Quark-gluon plasma at the LHC: studying the extreme state of QCD with heavy-ion collisions

Andrea Dainese

Istituto Nazionale di Fisica Nuclear Sezione di Padova

Phase diagram of strongly-interacting (QCD) matter

At high energy density ε (high temperature and/or high density) hadronic matter undergoes a phase transition to the Quark-Gluon Plasma (QGP)

- a state in which colour confinement is removed
- a high-density QCD medium of "free" quarks and gluons

<mark>critical energy density ε_c ~ 1 GeV/fm³ ~ 10</mark> ε_{nucleus}

Theoretical study of the phase diagram: lattice QCD

- Method for doing calculations in non-perturbative regime of QCD
- Discretization on a space-time lattice
- Ultraviolet (large momentum scale = small space-time scale) divergencies can be avoided
- Compute thermo-dynamical properties for a system of interacting quarks and gluons

Pressure density:
$$p = \frac{\varepsilon}{2}$$

Phase transition in lattice QCD

$$\frac{\varepsilon}{T^4}$$
 vs. $T \propto n_{dof} = n_b + \frac{7}{8}n_f$

- Lattice QCD applicable at low μ_B
- p / T⁴ ~ ε / T⁴ changes rapidly around T_c
- Critical temperature $T_c \sim 155 \text{ MeV} (\sim 10^{12} \text{ K})$ $\rightarrow \varepsilon_c = 0.6 \text{ GeV/fm}^3$

 $n_{dof} = 3$

Below T_c : gas of pions

Above T_c : gas of g, u, d and $n_{dof} = 37$ anti-quarks

200

300

T[MeV]

400

500

QGP: the first "matter" in the primordial Universe

quark-gluon plasma formation of formation of protons/neutrons atomic nuclei

The phase transition from quarks to hadrons occured in the cooling Universe 10 μ s after the Big Bang, at μ B=0

INFN Pisa, 01.02.2022

Heavy-ion collisions and the QGP

- Explore the deconfined phase of QCD matter → quark-gluon plasma (QGP)
- LHC Pb-Pb \rightarrow large energy density (initial $\varepsilon > 10 \text{ GeV/fm}^3$) & large volume (~ 5000 fm³)

Heavy-ion collisions and the QGP

- Explore the deconfined phase of QCD matter → quark-gluon plasma (QGP)
- LHC Pb-Pb \rightarrow large energy density (initial $\epsilon > 10 \text{ GeV/fm}^3$) & large volume (~ 5000 fm³)

Heavy-ion collisions and the QGP

- Explore the deconfined phase of QCD matter \rightarrow quark-gluon plasma (QGP)
- LHC Pb-Pb \rightarrow large energy density (initial $\epsilon > 15 \text{ GeV/fm}^3$) & large volume (~ 5000 fm³)

Visualization by J.E. Bernhard, arXiv:1804.06469

Ultrarelativistic heavy-ion accelerators

- BNL-AGS, early '90s, Au-Au up to $\sqrt{s_{NN}} = 5 \text{ GeV}$
 - Below critical energy density
- **CERN-SPS**, since 1994, Pb-Pb up to $\sqrt{s_{NN}} = 17 \text{ GeV}$
 - Estimated energy density ~ 1 × critical value ϵ_c
 - First signatures of the QGP observed
- BNL-RHIC, since 2000, Au-Au $\sqrt{s_{NN}} = 8 200 \text{ GeV}$
 - Estimated energy density ~ 10 × critical value ϵ_c
 - Discovery of several properties of the QGP
- **CERN-LHC**, since 2010, Pb-Pb $\sqrt{s_{NN}} = 2.76 5.5 \text{ TeV}$
 - Estimated energy density ~ 15-30 $\,\times\,$ critical value ϵ_{c}
 - (Ongoing) Precise characterization of the QGP, new probes available

Heavy-ion collisions at the LHC

MS CMS Experiment at LHC, CERN Data recorded: Wed Nov 25 12:21:51 2015 Cl RurvEvent: 262548 / 14582169 Lumi section: 309

- \rightarrow Characterise the QGP:
 - Initial stage
 - Global properties
 - Colour deconfinement
 - Parton interactions
 - Viscosity and expansion dynamics

- Runs 1-2: $\sqrt{s_{NN}}$ and delivered L_{int}
- Pb-Pb 2.76, 5.02 TeV, ~3 nb⁻¹
- Xe-Xe 5.44 TeV, ~3 μb⁻¹
- p-Pb 5.02, 8.16 TeV, ~200 nb⁻¹

