Report

Lecce team

OUTLINE

- Some studies on pDNN
- Some expected limits
- Next steps

- INPUT:
 - MC16a MC samples, CxAOD tag: 33-08, UFO-pFlow, BTagging201903
 - pDNN: version (see later)
 - No Data

- Radion, ggF/DY, merged regime
- Studies:
 - Interpolation capability
 - From the light version to the configuration in ATL-COM-PHYS-2018-1549
 - Adding M_{IIJ}
 - Stability with statistics

- pDNN configuration: light version
 - Input variables:
 - Lepton 1, 2: m, pt, eta, phi
 - Leptonic Z: m, pt
 - Fatjet: m, d2, pt, eta, phi
 - Event: (Njet)
 - Special for pDNN: Signal Mass
 - Variable scaling: mean to 0; rms to 1
 - Training:

Layers	2
Nodes	32
Optimizer	RMSprop
Learning rate	0.001
Patience	10
Epochs	150

- Background: Z+jet and Diboson, weighted to equalise stat. (No use of MC weights)
- Signal: Sum (over masses) of all samples reweighed to match stat of sum of backgrounds
 - Mass (GeV): 500, 600, 700, 800, 1000, 1200, 1400, 1500, 1600, 1800, 2000, 2400, 2600, 3000, 3500, 4000, 4500, 5000, 6000
- 20% dropout
- 20% of the training set as validation sample (for the early stopping after 10 epochs without any decrease in the validation loss)
- Some results presented in https://indico.cern.ch/event/1037488/contributions/4356646/attachments/ 2242794/3803014/LecceActivities.pdf

- pDNN configuration: light version
- Interpolation capability of the pDNN:
 - pDNN tested on a signal sample not used in the training

INTERPOLATION CAPABILITY

pDNN training

- UFO PFlow
- Merged ggF
- Signal: Radion
- Background: Z jets + DiBoson

INTERPOLATION CAPABILITY

Mass = 5TeV NON in the training set

Mass = 5TeV IN the training set

INTERPOLATION CAPABILITY

pDNN configuration: light version

- Comparing with pDNN documented in ATL-COM-PHYS-2018-1549 (internal note of Eur. Phys. J. C (2020) 80:1165)
 - Differences

	Our NN	paper
Layers	2	4
Nodes	32	128
Optimizer	RMSprop	Adam
Learning rate	0.001	0.0003
Patience	10	5
Epochs	150	200

- Light vs ATL-COM-PHYS-2018-1549
 - CxAOD tag: 33-08, UFO-pFlow, BTagging201903

	Our NN	paper
Layers	2	4
Nodes	32	128
Optimizer	RMSprop	Adam
Learning rate	0.001	0.0003
Patience	10	5
Epochs	150	200

- Light vs ATL-COM-PHYS-2018-1549
 - CxAOD tag: 33-22, UFO-pFlow, BTagging201903

	Our NN	paper
Layers	2	4
Nodes	32	128
Optimizer	RMSprop	Adam
Learning rate	0.001	0.0003
Patience	10	5
Epochs	150	200

- pDNN configuration: ATL-COM-PHYS-2018-1549
- Adding M_{IIJ} as input variable

No apparent gain => input variables contain the information in M_{IIJ}

- pDNN configuration: ATL-COM-PHYS-2018-1549:
- Stability of the pDNN performance with statistics Full, 3/4, 1/2, 1/4

- MC16a MC samples, CxAOD tag: 33-08, UFO-pFlow
- pDNN: light version
- Data = fake, no systematic variations
- Radion, ggF/DY, merged regime
 - 4 Signal Regions: MergedLP_Untag/Tag, MergedHP_Untag/Tag

Cross Section Limit

mass=1000.000000, obs[fb]=1.595659, exp[fb]=1.605636 mass=1500.000000, obs[fb]=0.716886, exp[fb]=0.716932 mass=2000.000000, obs[fb]=0.407849, exp[fb]=0.412634 mass=2400.000000, obs[fb]=0.369438, exp[fb]=0.384979 mass=3000.000000, obs[fb]=0.299021, exp[fb]=0.303847 mass=3500.000000, obs[fb]=0.339803, exp[fb]=0.343007 mass=4000.000000, obs[fb]=0.356745, exp[fb]=0.358377 mass=6000.000000, obs[fb]=0.537053, exp[fb]=0.549133

Cross Section Limit

mass=1000.00000, obs[fb]=1.285975, exp[fb]=1.307315 mass=1500.000000, obs[fb]=0.710017, exp[fb]=0.716263 mass=2000.000000, obs[fb]=0.473827, exp[fb]=0.474285 mass=2400.000000, obs[fb]=0.391747, exp[fb]=0.395557 mass=3000.000000, obs[fb]=0.358052, exp[fb]=0.358318 mass=3500.000000, obs[fb]=0.358118, exp[fb]=0.358055 mass=4000.000000, obs[fb]=0.438339, exp[fb]=0.438441 mass=6000.000000, obs[fb]=0.700799, exp[fb]=0.709310

