collisions Francesco Coradeschi

Studying new physics with precision electroweak observables in multi-TeV e^+e^- collisions

Francesco Coradeschi¹ (University of Florence & INFN, section of Florence)

December 02, 2010

¹based on work done with Marco Battaglia (CERN & UCSC)

- With the LHC on, we're all hoping to see many signals of New Physics soon. Already in 2011?
- Standard scenario: one/several new resonances seen at the LHC, but can't tell what exactly they are / measure their couplings . . .
 - An e^+e^- machine could be necessary to disentangle different models.
- A complementary case what if we NP is round the corner of LHC reach?
- It is well-known that some processes are sensitive to mass scales far beyond \sqrt{s} . But how well can we measure the properties of a several-TeV new resonance?

- With the LHC on, we're all hoping to see many signals of New Physics soon. Already in 2011?
- Standard scenario: one/several new resonances seen at the LHC, but can't tell what exactly they are / measure their couplings . . .
 - An e^+e^- machine could be necessary to disentangle different models.
- A complementary case what if we NP is round the corner of LHC reach?
- It is well-known that some processes are sensitive to mass scales far beyond \sqrt{s} . But how well can we measure the properties of a several-TeV new resonance?

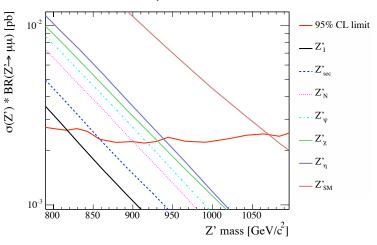
- With the LHC on, we're all hoping to see many signals of New Physics soon. Already in 2011?
- Standard scenario: one/several new resonances seen at the LHC, but can't tell what exactly they are / measure their couplings . . .
 - An e^+e^- machine could be necessary to disentangle different models.
- A complementary case what if we NP is round the corner of LHC reach?
- It is well-known that some processes are sensitive to mass scales far beyond \sqrt{s} . But how well can we measure the properties of a several-TeV new resonance?

- With the LHC on, we're all hoping to see many signals of New Physics soon. Already in 2011?
- Standard scenario: one/several new resonances seen at the LHC, but can't tell what exactly they are / measure their couplings . . .
 - An e^+e^- machine could be necessary to disentangle different models.
- A complementary case what if we NP is round the corner of LHC reach?
- It is well-known that some processes are sensitive to mass scales far beyond \sqrt{s} . But how well can we measure the properties of a several-TeV new resonance?

Z-primes ...

- Focus on a simple, clean possibility: new massive neutral bosons, or Z's
- Incomplete list of (well-known) motivations. Theory:
 - ① GUTs with rank > 4 gauge groups (SO(10), E_6 ...)
 - 2 String models phenomenological realizations
 - 3 ADD Extra Dimensions
 - 4 Strong EW breaking Composite/Little Higgs Warped Extra Dimensions
- And Experiment: "contact interaction" $e^+e^- \to f\bar{f}$, clean signal, sensitive to an $M_{Z'} \gg \sqrt{s}$...

Z-primes ...


- Focus on a simple, clean possibility: new massive neutral bosons, or Z's
- Incomplete list of (well-known) motivations. Theory:
 - **1** GUTs with rank > 4 gauge groups (SO(10), $E_6 \dots$)
 - 2 String models phenomenological realizations
 - 3 ADD Extra Dimensions
 - 4 Strong EW breaking Composite/Little Higgs Warped Extra Dimensions
- And Experiment: "contact interaction" $e^+e^- \to f\bar{f}$, clean signal, sensitive to an $M_{Z'} \gg \sqrt{s}$...

Z-primes ...

- Focus on a simple, clean possibility: new massive neutral bosons, or Z's
- Incomplete list of (well-known) motivations. Theory:
 - **1** GUTs with rank > 4 gauge groups (SO(10), $E_6 \dots$)
 - 2 String models phenomenological realizations
 - 3 ADD Extra Dimensions
 - 4 Strong EW breaking Composite/Little Higgs Warped Extra Dimensions
- And Experiment: "contact interaction" $e^+e^- \to f\bar{f}$, clean signal, sensitive to an $M_{Z'} \gg \sqrt{s}$...

Z': where are we now?

