

Physics & Simulation Studies Focus on RD-FCC

P. AZZI (INFN-PD) **1ST FCC ITALY WORKSHOP 20-21 MARCH 2022**

Introduction

- the difference in the physics focus at the different \sqrt{s}
- the difference in the event kinematic of running from 90GeV (and possibly below) up to 365GeV
- the challenge of being able to achieve superbe precision on SM processes but also perform unique direct searches for new physics
- The list of interesting processes and measurement is extensive, and it has not been fully explored yet, even in terms of sensitivity.
- From this richness, we need to extract concrete benchmark measurements that will be used to extract requirements on what is missing to achieve our ambitious goals: detector requirements, reconstruction tools, calibration techniques.

• The physics landscape of the FCC-ee program extends in all possible directions:

Can produce all the heaviest particles of the Standard Model

ZH maximum	√s ~ 240 GeV	3 years	
tt threshold	√s ~ 350 GeV	5 years	
Z peak	√s ~ 91 GeV	4 years	5)
WW threshold+	√s ≥ 161 GeV	2 years	>
s-channel H	√s = 125 GeV	? Years	~

at the needed E_{cm} Clean environment Precise knowledge of the center-of-mass energy and of the luminosity

√s errors

2 MeV 5 MeV < 100 keV < 300 keV < 200 keV

•m_Z, Γ_Z , N_v

•RI, AFB

•m_W, Γ_W

- • $\alpha_{\rm s}(m_7)$ with per-mil accuracy
- •Quark and gluon fragmentation
- •Clean non-perturbative QCD studies

EW & QCD

precise acceptances High efficiency energy resol. particle ID particle flow

direct searches of light new physics

detector hermeticity

tracking, calorimetry

time-of-flight

 Axion-like particles, dark photons, Heavy Neutral Leptons

long lifetimes - LLPs

flavour factory $(10_{12}bb/cc; 1.7x10_{11}\tau\tau)$

τ physics

Momentum resol. tracker Ecal granularity

•*τ*-based EWPOs

•lept. univ. violation tests

B physics

- •Flavour EWPOs (R_b, A_{FB}^{b,c})
- •CKM matrix,
- •CP violation in neutral B mesons
- •Flavour anomalies in, e.g., $b \rightarrow s\tau\tau$

Christophe Grojean @FCC workshop, Feb. 2022

The FCC Feasibility Study

- Design new detector concepts to realise the physics potential of the FCC**ee**
 - both in term of precision and sensitivity

- Focus on benchmark studies
 - that represent the physics goals and allow to extract the detector requirements

Need to develop simulation and analysis tools to get this done

The FCC Feasibility Study

- Design new detector concepts to realise the physics **ee**

- Focus on bench

• Need to develop simulation and analysis tools to get this done

that represent the purposite goals and allow to extract the detector requirements

GREEN: ONGOING STUDIES

Case Studies Overview (evolving) HIGGS M(H) and $\sigma(ZH)$ in HZ, Z in leptons EWK (Z) M(H) and $\sigma(ZH)$ in HZ, Z in hadrons EWK (W) Z width Invisible Higgs W polarization $H \rightarrow bb, c\bar{c}, s\bar{s}$ couplings $R_b, R_c, A_{FB}(bb, cc)$ M(W) from $WW \rightarrow had$, semi - lep $\Gamma(H)$ in $ZH, H \rightarrow ZZ^*$ Ratio RI $\sigma(WW)$ for M(W), TGCs $\Gamma(H)$ in $bb\nu\nu$ events $A_{FB}(muons)$ V_{cb} from $W \rightarrow cb$ $HZ\gamma$ coupling Luminosity from di-W leptonic BRs Higgs self-coupling photons/NP \sqrt{s} via radiative returns $ee \rightarrow H$ s-channel production Coupling of Z to ν_{ρ} (NP)

