- We want to prepare the training set as in the HH->bbττ
- To **prepare** means:
 - 1) Equalize statistics of the total Signal sample (all masses) and total Background sample
 - NOTE 1 :
 - Beforehand we want to equalize signal samples corresponding to different mass values
 - NOTE 2:
 - In the total background sample, different processes contribute according to the relative importance according to their SM cross section
 - 2) Apply variable scaling considering Mean and RMS of the distribution obtained with each event contributing "as in the training set"
 - Therefore Mean and RMS must be computed on distributions built with event weights equal to those used for the training

Equalize statistics of total Signal and Background

Easy CASE: no intrinsic (physics and simulation related) weights;

1 single background B

- We have n signal masses, hence n signal samples, Sj, with j=1, ..., n
- The number of events passing the preselection (AODmaker+any preselection applied on the trees) for Sj is Nj
- The number of background events = Nb
- Logic to define scale factors for the events (common to the entire sample)
 - Order according to increasing Nj the n signal samples
 - $=> N_1 < N_2 < \ldots < N_n$
 - Compute the signal sample scale factors $F_j = 1$, N_1/N_2 , N_2/N_3 , ... N_1/N_n
 - The stat.s of the entire signal sample is ~nN1
 - If nN1 < Nb
 - apply to the background the scale factor Fb = nN₁/Nb
 - Else
 - Apply to signal events the scale factors Fj = Fj * Nb/(nN₁)

Equalize statistics of total Signal and Background

Real CASE: intrinsic (physics and simulation related) weights are always considered, for signal and for background events

process

=> the total number of events* in the signal sample Sj is Nj = $\sum w_i$

=> the total number of background events^{*} is Nb = $\sum_{i=1}^{n} (\sum_{i=1}^{n} w_i)$

(*) = passing the preselection

Logic to define scale factors for the events (common to the entire sample)

- Order according to increasing Nj the n signal samples
 - $=> N_1 < N_2 < \ldots < N_n$
- Compute the signal sample scale factors $F_j = 1$, N_1/N_2 , N_2/N_3 , ... N_1/N_n
 - The stat.s of the entire signal sample is ~nN1
- If nN1 < Nb
 - apply to the background the scale factor $Fb = nN_1/Nb$
- Else
 - Apply to signal events the scale factors Fj = Fj * Nb/(nN₁)

As before

Real CASE

Equalize statistics of total Signal and Background

1) Whenever and event is used it comes with its intrinsic weight w_i 2) In the training and in the scaling any event is used with a training weight $w_{Ti} = w_i F_{sample}$

Apply variable scaling

Produce distribution of each input variable using the training weights => compute Mean and RMS Redefine (scale) the valiables of the training set