ALICE

Andrea Dainese | QGP at the LHC

Geometry of a nucleus-nucleus collision

central collisions

- small impact parameter b
- high number of participants
 - \rightarrow high multiplicity
- peripheral collisions
 - large impact parameter b
 - Iow number of participants
 - \rightarrow low multiplicity

- System size strongly dependent on collision centrality
- Classify events in "centrality classes"
 - In terms of percentiles of total hadronic AA cross section
 - Measure multiplicity of particles in the acceptance of a given detector
 - Determine $\langle N_{participants} \rangle$ and $\langle N_{collisions} \rangle$ with a model of the collision geometry (Glauber model)

Glauber model: see e.g. M. Miller et al. Ann.Rev.Nucl.Part.Sci.57(2007)205

'Global' properties of the collisions: multiplicity

Central collisions at LHC: ~17,000 charged particles!

'Global' properties of the collisions: energy density

• Estimate of energy density reached in the collision:

$$\varepsilon = \frac{E}{V} = \frac{1}{Sc\tau_0} \left. \frac{dE_T}{dy} \right|_{y=0}$$

S = transverse dimension of nucleus $\tau_0 =$ "formation time"~ 1 fm/c

- Initial time τ_0 normally taken to be ~ 1 fm/c
 - i.e. equal to the "formation time": the time it takes for the energy initially stored in the field to materialize into particles
- Transverse dimension:

$$S \approx 160 \text{ fm}^2$$
 ($R_A \approx 1.2 A^{1/3} \text{ fm}$)

'Global' properties of the collisions: energy density

• Transverse energy x3 from RHIC to LHC:

$$\left. \frac{2T}{y} \right|_{y=0} \approx 2 \text{ TeV}$$

x20 larger than the critical energy density from lattice QCD

'Global' properties of the collisions: system volume from Hambury Brown Twiss interferometry

- Quantum effect: enhancement of correlation function for identical bosons, e.g. pairs of pions
- From Heisenberg's uncertainty principle:
 - $\Delta p \cdot \Delta x \sim \hbar$
 - → extract source size from momentum correlation function

 \rightarrow strong (x3) expansion!

'Global' properties of the collisions: effective temperature from photon radiation

- QGP radiates real and virtual photons during all phases of its evolution
- Analogy to black body radiation

- Measured as exponential component of soft photons on top of photons from QCD processes
- $T_{slope} = 304 \pm 40 \text{ MeV}$ (x2 larger than T_c)

Early phase: vorticity and magnetic field

Non-central collisions:

- Large angular momentum L (~10²¹ revolutions per second)
- Large magnetic field B (~10¹⁴ Tesla)

Spin alignment of vector mesons in spinning QGP

- Large angular momentum **L** in non-central collisions
- Spin-orbit interactions expected to polarise quarks
- If quarks recombine to produce vector mesons (spin=1), spin alignment could appear
- Measurement using $K^{*0} \rightarrow K\pi$ decays shows a 3σ effect at low momentum

ALICE, PRL125 (2020) 012301

QCD deconfinement: melting and re-binding quarkonia

- Deconfinement \rightarrow Colour screening \rightarrow Quarkonium melting
- High charm density can lead to "additional" charmonium formation

Visualization by J.E. Bernhard, arXiv:1804.06469

NFN

- QGP signature proposed by Matsui and Satz, 1986
- In the plasma phase the interaction potential is expected to be screened beyond the Debye length λ_D (analogous to e.m. Debye screening):

 Charmonium (cc) and bottonium (bb) states with r > λ_D will not bind; their production will be suppressed

Debye screening length λ_D rapidly decreases when T > T_c (T/T_c > 1):

Digal,Petrecki,Satz PRD 64(2001) 0940150

Bottonium sequential suppression: Y(1S), Y(2S), Y(3S)

Binding energy: ~1.1 ~0.5 ~0.2 GeV

- Y(2S) 4x more suppressed than Y(1S); Y(3S) not observed in Pb-Pb
- Consistent with sequential suppression, ordered with binding energy, due to colour screening

Charmonium regeneration at the LHC

- Uncorrelated c quarks from the medium could bind at system hadronization and form charmonium
- At LHC, about 100 cc pairs in central collisions:

$N_{c\overline{c}} = \frac{\sigma_{c\overline{c}}^{pp}}{\sigma_{inel}^{pp}} \cdot N_{coll} \sim \frac{\sigma_{c\overline{c}}^{pp}}{65 \text{ mb}} \cdot 1600$				
In most central A-A collisions	SPS 20 GeV	RHIC 200 Gev	LHC 2.76 TeV	
N _{ccbar} /event	~0.1	~10	~100	