CDF Run II Preliminary 4.6 fb⁻¹

Models

Many different scenarios out there . . . I will focus on some of them. Aim:

- See generic collider sensitivity in different cases
- See how well model parameters can be constrained
- Contrast two different approaches
 - The "standard" case, typically GUT-inspired. Couplings are usually universal, at least in the quark sector, mainly to avoid large FCNCs.
 - 2 The "composite" case, from dynamical EW symmetry breaking. Top physics can become fundamental!

Models

Many different scenarios out there . . . I will focus on some of them. Aim:

- See generic collider sensitivity in different cases
- See how well model parameters can be constrained
- Contrast two different approaches
 - 1 The "standard" case, typically GUT-inspired. Couplings are usually universal, at least in the quark sector, mainly to avoid large FCNCs.
 - 2 The "composite" case, from dynamical EW symmetry breaking. Top physics can become fundamental!

Models

Many different scenarios out there . . . I will focus on some of them. Aim:

- See generic collider sensitivity in different cases
- See how well model parameters can be constrained
- Contrast two different approaches
 - 1 The "standard" case, typically GUT-inspired. Couplings are usually universal, at least in the quark sector, mainly to avoid large FCNCs.
 - 2 The "composite" case, from dynamical EW symmetry breaking. Top physics can become fundamental!

This analysis

- Preliminary study based on Born cross-sections (however, ISR not so important in this case after judicious cuts are made; other RC sizable, but do not change the magnitude of the effects)
- Precision observables: cross-sections, A_{FB} and A_{LR} are used. Impact of polarization is considered. μ , b, t fermion pairs as final states.
- Experimental efficiency & stat. errors estimated with realistic simulations (still preliminary). Error/Efficiency in %:

%	$\mu^+\mu^-$	bb̄	t₹
$\delta\sigma$	1 / 85	1.8 / 75	0.8 / 80
δA_{FB}	1 / 85	5.5 / 40	1.5 / 20
δA_{LR}	1 / 85	5.5 / 40	1.4 / 20

Francesco Coradeschi

Widely studied in the literature. I will focus on three cases:

The Models Part I: "standard" Z'

 Sequential Z': really just a standard benchmark, not a realistic model

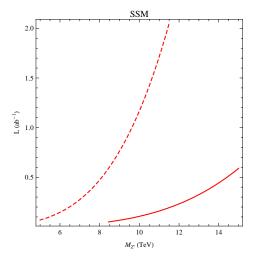


Figure: 95% exclusion plot for SSM, L_{int} vs. Mass. The dashed line corresponds to $\sqrt{s}=1$ TeV, the continuous one to $\sqrt{s}=1$ TeV

- E_6 -based Z': classic GUT-inspired scenario
- The SM gauge group is embedded in E₆. Fermions are promoted to fundamental 27's.
- Symmetry breaking in steps: $E_6 \to SU(10) \otimes U(1)_\psi \to SU(5) \otimes U(1)_\chi \otimes U(1)_\psi$
- Fermion reps break as 27 ightarrow 16 + 10 + 1 ightarrow (10 + 5* + 1) + (5 + 5*) + 1
- Usual phenomenological assumption: GUT scale at $\sim 10^{15}$ TeV, but a superposition of Z_{χ} and Z_{ψ} is pushed down to the TeV scale. A possibility, not a necessity!

- E_6 -based Z': classic GUT-inspired scenario
- The SM gauge group is embedded in E₆. Fermions are promoted to fundamental 27's.
- Symmetry breaking in steps: $E_6 o SU(10) \otimes U(1)_\psi o SU(5) \otimes U(1)_\chi \otimes U(1)_\psi$
- Fermion reps break as $\mathbf{27} o \mathbf{16} + \mathbf{10} + \mathbf{1} o (\mathbf{10} + \mathbf{5}^* + \mathbf{1}) + (\mathbf{5} + \mathbf{5}^*) + \mathbf{1}$
- Usual phenomenological assumption: GUT scale at $\sim 10^{15}$ TeV, but a superposition of Z_{χ} and Z_{ψ} is pushed down to the TeV scale. A possibility, not a necessity!