FLAVOUR - TAU

BSM HNL Axions $(\gamma\gamma, 3\gamma)$ Tau lifetime TOP **EWK couplings** Tau mass FCNC Tau leptonic BR Properties at threshold Tau polarisation and exclusive BR QCD Alpha_s LFV in Z and tau decays 6 P. Azzi – 1st FCC Italy Workshop, Rome 21–22 March 2022

Initial Physics Requirements

Higgs boson sector: Higgs sector de resolution, tracking and vertexing

Physics Process	Measured Quantity	Critical Detector	Required Performance
$ZH \to \ell^+ \ell^- X$	Higgs mass, cross section	Tracker	$\Delta(1/p_{\rm T}) \sim 2 \times 10^{-5}$
$H \to \mu^+ \mu^-$	$BR(H \to \mu^+ \mu^-)$	TTACKCI	$\oplus 1 \times 10^{-3}/(p_{\rm T}\sin\theta)$
$H \rightarrow b \overline{b}, \ c \overline{c}, \ g g$	$BR(H \rightarrow b\bar{b}, c\bar{c}, gg)$	Vertex	$\sigma_{r\phi} \sim 5 \oplus 10/(p \sin^{3/2} \theta) \ \mu \mathrm{m}$
$H \to q\bar{q}, \ VV$	$BR(H \to q\bar{q}, VV)$	ECAL, HCAL	$\sigma_E^{ m jet}/E\sim 3-4\%$
$H \to \gamma \gamma$	$BR(H \to \gamma \gamma)$	ECAL	$\sigma_E \sim 16\% / \sqrt{E} \oplus 1\% \text{ (GeV)}$

> EWK

- Extreme definition of detector acceptance.
- Extreme EM resolution (crystals).

Physics at Tera-Z pushes the requirements to another level... don't forget BSM!

Higgs boson sector: Higgs sector definition imposes initial requirements on hadronic

> Heavy Flavour:

 PID to accurately classify final states and flavour tagging.

PHYSICS GENERATORS

See F. Piccinini's talk

MONTE CARLO DATASETS (STORAGE & PRODUCTION)

- Key4Hep is the new software ecosystem that holds together all the developments for future machines
- EDM4HEP a new event data model paradigm to share among projects
- Supported by HSF, CERN, DESY and European Projects such as AIDA-Innova

How to get there?

DETECTOR SIMULATION (FAST & FULL)

RECONSTRUCTION & ANALYSIS TOOLS

IDEA Detector Concept

□ IDEA(baseline) consists of:

- >A silicon pixel vertex detector.
- >A large-volume extremely-light drift wire chamber.
- >A layer of silicon micro-strip detectors
- >A thin low-mass superconducting solenoid coil (optimized at 2 T) to maximize luminosity.
- > A preshower detector.
- >A dual read-out calorimeter.
- >Muon chambers inside the magnet return yoke.

See F. Bedeschi's talk

- Full simulation (GEANT):
 - brem, conversions)

- Parametric simulation (Delphes):
 - calorimeter objects)
 - up ..)
 - New features can be added easily...

Detector Simulations

10²-10³ s/ev

simulates all particle-detector interaction (e.m/hadron showers, nuclear interaction,

10⁻²-10⁻¹ s/ev parameterise detector response at the particle level (efficiency, resolution on tracks,

reconstruct complex objects and observables(use particle-flow, jets, missing ET, pile-

Improving the FastSimulation – tracking

- Add a simple tracker geometry with material
- Analytical model to evaluate full covariance matrix

• Allows to study impact of material, vertexing, heavy flavour tagging and long lived particles

- - Recoil method unique at FCC-ee

Higgs mass with ZH events

Precise mass motivation, with O(10MeV) already matches the statistical precision on the Higgs, BR, but to constrain or measure electron Yukawa, would need better than the Higgs width (<4.1MeV).

• This is an ambitious goal that poses challenges and constraints on the measurement with the ZH events

IDEA (FastSim) used as baseline

Statistics Only

A 6.7	1.07
con 9.0	1.12
5.8	1.06

Improving the FastSimulation – Particle ID

- track output for further use in the analysis.