LICE, JHEP1207 (2012) 191

P. Braun-Muzinger and J. Stachel, Phys. Lett. B490(2000) 196 R. Thews et al, Phys.ReV.C63:054905(2001)

INFN Pisa, 01.02.2022

Andrea Dainese | QGP at the LHC

27

- J/ψ suppression reduced at low p_T
 - cc regeneration balancing the dissociation in the QGP

- At low p_T, modification decreases from forward to central rapidity
 - Reflects rapidity dependence of the $c\overline{c}$ cross section \rightarrow regeneration probability

Andrea Dainese | QGP at the LHC

Jets and parton energy loss

Visualization by J.E. Bernhard, arXiv:1804.06469

- · Hard quarks and gluons strongly interact with QGP
 - Jet energy loss and modification by induced gluon radiation

Parton energy loss: historics

- Partons travel ~4 fm in the high-density medium
- Bjorken (`82): energy loss due to elastic scattering

High energy quarks and gluons propagating through quark-gluon plasma suffer differential energy loss via elastic scattering from quanta in the plasma.

An interesting signature may be events in which the hard collision occurs near the edge of the overlap region, with one jet escaping without absorption and the other fully absorbed.

J.D. Bjorken, FERMILAB-Pub-82/59-THY (1982).

Parton energy loss: QGP-induced gluon radiation

- Partons travel ~4 fm in the high colour-density medium
- Successive calculations (`92 →): a QCD mechanism dominates, mediuminduced gluon radiation
- Coherent wave-function gluon acumulates k_T due to multiple inelastic scatterings in the medium \rightarrow it decoheres and is radiated

Gyulassy, Pluemer, Wang, Baier, Dokshitzer, Mueller, Peigne', Schiff, Levai, Vitev, Zhakarov, Salgado, Wiedemann, ...INFN Pisa, 01.02.2022Andrea Dainese | QGP at the LHC

Observation of jet quenching at the LHC

- Full jet reconstruction: typically anti-k_T algorithm + sophisticated background subtraction techniques
- Jets and Di-jets with ~100 GeV energies
- Pb-Pb events with large di-jet imbalance observed

ATLAS, PRL105 (2010) 252303

 \rightarrow Direct observation of jet quenching at single event level!

ALICE, PRC101(2020)034911

ATLAS, PLB790(2019)108 CMS, PRC96(2017)015202

Out-of-cone radiation

00000

R_^<1

 10^{3}

Incoming

parton

 $p_{\rm T,jet}$ (GeV/c)

Quantifying jet quenching: inclusive yields

1.2

Lost energy is not recovered within the jet "cone" \rightarrow large angle **QGP-induced gluon emission**

Pb-Pb 0-10% R = 0.4

See publications for: η_{int} , $p_{T,lear}$

 10^{2}

Correlated uncertainty Shape uncertainty

 $\overline{s_{NN}} = 5.02 \text{ TeV}$ [This publication]

See publications for full description of uncertainties

√s_{NN} = 5.02 TeV [PLB 790 (2019) 108-128]

 $\sqrt{s_{NN}} = 2.76 \text{ TeV} \text{ [PRL 114 (2015) 072302]}$

Vs_{NN} = 2.76 TeV [PRC 96 (2017) 015202]

In-cone radiation

Jet broadening

Quantifying jet quenching: inclusive yields

 Lost energy is not recovered within the jet "cone" → large angle QGP-induced gluon emission

parton

In-cone radiation

Jet broadening

Jet quenching: Z-jet recoil

- Z-jet correlations provide the scale of the initial jet (parton) energy (~Z energy)
- p_T distribution of recoil-jet tracks exhibits suppression at high p_T and increase at low p_T → energy loss

Jet quenching: substructure and jet collimation

Quark-mass dependence of energy loss

- Energy loss predicted to depend on QGP density, but also on quark mass
- "Dead cone" effect reduces small-angle gluon radiation for high-mass quarks

- Less suppression for (non-prompt) D mesons from B decays than prompt D mesons
 - Also note: first measurement of D meson production down to zero p_{T} in Pb-Pb

Going heavier: top quarks seen in Pb-Pb

- First observation of top quarks in heavy-ion collisions
- Physics case with (much) larger luminosity: access time-dependence of jet quenching using time-delay from boosted top decay topologies t → W → jets