- E_6 -based Z': classic GUT-inspired scenario
- The SM gauge group is embedded in E₆. Fermions are promoted to fundamental 27's.
- Symmetry breaking in steps: $E_6 o SU(10) \otimes U(1)_\psi o SU(5) \otimes U(1)_\chi \otimes U(1)_\psi$
- Fermion reps break as 27 ightarrow 16 + 10 + 1 $ilde{}$ $ilde{}$ (10 + 5* + 1) + (5 + 5*) + 1
- Usual phenomenological assumption: GUT scale at $\sim 10^{15}$ TeV, but a superposition of Z_{χ} and Z_{ψ} is pushed down to the TeV scale. A possibility, not a necessity!

The Z' interaction:

$$\mathcal{L}_{int} = i \sqrt{\frac{5}{3}} g \frac{s_{\theta}}{c_{\theta}} Z_{\mu}' \overline{f} \left(\gamma^{\mu} c_{\theta_{\theta}} Q_{\chi(L,R)}^{f} + s_{\theta_{\theta}} Q_{\psi(L,R)}^{f} \right) f$$

- Fermion charges $Q_{\chi(L,R)}^f$ and $Q_{\psi(L,R)}^f$ completely determined by the theoretical structure
- The mixing angle θ_6 distinguishes different models

The Models Part I: "standard" Z'

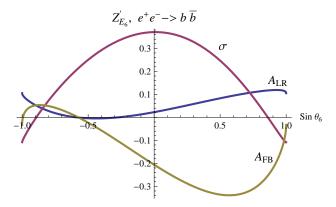


Figure: $|\mathcal{O}_{Z'} - \mathcal{O}_{SM}|/\mathcal{O}_{SM}$ vs. θ_6 in the E_6 model. $M_{Z'}$ is fixed at 5 TeV, $\sqrt{s} = 3$ TeV

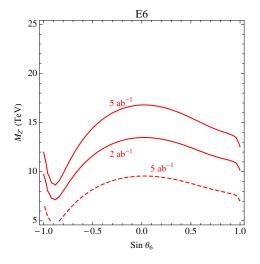


Figure: 95 % C.L. M_Z' vs. θ_6 exclusion in the E_6 model, with no beam polarization included. Dashed lines are at $\sqrt{s}=1$ TeV, continuous ones at $\sqrt{s}=3$ TeV

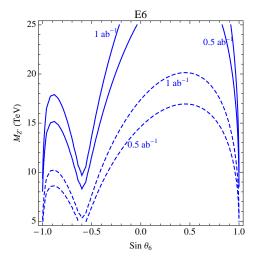


Figure: 95 % C.L. M_Z' vs. θ_6 exclusion in the E_6 model, with polarization taken into account. Dashed lines are at $\sqrt{s}=1$ TeV, continuous ones at $\sqrt{s}=3$ TeV

- Minimal Z': incresting semi-model-independent approach
- No exotics except the Z' + some (3+) ν_R s.
- Anomaly cancellation
- Generation-independent couplings
- Automatical inclusion of mass and kinetic Z Z' mixing
- Includes several well studied models: Z'_{LR} , Z'_{Y} , Z'_{B-L} , Z'_{χ}
- New neutral interaction term:

$$\mathcal{L}_{int} = i \, g_Z Z'_{\mu} \, \bar{f} \left(\gamma^{\mu} \tilde{g}_Y Y + \tilde{g}_{BL} (B - L) \right) f$$

Just 3 parameters

- Minimal Z': ineresting semi-model-independent approach
- No exotics except the Z' + some (3+) ν_R s.
- Anomaly cancellation
- Generation-independent couplings
- Automatical inclusion of mass and kinetic Z Z' mixing
- Includes several well studied models: Z'_{LR} , Z'_{Y} , Z'_{B-L} , Z'_{Y}
- New neutral interaction term:

$$\mathcal{L}_{int} = i \, g_Z Z'_{\mu} \, \bar{f} \left(\gamma^{\mu} \tilde{g}_Y \, Y + \tilde{g}_{BL} (B - L) \right) f$$

Just 3 parameters

- Minimal Z': incresting semi-model-independent approach
- No exotics except the Z' + some (3+) ν_R s.
- Anomaly cancellation
- Generation-independent couplings
- Automatical inclusion of mass and kinetic Z Z' mixing
- Includes several well studied models: Z'_{LR} , Z'_{Y} , Z'_{B-L} , Z'_{χ}
- New neutral interaction term:

$$\mathcal{L}_{int} = i \, g_Z Z'_{\mu} \, \bar{f} \left(\gamma^{\mu} \tilde{g}_Y \, Y + \tilde{g}_{BL} (B - L) \right) f$$

