Determinazione del Cross-Talk dalla Matrice di Correlazione

C.Gatti

- Matrice di Correlazione
- Risoluzione sistema
- Primi tests su mini-simulazione

Matrice di Correlazione

$$m_i = C_{ij} s_j + \xi_j$$

segnale canale i-esimo
matrice fibra → canale elettronico
segnale fibra j-esima
noise

$$C_{ij} = g K_{ij}$$

guadagno Matrice di Cross-Talk

Matrice di correlazione

$$\langle (m_i - \hat{m}_i)(m_j - \hat{m}_j) \rangle = (\hat{g}^2 + \sigma_g^2) K_{im} K_{jm} \sigma_m^2 + \frac{\sigma_g^2}{\hat{g}^2} (\hat{m}_i - \hat{\xi}_i) (\hat{m}_j - \hat{\xi}_j) + \delta_{ij} \Xi^2$$

Errori aspettati

$$\langle (\sigma_{ij} - \hat{\sigma}_{ij})(\sigma_{lm} - \hat{\sigma}_{lm}) \rangle = \langle (m_i - \hat{m}_i)(m_j - \hat{m}_j)(m_l - \hat{m}_l)(m_m - \hat{m}_m) \rangle - \sigma_{ij}^2 \sigma_{lm}^2$$

Risoluzione del sistema

Per ora ho studiato il caso g=1 (costante) e senza noise:

$$M_{ij} = K_{il}K_{jl}\sigma^2_{l}$$

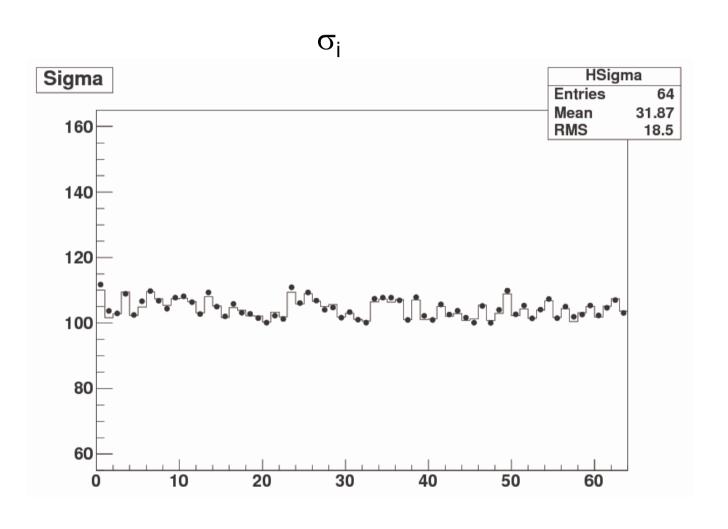
Il sistema si inverte parzialmente e si eliminano le σ :

$$Mfit_{kl} = O(K^*K^*K^*K)_{klij} M_{ij}$$

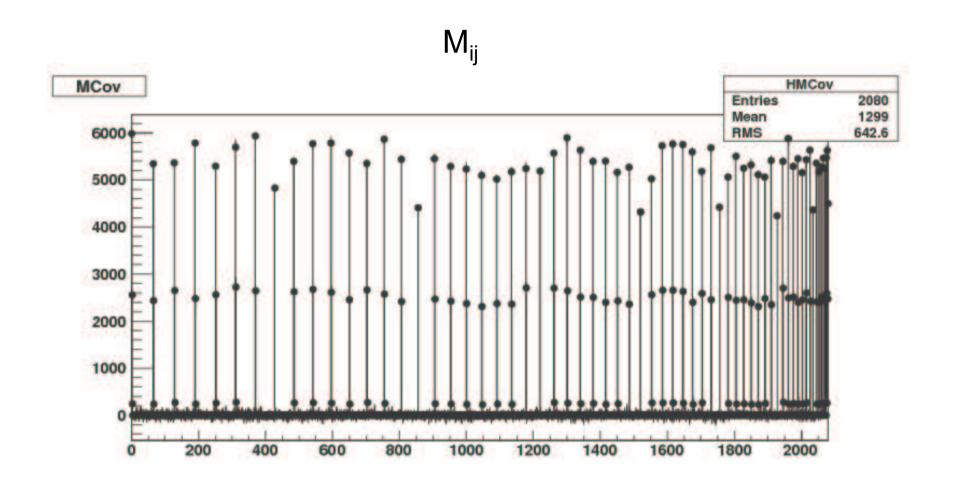
 χ^2 minimizzato con Minuit per determinare parametri della matrice di Cross-Talk:

$$\chi^2 = (M-Mfit) 1/Cov(M)(M-MFit)$$

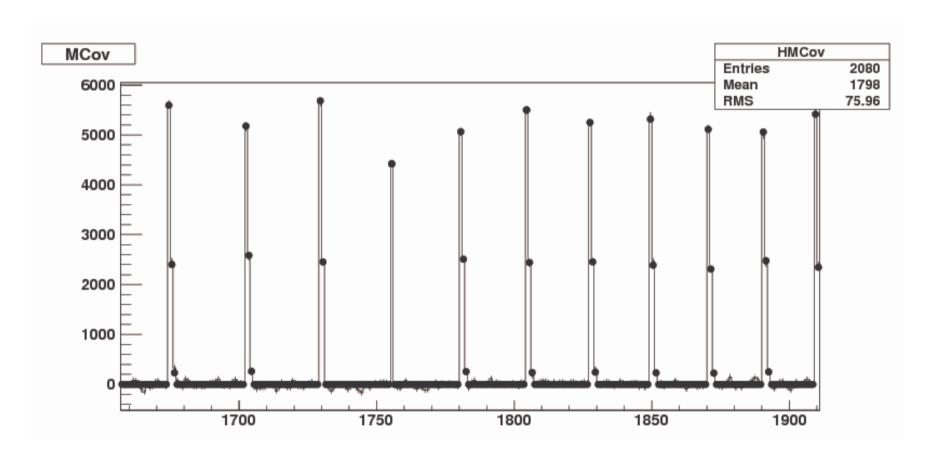
eliminando il double counting degli elementi di matrice (M simmetrica).


Caso Cross-Talk Gaussiano in una direzione

64 Canali 10,000 pseudo-esperimenti Input: DX=-0.2 L $\sigma_{\rm X}$ =0.5*L


0.65	0.27		
0.08	0.65	0.27	
	80.0	0.65	0.27
		0.08	0.65

MINUIT WARNING IN HESSE ========= MATRIX FORCED POS-DEF BY ADDING -0.115568 TO DIAGONAL. FCN=2818.57 FROM HESSE STATUS=NOT POSDEF 10 CALLS 132 TOTAL							
		EDM=50511.1 STRATEGY= 1 ERR MATRIX NOT					
POS-DEF							
EX	T PARAMETER		APPROXIMATE	INTERNAL	INTERNAL		
NO	. NAME	VALUE	ERROR	STEP SIZE	VALUE		
1	DX	-1.94961e-01	1.71255e-02	1.60218e-01	-4.00546e-		
01							
2	SigmaX	5.02140e-01	7.10107e-03	4.04089e-03	-5.77870e-		
03							


Risultato Fit

Risultato Fit