PISA, LECCE+CERN

dN/dx: The cluster information (given a volume crossed) is computed and saved in the

Timing information is available as well: can be tuned for performance studies with TOF.

Example: Jet-flavor tagging

- New tagging algorithm developed based on DNN approach (ParticleNet)
 - [arXiv:1801.07829, [arXiv:1902.08570]
- c-tagging efficiency is 80-90%, improves when beam pipe radius decreases
 - Crucial for A_{FB}(bb,cc)
- $H \rightarrow c\bar{c}$ coupling performance: promising!

 $\delta(\sigma \times BR)/(\sigma \times BR) \% \approx 0.6$ (stat.only) or 2.9(no Bkg rej)

PISA+UDINE+CERN

	ε(SIG)				
Eff (b)	Mistag (g)	Mistag (ud)	Mistag (c)		
90%	2%	0.2%	3%		
80%	0.7%	<0.1%	0.4%		

WP	Eff (c)	Mistag (g)	Mistag (ud)	
Loose	90%	8%	7.5%	
Medium	80%	3%	0.9%	

...and Strange tagging?

- Strange tagging is the new "hot topic", can it be done?
 - Combined PID with dN/dx and TOF(30ps): $3\sigma K/\pi$ separation for p<30GeV
- Starting blocks for more exploration of new detector options

PADOVA, CAGLIARI+CERN, DESY

BARI, LECCE, FERRARA, PAVIA, TORINO+CERN, SUSSEX

Visualization of IDEA geometry in GEANT Vertex, Drift Chamber and DR Calorimeter

Full Simulation of IDEA

- Description of the full detector response at the hit level for:
 - Reconstruction algorithms development
 - physics performance studies
 - TestBeam data comparison for validation

MIB, PAVIA+SUSSEX

GEANT4 - Qt visualizer - IDEA / $e^+e^- \rightarrow jj$

Exploring calorimetry options

- Full simulations describing response of the electronic
- Develop and test new reco algorithms

DR+Crystal option

different configurations including

17

Jet energy resolution பு^{0.14} $e^+e^- \rightarrow Z^*/\gamma \rightarrow jj$ — w/o DRO, w/o pPFA — w/ DRO, w/o pPFA 0.12 —•— w/ DRO, w/ pPFA 0. $\sigma_{\text{E}}^{\text{RAW}/\text{E}} = 0.34/\sqrt{\text{E}} \oplus 0.047$ $\sigma_{E}^{DRO}/E = 0.32/\sqrt{E} \oplus 0.034$ $\sigma_{\rm F}^{\rm PFA}/\rm E = 0.29/\sqrt{\rm E} \oplus 0.010$ 0.08 0.06 0.04 0.02^L 140 120 80 100 $\langle \mathsf{E}_{\mathsf{iet}} \rangle [\mathsf{GeV}]$

Reach desired 3-4% resolution for jets >50 GeV with crystal+PF

Flavour physics case study

• $B_s \rightarrow D_s K$ is an excellent showcase for:

- and calorimeter)
- Preliminary studies show $\delta(\gamma) \leq 0.4^{\circ}$ (*stat*.) achievable
- FullSim studies in progress

16	ar	14	וב
	41		
	_		

ROMA3, PADOVA, PAVIA, ROMA1+CERN, SUSSEX

On the way to ParticleFlow reconstruction...

- 1) Hits around *crystal* neutral seeds are clustered as *photon hits* and are not associated to tracks. <u>Crystal section is crucial in 1) ↑</u>
- 2) Calorimeter hits are associated to tracks based on their track-distance.

If the sum of the energy associated to a track is within 1σ from the expected energy the calorimeter hits are replaced with the track momentum.