Just 3 parameters

- Minimal Z': incresting semi-model-independent approach
- No exotics except the Z' + some (3+) ν_R s.
- Anomaly cancellation
- Generation-independent couplings
- Automatical inclusion of mass and kinetic Z Z' mixing
- Includes several well studied models: Z'_{LR} , Z'_{Y} , Z'_{B-L} , Z'_{χ}
- New neutral interaction term:

$$\mathcal{L}_{int} = i \, g_Z Z'_{\mu} \, \bar{f} \left(\gamma^{\mu} \tilde{g}_Y Y + \tilde{g}_{BL} (B - L) \right) f$$

Just 3 parameters!

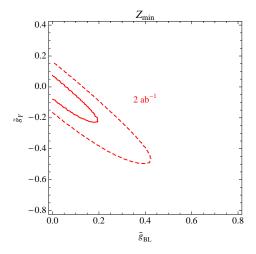


Figure: 95 % C.L. \tilde{g}_{BL} vs. \tilde{g}_{Y} exclusion in the Z_{min} model with $M_{Z'}=5$ TeV and no beam polarization included. Dashed lines are at $\sqrt{s}=1$ TeV, continuous ones at $\sqrt{s}=3$ TeV

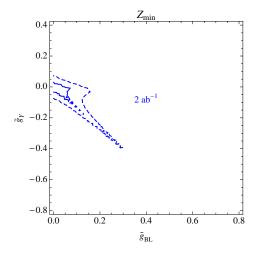
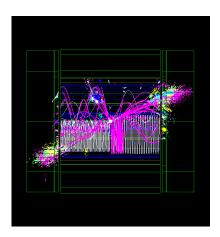
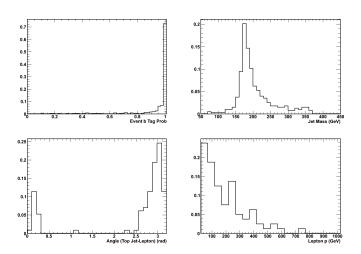



Figure: 95 % C.L. \tilde{g}_{BL} vs. \tilde{g}_{Y} exclusion in the Z_{min} model with $M_{Z'}=5$ TeV, and polarization taken into account. Dashed lines are at $\sqrt{s}=1$ TeV, continuous ones at $\sqrt{s}=3$ TeV

collisions Francesco Coradeschi


Interlude: bottoms and tops

 $b\bar{b}$ event reconstruction simulation in detector model CLIC_ILD

Interlude: bottoms and tops

Top charge reconstruction, $e^+e^- \rightarrow t\bar{t}$; $t \rightarrow bW^+ \rightarrow bl^+\bar{\nu}_l$

Interlude: bottoms and tops

- If we're looking at fermion pairs $\to \mu^+\mu^-$ the easiest channel
- The expected detector performance, however, is such that it is interesting to extend the analysis to tops and bottoms
- Theoretically, it is interesting to check realistic scenario where couplings to the 3rd generation of quarks are either favoured or disfavoured

- One good motivation to look at tops: Warped Extra Dimensions, dual to composite Higgs sector / Strong EW breaking
- A minimal well-studied model is based on $SU(2) \otimes SU(2) \otimes U(1)$ symmetry on a slice of AdS_5
- The top mostly a composite → preferential coupling to the extra gauge bosons → greatly enhanced production

- One good motivation to look at tops: Warped Extra Dimensions, dual to composite Higgs sector / Strong EW breaking
- A minimal well-studied model is based on $SU(2)\otimes SU(2)\otimes U(1)$ symmetry on a slice of AdS_5
- The top mostly a composite → preferential coupling to the extra gauge bosons → greatly enhanced production

Let's see it in more detail . . .