Apolinario et al, PRL120 (2018) 23, 232301

QGP expansion and flow

Identified particle spectra and radial flow

- p_{T} distributions for π , K, p in centrality classes
- Shift of peak of p_T distr. in central collisions, more pronounced for heavier hadrons \rightarrow flow

- Blast-wave fit to characterize radial flow
 - Hydrodynamic-inspired fit
 - Collective expansion with common flow velocity β_T imparts additional momentum to hadrons: $m_T \rightarrow m_T + m_0 \gamma \beta_T$
- Largest ever $\beta_T \sim 0.67c$ in central Pb-Pb collisions at 5 TeV

Anisotropic (elliptic) flow

- Non-central collisions are azimuthally asymmetric
- The transfer of this asymmetry to momentum space provides a measure of the strength of collective phenomena
- Large mean free path
 - particles stream out isotropically, no memory of the asymmetry
 - extreme: ideal gas (infinite mean free path)
- Small mean free path
 - larger density gradient \rightarrow larger pressure gradient \rightarrow larger momentum
 - extreme: ideal liquid (zero mean free path, hydrodynamic limit)

plane

An atomic analogue: strongly-interacting gas of ultra-cold ⁶Li "explodes" in vacuum

INFN Pisa, 01.02.2022

Andrea Dainese | QGP at the LHC

Anisotropic (elliptic) flow

Azimuthal Anisotropy at RHIC

$$\frac{dN}{p_T dp_T dy d\phi} = \frac{1}{2\pi} \frac{dN}{p_T dp_T dy} (1 + 2v_1 \cos(\phi) + 2v_2 \cos(2\phi) + \dots)$$

 $v_2 = \langle \cos 2\phi \rangle$ "elliptic flow"

- Measurement at RHIC:
- Elliptic flow almost as large as expected at hydro limit!
- Very far from "ideal gas" picture of the QGP
- Looks like a "liquid": frequent interactions and small mean free path

 \rightarrow strongly-coupled QGP (sQGP)

- "Ideal" shape of nuclear overlap is elliptic
 - no odd harmonics expected (v_3, v_5, \ldots)

- "Ideal" shape of nuclear overlap is elliptic
 - no odd harmonics expected ($v_3, v_5, ...$)
- but fluctuations in initial conditions:

- "Ideal" shape of nuclear overlap is elliptic
 - no odd harmonics expected ($v_3, v_5, ...$)
- but fluctuations in initial conditions:
 - participants plane $\psi_2 \neq$ reaction plane Ψ_{RP}

- "Ideal" shape of nuclear overlap is elliptic
 - no odd harmonics expected ($v_3, v_5, ...$)
- but fluctuations in initial conditions:
 - participants plane $\psi_2 \neq$ reaction plane Ψ_{RP}
 - v₃ ("triangular") harmonic appears
 - [B Alver & G Roland, PRC81 (2010) 054905]

- and indeed, $v_3 > 0$!
- v₃ has weaker centrality dependence than v₂
- when calculated wrt participants plane, v₃ vanishes
 - as expected, if due to fluctuations...

Event-by-event shapes at the LHC

- And not only v_3 (triangular events), also v_4 , v_5 , ...
- At LHC, multiplicity large enough to "see" event-by-event shapes

Harmonic decomposition of correlation distribution

dN

dN

- First five harmonics describe shape at • 10⁻³ level
- Fourier analysis of new data suggests • very natural alternative explanation in terms of hydrodynamic response to initial state fluctuations

ALICE, PLB708 (2012) 249

Initial conditions and viscosity of the QGP

- Medium viscosity: one of its fundamental properties
- η/s: shear viscosity / entropy ratio

Initial conditions and viscosity of the QGP

- Energy density profile in the transverse plane:
- Medium viscosity: one of its fundamental properties
- η/s: shear viscosity / entropy ratio

Initial conditions and viscosity of the QGP

- Medium viscosity: one of its fundamental properties
- η/s: shear viscosity / entropy ratio
- Large viscosity washes out the details of the initialstate
- \rightarrow Final state fluctuations give information on viscosity

S Jeon et al, QM 2012, B. Schenke, et al. PRL106, 042301 (2011)

y [fm]

0

-10

From LHC data to QGP fluid-dynamic properties

• Theory groups use **high-precision** ALICE (mainly) data to estimate the **properties of the QGP fluid** with a Bayesian procedure. Example: S. Bass et al, <u>Nature Phys. 15(2019)1113</u>

→ QGP x10 less viscous than any other form of matter

Elliptic flow by hadron species

• Non-central collisions: flow maps the geometrical elliptical shape into an azimuthal modulation in momentum distributions

- Mass ordering at low $p_{T} \rightarrow$ hydrodynamic flow, very small viscosity
- Even A=2 and A=3 light nuclei pushed by the flow
- Baryon vs. meson grouping at higher p_T
 → quark-level flow + recombination?