Example: NN for *t***-ID in DR Calo**

- Exploiting a DGCNN for:
 - separation of hadronic τ decays from QCD jets using only DR information.
 - Identification of objects inside Identification of objects inside τ decay (γ and n)
- Up to 91% average identification accuracy of classification of QCD and τ decays only with DR calo hit information.
 - Straightforward application to ParticleFlow algorithm

BSM Physics opportunities

Intensity frontier offers the opportunity to directly observe new feebly interacting particles below m(Z) (even with long lifetimes): ALPS, HNL, Dark photons

t FCC Italy Workshop, Rome 21–22 March 2022

BSM Physics opportunities

 Intensity frontier offe new feebly interactin lifetimes): ALPS, HNL, Electron coupling dominan 10^{-2} $|\Theta|^2 = |U|^2$ 10^{-1} 10^{-4} 10^{-5} 10^{-6} CHARM CODEX-6, 300 R 10^{-7} MATHUSLA-200, 3 ab 10^{-8} 10^{-9} BBN 10^{-10} 10^{-11} See Saw 10^{-12} 10^{-1} 10

 10^{2}

 m_N (GeV)

t FCC Italy Workshop, Rome 21–22 March 2022

Collab

Physics

Experiments

and

Detectors

Bo

CERN

- **Detector Concepts:** explore
- Physics Performance: conn studies"
- To optimise the ultimate statistic
- To identify and evaluate the limit
- To establish detector requirement

Collaboration Steering Scientific Board Committee Advisory Committee
poses physics benchmarks
ores new technologies
nnects the two by means of "case
stical sensitivity
miting systematic uncertainties
nents and pass them on to the Detector Concept

RD-FCC WG1: PHYSICS & SIMULATION

LOIs to Snowmass, <u>challenges</u>: <u>https://indico.cern.ch/event/951830/</u>

EPJ+ special issue "A future Higgs and EW Factory: Challenges towards discovery"

2	Intr	roduction (2 essays)
	2.1	Physics landscape after the Higgs discovery [1]
	2.2	Building on the Shoulders of Giants [2]
3		t I: The next big leap – New Accelerator technologies to reach the precisintier [3] (6 essays)
	3.1	FCC-ee: the synthesis of a long history of e^+e^- circular colliders [4]
	3.2	RF system challenges
	3.3	How to increase the physics output per MW.h? \dots \dots MDI, \sqrt{s}
		IR challenges and the Machine Detector Interface at FCC-ee [5]
	3.5	The challenges of beam polarization and keV-scale center-of-mass energy calibration
	3.6	The challenge of monochromatization [7]
4		t II: Physics Opportunities and challenges towards discovery [8] (15 essay
	4.1	Overview: new physics opportunities create new challenges [9]
	4.2	Higgs and top challenges at FCC-ee [10]
	4.3	Higgs and top challenges at FCC-ee [10]
	4.4	Heavy quark challenges at FCC-ee [12]
	4.6	Hunting for rare processes and long lived particles at FCC-ee [14]
\backslash		The W mass and width challenge at FCC-ee [15]
	4.8	A special Higgs challenge: Measuring the electron Yukawa coupling via s-channe
	4.9	Higgs production [16]
		precision [17]

	3	All 34 references in this Overleaf docu
	3	https://www.overleaf.com/read/xcssxc
	3	
_		
ion	4	4.10 From physics benchmarks to detector requirements [18]
		4.11 Calorimetry at FCC-ee [19] Detector requirem
		A DOSSIBLE SOLUTIO
•	4	4.15 Muon detection at FCC -ee [21] \ldots \ldots \ldots \ldots \ldots \ldots \ldots
•	4	4.14 Challenges for FCC-ee Luminosity Monitor Design [22]
	4	4.15 Particle Identification at FCC-ee [23]
		5 Part III: Theoretical challenges at the precision frontier [24] (7 essays)
•	4	5.1 Overall perspective and introduction
/s)	4	5.2 Theory challenges for electroweak and Higgs calculations [25]
(5)	4 5	5.3 Theory challenges for QCD calculations
•	5	5.4 New Physics at the FCC-ee: Indirect discovery potential [26] challenges
•	5	5.5 Direct discovery of new light states [27]
iato	:h	5.6 Theoretical challenges for flavour physics [28]
sidi	a a	5.7 Challenges for tau physics at the TeraZ [29]
		on chancinger the physics at the foral [20]
•	6	6 Part IV: Software Dev. & Computational challenges (4 essays)
•	7	6.1 Key4hep, a framework for future HEP experiments and its use in FCC
X	-	6.2 Offline computing resources and approaches for sustainable computing
•	1	6.3 Accelerator-related codes and interplay with FCCSW
e	7	6.4 Online computing challenges: detector & readout requirements [30]
-		
		challenges

