} \\
= & \frac{c_{4}+f_{4}(q)}{D_{0} D_{1} D_{2} D_{3}}+\frac{c_{3}+f_{3}(q)}{D_{0} D_{1} D_{2}}+\frac{c_{2}+f_{2}(q)}{D_{0} D_{1}}+\frac{c_{1}+f_{1}(q)}{D_{0}} \\
& \int d^{4} q \frac{f_{4}(q)}{D_{0} D_{1} D_{2} D_{3}}=\int d^{4} q \frac{f_{3}(q)}{D_{0} D_{1} D_{2}}=\int d^{4} q \frac{f_{2}(q)}{D_{0} D_{1}}=\int d^{4} q \frac{f_{1}(q)}{D_{0}}=0
\end{aligned} \\
& A(q) \equiv \frac{\Delta_{0123}(q)}{D_{0} D_{1} D_{2} D_{3}}+\frac{\Delta_{012}(q)}{D_{0} D_{1} D_{2}}+\frac{\Delta_{01}(q)}{D_{0} D_{1}}+\frac{\Delta_{0}(q)}{D_{0}}
\end{aligned}
$$

OPP-INTEGRAND REDUCTION (IN A Nutshell)

- OPP-decomposition

$$
\begin{aligned}
A_{m} & =\int d^{4} q \frac{N(q)}{D_{0} \ldots D_{m-1}} \\
N(q) & =\sum_{i_{0}<i_{1}<i_{2}<i_{3}}^{m-1} \Delta_{i_{0} i_{1} i_{2} i_{3}}(q) \prod_{i \neq i_{0}, i_{1}, i_{2}, i_{3}}^{m-1} D_{i} \\
& +\sum_{i_{0}<i_{1}<i_{2}}^{m-1} \Delta i_{0} i_{1} i_{2}(q) \prod_{i \neq i_{0}, i_{1}, i_{2}}^{m-1} D_{i} \\
& +\sum_{i_{0}<i_{1}}^{m-1} \Delta i_{0} i_{1}(q) \prod_{i \neq i_{0}, i_{1}}^{m-1} D_{i} \\
& +\sum_{i_{0}}^{m-1} \Delta i_{0}(q) \prod_{i \neq i_{0}}^{m-1} D_{i}
\end{aligned}
$$

- $\Delta(q)$ are known polynomials
- c_{i} are the constant terms of Δ 's
\triangleright Fitting c_{i} by numerical evaluating $N(q)$ at different values of $q \oplus$ system inversion
- q @ Quadruple-cut: $D_{i_{0}}=D_{i_{1}}=D_{i_{2}}=D_{i_{3}}=0$

$$
N(q)=\Delta_{i_{0} i_{1} i_{2} i_{3}}(q) \prod_{i \neq i_{0}, i_{1}, i_{2}, i_{3}}^{m-1} D_{i}
$$

- q @ Triple-cut: $D_{i_{0}}=D_{i_{1}}=D_{i_{2}}=0$

$$
\begin{aligned}
N(q) & -\sum_{i_{0}<i_{1}<i_{2}<i_{3}}^{m-1} \Delta_{i_{0} i_{1} i_{2} i_{3}}(q) \prod_{i \neq i_{0}, i_{1}, i_{2}, i_{3}}^{m-1} D_{i} \\
& =\Delta_{i_{0} i_{1} i_{2}}(q) \prod_{i \neq i_{0}, i_{1}, i_{2}}^{m-1} D_{i}
\end{aligned}
$$

- q @ Double-cut: $D_{i_{0}}=D_{i_{1}}=0$

$$
\begin{aligned}
N(q) & -\sum_{i_{0}<i_{1}<i_{2}<i_{3}}^{m-1} \Delta_{i_{0} i_{1} i_{2} i_{3}}(q) \prod_{i \neq i_{0}, i_{1}, i_{2}, i_{3}}^{m-1} D_{i} \\
& -\sum_{i_{0}<i_{1}<i_{2}}^{m-1} \Delta_{i_{0} i_{1} i_{2}}(q) \prod_{i \neq i_{0}, i_{1}, i_{2}}^{m-1} D_{i} \\
& =\Delta_{i_{0} i_{1}}(q) \prod_{i \neq i_{0}, i_{1}}^{m-1} D_{i}
\end{aligned}
$$