Hadronization of the QGP

Visualization by J.E. Bernhard, arXiv:1804.06469

Statistical mechanics with quarks

- Statistical Hadronization Model:
 thermally-equilibrated QGP →
 chemically-equilibrated hadron gas
 - Hadron yields only depend on hadron mass and a single temperature
- Hadron yields from π to ³He described over **7 orders of** magnitude within 20% (except for K*⁰) with a chemical freeze-out temperature of T_{ch} ≈ 156 MeV
 - Very close to lattice QCD phase transition temperature
- Hadrons produced in chemical equilibrium

Quark-gluon plasma thermometer

A big surprise at the LHC: 'heavy-ion physics' in pp collisions?

What is the smallest system (number of particles) for QGP formation?

INFN

From heavy-ions to p-nucleus and pp: flow-like effects

 Observation of collective effects in pp and p-Pb collisions: one of the few unexpected findings of the LHC

Mass ordering of elliptic flow

From heavy-ions to p-nucleus and pp: flow-like effects & 'hadrochemistry'

• Observation of collective effects in pp and p-Pb collisions: one of the few *unexpected* findings of the LHC

From heavy-ions to p-nucleus and pp: flow-like effects & 'hadrochemistry'

• Observation of collective effects in pp and p-Pb collisions: one of the few *unexpected* findings of the LHC

From heavy-ions to p-nucleus and pp: flow-like effects & 'hadrochemistry' & energy loss?

p-Pb nuclear modification factor ~1
 → no suppression of yields

 But persistence of azimuthal asymmetry (v₂) to high p_T suggestive of final state interactions

From heavy-ions to p-nucleus and pp: flow-like effects & 'hadrochemistry' & energy loss?

Future LHC heavy-ion programme: Runs 3 and 4

- Main priority: large Pb-Pb sample, 13 nb⁻¹
 - **x10** L_{int} for "rare" triggers wrt Run 2
 - **x100** MB sample for upgraded ALICE
- Extension of **"small system" programme**
 - Extended p-Pb run: nPDFs, collectivity, hot system signals?
 - pp 13.6 TeV low pile-up with focus on high multiplicity
 - Short ${}^{16}\mathbf{O}-{}^{16}\mathbf{O}$ (and p-O) run in Run 3:
 - Jet quenching in "small" nucleus-nucleus system?

Future opportunities for high-density QCD at LHC, arXiv:1812.06772

Experiment upgrades for Runs 3 and 4

ALICE upgrade for Run 3:

- x3 better tracking precision
- Continuous readout at 50 kHz
 - \rightarrow x100 Pb-Pb sample in Runs 3+4

ALICE monolithic pixels tracker: strong INFN contribution

ATLAS and CMS upgrades for Run 4:

- Extension of tracker acceptance
- Endcap calorimeters
- Precise timing detectors \rightarrow t.o.f. PID

LHCb upgrade for Run 3:

 Tracker and readout upgrade should give access to Pb-Pb (non-central collisions)
 Further upgrade for Run 5 → Pb-Pb central collisions

LS1 Run 2 LS2 Run 3 LS3 Run 4 LS4 Run 5 LS5 ALICE 3: next-generation experiment

2022-2025

→ Tracking precision x3: 10 μ m at p_T = 0.2 GeV/c → Acceptance x4.5: -4 < η < 4 (with particle ID)

 \rightarrow A-A rate x5 (pp x25)

 Compact all-silicon tracker with high-resolution vertex detector

2015-2018

- Particle identification over large p_{T} and η acceptance
- Superconducting magnet systems
- Fast readout and GPU-based online processing

Letter of Intent being finalised

2035-2038

2010-2012

2040-2041

Run 6

Conclusions

- First decade of LHC heavy-ion campaigns
 - \rightarrow Detailed insight on the quark-gluon plasma properties:
 - ✓ Energy density > 10 GeV/fm³
 - ✓ Colour charge deconfined
 - ✓ Strong energy loss for hard partons
- ✓ Expands hydro-dynamically like a very-low viscosity liquid
- ✓ Hadronizes as in thermal equilibrium

Conclusions

- First decade of LHC heavy-ion campaigns ٠
 - \rightarrow Detailed insight on the quark-gluon plasma properties:
 - ✓ Energy density > 10 GeV/fm³
 - Colour charge deconfined \checkmark
- Expands hydro-dynamically like a very-low viscosity liquid
- Strong energy loss for hard partons </
- New research direction on emergence of collective effects from pp to heavy-ion ٠
- Heading towards precision measurements in Runs 3-4
- Strong opportunities from extension to Runs 5-6 with frontier detector technologies

Grazie per l'attenzione!