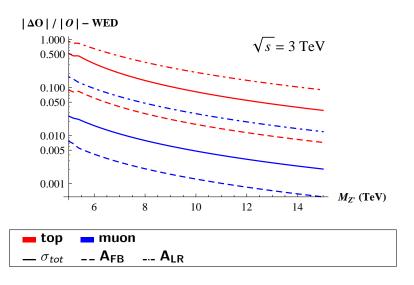
- Contrary to GUTs, the model naturally "lives" in the 1-10 TeV range (the full structure has to be taken into consideration: considerably harder calculation!)
- A relatively easy-to-study version is based on "maximal deconstruction", with the 5th dimension discretized to just two points!
- On the 1^{st} point there lives an SM-like (without a Higgs) "elementary" sector, on the 2^{nd} a "composite" $SU(2)\otimes SU(2)\otimes U(1)$ explicitly broken gauge theory. Both are purely 4D. The two sectors "talk" via mass mixing: mass eigenstes generally superpositions
- t_R and H full composites!

- Contrary to GUTs, the model naturally "lives" in the 1-10 TeV range (the full structure has to be taken into consideration: considerably harder calculation!)
- A relatively easy-to-study version is based on "maximal deconstruction", with the 5th dimension discretized to just two points!
- On the 1st point there lives an SM-like (without a Higgs) "elementary" sector, on the 2nd a "composite" SU(2) & SU(2) & U(1) explicitly broken gauge theory. Both are purely 4D. The two sectors "talk" via mass mixing: mass eigenstes generally superpositions
- t_R and H full composites!

- Contrary to GUTs, the model naturally "lives" in the 1-10 TeV range (the full structure has to be taken into consideration: considerably harder calculation!)
- A relatively easy-to-study version is based on "maximal deconstruction", with the 5th dimension discretized to just two points!
- On the 1st point there lives an SM-like (without a Higgs) "elementary" sector, on the 2^{nd} a "composite" $SU(2) \otimes SU(2) \otimes U(1)$ explicitly broken gauge theory. Both are purely 4D. The two sectors "talk" via mass mixing: mass eigenstes generally superpositions
- t_R and H full composites!

- Contrary to GUTs, the model naturally "lives" in the 1-10 TeV range (the full structure has to be taken into consideration: considerably harder calculation!)
- A relatively easy-to-study version is based on "maximal deconstruction", with the 5th dimension discretized to just two points!
- On the 1^{st} point there lives an SM-like (without a Higgs) "elementary" sector, on the 2^{nd} a "composite" $SU(2)\otimes SU(2)\otimes U(1)$ explicitly broken gauge theory. Both are purely 4D. The two sectors "talk" via mass mixing: mass eigenstes generally superpositions
- t_R and H full composites!

- The model contains 3 heavy neutral bosons $\rightarrow Z'$ s.
- Approximate interaction Lagrangian:


$$\mathcal{L}_{int.}^{Z'} = igW_{L\mu}^{3} \bar{f} \gamma^{\mu} T_{L}^{3} Q_{L}(f) f$$

$$+ ig' B_{\mu}^{*} \bar{f} \gamma^{\mu} Y Q_{(L,R)}(f) f$$

$$+ i \frac{g'}{\sin \theta_{1}} \tilde{B}_{\mu} \bar{f} \gamma^{\mu} Y \sin^{2} \varphi_{fL,R} f;$$

$$Q_{(L,R)}(f) = (\sin^2 \varphi_{fL,R} \cot \theta_2 - \cos^2 \varphi_{FL} \tan \theta_2)$$

• The ϕ and θ are fermionic/bosonic mixing angles, indicating the degree of compositeness (depends on the Yukawas for fermions). θ s are quite small; $\phi \simeq 0$ for every fermion except t_R , $\phi \simeq \pi/2$



Figure: 95 % C.L. L_{int} vs. $M_{Z'}$ exclusion in the W.E.D. model, at $\sqrt{s}=1$ TeV

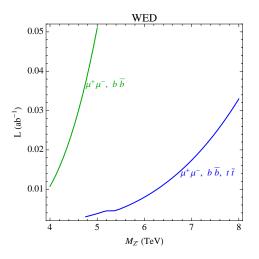


Figure: 95 % C.L. L_{int} vs. $M_{Z'}$ exclusion in the W.E.D. model, at $\sqrt{s}=3$ TeV

Conclusions

- Multi-TeV e⁺e⁻ collider indirect sensitivity well beyond 10 TeV
- Good potential in discriminating between models
- Polarization is fundamental in several scenarios
- Important to look at different fermionic channels (top!)