Now is a good time to join the FCC feasibility study

Registration open: <u>https://indico.cern.ch/event/1064327/</u>

PARIS, France Venue: Campus des Cordeliers Sorbonne Université https://cern.ch/fccweek2022

30 May - 03 June

2022

24

BACKUP

FCC-ee as a Higgs factory and beyond

Higgs provides a very good reason why we need both e+e- AND pp colliders

- FCC-ee measures g_{HZZ} to 0.2% (absolute, model-independent, st candle) from σ_{7H}
 - $\Gamma_{\rm H}$, $g_{\rm Hbb}$, $g_{\rm Hcc}$, $g_{\rm H\tau\tau}$, $g_{\rm HVVV}$ follow
 - Standard candle fixes all HL-LHC couplings
- FCC-hh produces over 10¹⁰ Higgs bosons
 - (1st standard candle \rightarrow) $g_{H\mu\mu}$, $g_{H\gamma\gamma}$, $g_{HZ\gamma}$, Br_{inv}
- FCC-ee measures top EW couplings ($e^+e^- \rightarrow tt$)
 - Another standard candle
- FCC-hh produces 10⁸ ttH and 2. 10⁷ HH pairs
 - (2nd standard candle \rightarrow) g_{Htt} and g_{HHH}

FCC-ee + FCC-hh is outstanding

All accessible couplings with per-mil precision; self-coupling with per-cent precision

	Collider	HL-LHC	$\text{FCC-ee}_{240 \rightarrow 365}$	FCC-INT
standard	Lumi (ab^{-1})	3	5 + 0.2 + 1.5	30
	Years	10	3 + 1 + 4	25
	g_{HZZ} (%)	1.5	$0.18 \ / \ 0.17$	0.17/0.16
	$g_{ m HWW}$ (%)	1.7	$0.44 \ / \ 0.41$	0.20/0.19
	$g_{ m Hbb}~(\%)$	5.1	$0.69 \ / \ 0.64$	0.48/0.48
	$g_{ m Hcc}~(\%)$	SM	1.3 / 1.3	0.96/0.96
—	$g_{ m Hgg}~(\%)$	2.5	1.0 / 0.89	0.52/0.5
	$g_{\mathrm{H} au au}$ (%)	1.9	$0.74 \ / \ 0.66$	0.49/0.46
	$g_{\mathrm{H}\mu\mu}$ (%)	4.4	8.9 / 3.9	0.43/0.43
	$g_{\mathrm{H}\gamma\gamma}$ (%)	1.8	3.9 / 1.2	0.32/0.32
	$g_{\mathrm{HZ}\gamma}$ (%)	11.	- / 10.	0.71/0.7
	$g_{ m Htt}~(\%)$	3.4	10. / 3.1	1.0/0.95
	ann (%)	50.	44./33.	2-3
	$g_{ m HHH}$ (%)	50.	27./24.	2-3
	$\Gamma_{\rm H}$ (%)	SM	1.1	0.91
	BR_{inv} (%)	1.9	0.19	0.024
	BR_{EXO} (%)	SM(0.0)	1.1	1

FCC-ee is also the most effective way toward FCC-hh

With highest luminosities at 91, 160 and 350 GeV Complete set of EW observables can be measured Precision (10⁻³ today) down to few 10⁻⁶

e.g., m_Z (100 keV), Γ_Z (25 keV), $\alpha_{QED}(m_Z)$ (3.10⁻⁵), sin² θ_w (3. 10⁻⁶), m_W (<500 keV), m_{top} (20 MeV)