EXTRA SLIDES

Probing the highest magnetic field with c quarks

- Magnetic field → charge-dependent particle emission anisotropies with respect to the collision plane
- Early-produced heavy quarks more sensitive
- Effect for D mesons about three orders of magnitude larger than that of charged hadrons
- \rightarrow Significance ~2.5 σ
- → High-precision studies in Runs 3-4

Going heavy: charm and beauty flow

mesons and J/ψ exhibit large flow

- At intermediate p_{T} , $J/\psi < D < pions \rightarrow consistent$ with contribution of recombination
- Model description indicates c quark thermalisation time \sim 3-8 fm/*c* < QGP lifetime

B mesons also flow

- Model description indicates smaller flow for b than for c
- No indication of Y(1S) flow
 - Consistent with large Y mass and small bb recombination

ALICE LS2 Upgrade and LS3 ideas

- ... and more:
- Fast Interaction Trigger
- New Online-Offline system
- Readout upgrade of several detectors
 - x3 better tracking precision
- Continuous readout at 50 kHz \rightarrow ~100B Pb-Pb in Runs 3+4

- Upgrade proposals for LS3 (2026):
 - Replace inner barrel with a truly-cylindrical ultralight one: x3 less material
 - \geq FoCal with high-granularity readout for direct photons at 3.2 < η < 5.8: probe gluon density down to $x \sim 5x10^{-6}$
 - Exploring fixed-target programme with crystal collimated beam halo

ATLAS and CMS LS3 Upgrades

- Run 3+4: goal 13 nb⁻¹ Pb-Pb, focus on rare triggers
 - CMS, also large bandwidth for MB events:
 6 kHz in Run 3, goal to increase for Run 4
- Major Phase-2 upgrades for HL-LHC
 - Extension of tracker acceptance from $|\eta|$ <2.5 to $|\eta|$ <4
 - Endcap calorimeters with higher granularity
 - Precise timing detectors for pile-up rejection → t.o.f. PID
 - ATLAS $2.5 < |\eta| < 5$
 - CMS |η| < 4

LHCb LS2 Upgrade

- Ongoing LS2 upgrade:
 - − Tracker with higher granularity
 → Pb-Pb 30-100%
 - New storage cell for fixedtarget collisions at up to x100 higher rates (p ... Ne ... Xe)
- Proposal for phase-2 upgrade for Run 5 (2031)
 - Increased readout rate and granularity → central Pb-Pb
 - Extended PID performance

SMOG2 cell

QGP study with heavy-ion collisions

Visualization by J.E. Bernhard, arXiv:1804.06469

The QGP as seen at the LHC:

- ✓ Energy density > 10 GeV/fm³
- ✓ Colour charge deconfined
- Strong energy loss for hard partons

- Expands hydro-dynamically like a verylow viscosity liquid
- Hadronizes as in thermal equilibrium

Future research directions in QGP physics

- High (B)density collisions (SPS, RHIC-BES, NICA, FAIR, J-PARC):
- Search for the Critical Endpoint
- Observation of 1st order phase transition in QCD

High energy collisions (LHC, RHIC):

- Properties of QGP and their time-evolution
- Strong interaction in a deconfined system
- Observation of chiral symmetry restoration
- Emergence of QGP from QCD interactions

Future research directions in QGP physics

- High (B)density collisions (SPS, RHIC-BES, NICA, FAIR, J-PARC):
- Search for the Critical Endpoint
- Observation of 1st order phase transition in QCD

High energy collisions (LHC, RHIC):

- Properties of QGP and their time-evolution
- Strong interaction in a deconfined system
- Observation of chiral symmetry restoration
- Emergence of QGP from QCD interactions
- LHC ideally-suited to address these goals:
- ✓ μ_B =0 → lattice QCD vs experiment
- ✓ Largest initial T and time evolution
- Large cross section for hard probes of the QGP

CERN Yellow Report on High-density QCD, <u>arXiv:1812.06772</u>, then endorsed by ESPPU2020