Cross Section Limit

mass=1000.000000, exp[fb]=1.605636 mass=1500.000000, exp[fb]=0.716932 mass=2000.000000, exp[fb]=0.412634 mass=2400.000000, exp[fb]=0.384979 mass=3000.000000, exp[fb]=0.303847 mass=3500.000000, exp[fb]=0.343007 mass=4000.000000, exp[fb]=0.358377 mass=6000.000000, exp[fb]=0.549133

Cross Section Limit

mass=1000.000000, exp[fb]=1.307315 mass=1500.000000, exp[fb]=0.716263 mass=2000.000000, exp[fb]=0.474285 mass=2400.000000, exp[fb]=0.395557 mass=3000.000000, exp[fb]=0.358318 mass=3500.000000, exp[fb]=0.358055 mass=4000.000000, exp[fb]=0.438441 mass=6000.000000, exp[fb]=0.709310

COMPARISON WITH PUBLISHED PAPER

~10 fb @ 1TeV ~1 fb @ 4TeV ~2 fb @ I TeV ~0.4 fb @ 4TeV

NEXT STEPS

- Ready to move to r33-22
- Moving to pDNN optimisation
 - Trying to follow ATL-COM-PHYS-2020-766, HH -> bbττ
 - TO DO:
 - Training set preparation:
 - Equalize (by reweighting) the stat. of signal samples;
 - Equalize (by reweighting) the stat. of total signal sample to total background
 - Consider all physics backgrounds processes (with their MC weights)
 - Scale input variables (median to zero, interquartile range to 1) taking into account the training weights
 - Technical optimisations:
 - Hyperparameter optimization on random realizations
 - k-fold cross validation splitting events in even/odd → remove high variance realizations
 - Reconsider input variables

Backup

Cross Section Limit

mass=1000.000000, obs[fb]=0.950482, exp[fb]=1.033647 mass=1500.000000, obs[fb]=0.583156, exp[fb]=0.599691 mass=2000.000000, obs[fb]=0.413288, exp[fb]=0.420130 mass=2400.000000, obs[fb]=0.382443, exp[fb]=0.385068 mass=3000.000000, obs[fb]=0.327206, exp[fb]=0.327483 mass=3500.000000, obs[fb]=0.351858, exp[fb]=0.352043 mass=4000.000000, obs[fb]=0.417012, exp[fb]=0.416731 mass=6000.000000, obs[fb]=0.569377, exp[fb]=0.574183

RS_ZZ_GGF_MERGED Atlas link with auxiliary plots HDBS-2018-10 Eur. Phys. J. C (2020) 80:1165

Channel	$V \rightarrow qq$		Signal								I	Backgrou	nd estima	tes							Data
	recon.	1	regions	W	+jets		Z	Z+je	ets	tī			Dił	ooso	on	Single-	t	Multijet	Total		
2-lepton (ZZ)		LID	Tag	0.0135	±	0.0043	85	±	6	0.283 ±	:	0.035	21.1	±	2.3	0.34 ±	0.05	-	107 ±	7	94
10140 140	Margad	пр	Untag	0.772	±	0.010	3300	±	40	4.27 ±		0.08	361	±	32	$0.58 \pm$	0.11	-	$3670 \pm$	50	3671
10149 MC	Mergeu	ΙD	Tag	0.0135	±	0.0043	138	±	8	0.313 ±		0.034	12.8	±	1.4	$0.30 \pm$	0.04	-	$152 \pm$	8	141
		LF	Untag	2.341	±	0.017	5920	±	50	10.16 ±		0.16	278	±	26	$2.03 \pm$	0.29	-	$6220 \pm$	60	6095
	Resolved	Tag		-			1323	±	26	110 ±		10	159	±	12	4.7 ±	0.8	-	$1600 \pm$	30	1583
	Resolved	Unta	ag	4.681	±	0.026	42750	±	160	110.6 ±		1.5	1800	±	100	13.4 ±	2.0	-	$44650~\pm$	190	44 604

Total 14+26+769+2716 = 3524 = 1.34 * expected according to Eur. Phys. J. C (2020) 80:1165

Diboson Integral=5.941466 +/- 0.370521	
Radion Integral=0.000000 +/- 0.000000	
Wjets Integral=0.000040 +/- 0.000008	
Zjets Integral=7.874548 +/- 1.580589	
stop Integral=0.116039 +/- 0.023291	
ttbar Integral=0.187731 +/- 0.037682	
SumMC Integral=14.119825	
Postfit Integral=14.119824 + 0.319207 - 0.319214	
Data Integral=14.119779	
Prefit integral=14.119824	0.51