- q @ Single-cut: $D_{i_{0}}=0$

$$
\begin{aligned}
N(q) & -\sum_{i_{0}<i_{1}<i_{2}<i_{3}}^{m-1} \Delta_{i_{0} i_{1} i_{2} i_{3}}(q) \prod_{i \neq i_{0}, i_{1}, i_{2}, i_{3}}^{m-1} D_{i} \\
& -\sum_{i_{0}<i_{1}<i_{2}}^{m-1} \Delta_{i_{0} i_{1} i_{2}}(q) \prod_{i \neq i_{0}, i_{1}, i_{2}}^{m-1} D_{i} \\
& -\sum_{i_{0}<i_{1}}^{m-1} \Delta_{i_{0} i_{1}}(q) \prod_{i \neq i_{0}, i_{1}}^{m-1} D_{i} \\
& =\Delta_{i_{0}}(q)
\end{aligned}
$$

- OPP-reduction Ossola, Papadopoulos, Pittau (2006)

From the knowledge of the multi-variate polynomial-structure of the Integrand, all n-point coefficients can be determined by fitting a system of polynomial equations.

Advantage \triangleright No integration required
Pitfall \triangleright Numerical System Inversion $(\Delta \rightarrow 0)$

- Improved Reduction with DFT Ossola, Papadopoulos, Pittau, \& P.M. (2008)

$$
P_{m}(x)=c_{0}+c_{1} x+c_{2} x^{2}+\ldots c_{m} x^{m}
$$

\triangleright step 1: sample $P_{m}(x)$ at $(m+1)$ equidistant-points on the unit-circle, $P_{m, k} \equiv P_{m}\left(x_{k}\right)$,

$$
x_{k}=e^{-2 \pi i \frac{k}{(m+1)}} \quad(k=0, \ldots, m)
$$

\triangleright step 2: find c_{i} from orthogonality (plane-waves):

$$
c_{\ell}=\frac{1}{m+1} \sum_{k=0}^{m} P_{m, k} e^{2 \pi i \frac{k}{(m+1)} \ell}
$$

8-Photon in QED

reproducing Mahlon, (1993)

NEW, confirming Badger et al. (2009)

6-QUARK IN QCD

TENSORIAL DECOMPOSITION

Heinrich, Ossola, Reiter, Tramontano

Dealing with unstable-points

- Tensor Decomposition of $\mathrm{N}(\mathrm{q})$: numerical sampling

$$
\mathcal{N}(q)=\sum_{r=0}^{R} C_{\mu_{1} \ldots \mu_{r}} q_{\mu_{1}} \ldots q_{\mu_{r}}
$$

- Numerical evaluation of Tensor integrals: Golem 95

vanishing Gram determinant

$$
Q \rightarrow 0
$$

SUMMARY: UNITARITY-BASED METHODS

Light-bulbs were not invented by improving candles

T.W. Haensch

- Jetty backgrounds at LHC demand quantitative control
- NLO QCD results are mandatory
- Novel methods for One-Loop Amplitudes based on Unitarity and Analiticity are giving results
- Analytic Integration and Theory of Complex Functions
- Integration by Series Expansion (Newton's legacy)
relevant for LHC-Phenomenology: $\mathrm{H}+2 \mathrm{jets}$ in gluon fusion (heavy-top limit)
- relevant for unveiling hidden structures of QFT
- Seminumerical tool for NLO: CutTools, BlackHat, Rocket, ...
- SAMURAI: working within Diagrammatic \& Unitarity-based approaches
applied to: 4-, 6-, 8-photon; Drell-Yan; V+1jet; 5-, 6-gluon; 6-quark; W+2jets prod.
- public Fortran library:

CONCLUSIONS

CONCLUSIONS

CONCLUSIONS

One-Loop amplitudes...

[^0]: ${ }^{a}$ (Partially) taken into account in Fat-Jet analysis!