Region: L2_MergLP_GGF_ZZ_Tag_SR

Diboson Integral=3.666073 +/- 0.228623	0.91
Radion Integral=0.000000 +/- 0.000000	
Wjets Integral=0.000040 +/- 0.000008	
Zjets Integral=21.808302 +/- 4.377388	0.62
stop Integral=0.141827 +/- 0.028468	
ttbar Integral=0.368419 +/- 0.073949	
SumMC Integral=25.984659	
Postfit Integral=25.984661 + 0.359983 - 0.359983	
Data Integral=25.864803	
Prefit integral=25.984661	0.63

Region: L2_MergHP_GGF_ZZ_Untag_SR

Diboson Integral=112.358536 +/- 7.006886	
Radion Integral=0.000000 +/- 0.000000	
Wjets Integral=0.000040 +/- 0.000008	
Zjets Integral=653.897095 +/- 131.251007	
stop Integral=0.723407 +/- 0.145203	
ttbar Integral=2.416062 +/- 0.484955	
SumMC Integral=769.395142	
Postfit Integral=769.395142 + 5.543274 - 5.543335	
Data Integral=769.291199	
Prefit integral=769.395142	0.81

Region: L2_MergLP_GGF_ZZ_Untag_SR

Diboson Integral=98.287056 +/- 6.129363	1.4
Radion Integral=0.000000 +/- 0.000000	
Wjets Integral=0.563510 +/- 0.113108	
Zjets Integral=2606.893555 +/- 523.258789	1.7
stop Integral=1.392521 +/- 0.279508	
ttbar Integral=8.703288 +/- 1.746934	3.3
SumMC Integral=2715.840088	
Postfit Integral=2715.839844 + 3.307373 - 3.307617	
Data Integral=2715.784424	
Prefit integral=2715.839844	1.7
_	

$RS_ZZ_GGF_Merged$

- python RS_ZZ_GGF_Merged_HP_Tag.py 2MergSR 1000 Radion
 - basedirectory="/nfs/kloe/ einstein4/HDBS/PDNNTestAGS/ ntuples" # as before but from Lecce
 - "Radion_1000":451147 instead of 309993 (from original Rob macro)
 - ./runPreFit.py ../runSS/output/ ZZSignalRegionsGGF/ws/ ExampleVV_Radion_1000_test.root

Stefania Spagnolo

24

Monday Dec 6th, 2021

Stefania Spagnolo

Monday Dec 6th, 2021

VARIABILI ATTUALMENTE UTILIZZATE

Stefania Spagnolo

Monday Dec 6th, 2021

VARIABILI ATTUALMENTE UTILIZZATE

Leptonic Z: m, pt

27

Pass_MergHP_CGF_ZZ_Tag_SR == 1 || Pass_MergHP_CGF_ZZ_Untag_SR == 1 || Pass_MergHP_CGF_WZ_SR == 1 || Pass_MergLP_CGF_ZZ_Tag_SR == 1 || Pass_MergLP_CGF_ZZ_Untag_SR == 1 || Pass_MergLP_CGF_ZZ_Untag_SR == 1 || Pass_MergLP_CGF_ZZ_Untag_ZCR == 1 || Pass_MergLP_CGF_ZZ_Untag_ZCR == 1 || Pass_MergLP_CGF_ZZ_Tag_ZCR == 1 || Pass_MergLP_CGF_ZZ_Untag_ZCR == 1 || Pass_MergLP_CGF_ZZ_Tag_ZCR == 1 || Pass_MergLP_CCF_ZZ_Tag_ZCR == 1 || Pass_MergLP_CCF_ZZ_Untag_ZCR == 1 || Pass_MergLP_CCF_ZZ_Tag_ZCR == 1 || Pass_MergLP_CCF_ZZ_Tag_ZCR == 1 || Pass_MergLP_CCF_ZZ_Untag_ZCR == 1 || Pass_MergLP_CCF_ZZ_Tag_ZCR == 1 || Pass_MergLP_CCF_ZZ_Untag_ZCR == 1 || Pass_MergLP_CCF_ZZ_Tag_ZCR == 1 || Pass_MergLP_CCF_ZZ_Tag_ZCR == 1 || Pass_MergLP_CCF_ZZ_Tag_ZCR == 1 || Pass_MergLP_CCF_ZZ_Untag_ZCR == 1 || Pass_MergLP_CCF_ZZ_Tag_ZCR == 1 || Pass_MergLP_CCF_ZZ_Untag_ZCR == 1 || Pass_MergLP_CCF_ZZ_Tag_ZCR == 1 || Pass_MergLP_CCF_ZZ_Untag_ZCR == 1 || Pass_ZCR =

28

Stefania Spagnolo