Benefiting from \sqrt{s} calibration with resonant depolarisation at 91 and 160 GeV

- Precision unique to FCC-ee, with smallest parametric errors
 - <u>Challenge</u>: match syst. uncertainties to the stat. precision
 - A lot more potential to exploit with good detector design than the present treatment suggests
 - Theory work is critical and initiated
 - Precision = discovery potential (e.g., NP in Z/W propagators)
 - Generic discovery potential: Show that SM does not suffice
 - <u>Challenge</u>: test specific models with ALL information
 - Clarify the need for precision from a theoretical perspective
 - Explain how FCC-ee go towards answering big questions in fundamental physics

FCC-ee AS AN ELECTROWEAK FACTORY

- coupling. Scan strategy can be optimized
 - thresholds for a 10% precision (profiting of the better α S).
 - model dependence)

> Run at 365 GeV used also for measurements of top EWK couplings (at the level of 10⁻²-10⁻³) and FCNC in the top sector.

TOP PHYSICS AT FCC-ee

Threshold region allows most precise measurements of top mass, width, and estimate of Yukawa

FCC-ee has some standalone sensitivity to the top Yukawa coupling from the measurements at

But, HL-LHC result of about 3.1% already better (with FCC-ee Higgs measurements removing the

Flavor physics potential

- Enormous statistics 10¹² bb, cc
- Clean environment, favourable kinematics (be
- Small beam pipe radius (vertexing)

Decay mode	$B^0 \to K^*(892)e^+e^-$	$B^0 \to K^*(892)\tau^+\tau^-$	$\mathrm{B}_{\mathrm{s}}(\mathrm{B}^{0}) \to \mu^{+}\mu^{-}$	Yelds for flavor anomalies studies:
Belle II	$\sim 2\ 000$	~ 10	n/a (5)	$\mathbf{D} \to \mathbf{D} = \mathbf{D} = \mathbf{D} \to \mathbf{D} = $
LHCb Run I	150	_	~ 15 (–)	b \rightarrow sll yelds and $B^0 \rightarrow K^{*0} \tau^+ \tau^-$
LHCb Upgrade	~ 5000	_	$\sim 500~(50)$	Full reconstruction possible
FCC-ee	~ 200000	~ 1000	~1000 (100)	
				CC Italy Workshop, Rome 21–22 Marc

0 100	800	220	Boost a	t the Z!		
$\frac{1}{a} \frac{\Lambda_b}{\Lambda_b}$	$\frac{c\overline{c}}{65}$	$\frac{\tau^-\tau^+}{45}$	~15 time	es Belle	's stat	
2 ¹ 00year	r 400	2 10() 15000	<u>8</u> 00	220	
27/9ea	27.5	$\overline{5} 2 n/\epsilon$	$\frac{1}{a} \frac{n}{a}$	<u>65</u>	45	
B^{0}	B^{-}	$B_{\text{un time}}^{0}$	$-\frac{\Lambda_b}{Physics \sigma}$	$ c \overline{c}$	$\tau^{-}\tau^{+}$	
	3.	Flavou	r anomali	ies in, e.g	g., b → s ⁻	ττ
=	2.	•			on in neu	itral B me
oost)	_		vements	× ×		
-		Flavou	rEWPO	s (R _b , A _F	B ^{b,c}) : larg	ge

Chapter 7

THE ANALYSIS

Study the decays:

- 1. $B_{s}^{0} \rightarrow D_{s}^{\pm}K^{\mp}$
- 2. $B_s \rightarrow J/\psi \phi$
- with the final objective (for the *fast-sim*) to estimate $\varphi = \gamma_{CKM} + \gamma_{ds} - 2\beta_s$ and $2\beta_s$

With 75 (310) billions of B_{s}^{0} (B⁰) a statistical precision of 0.4° on γ (3.4° x 10⁻² on β_s) is expected and can be compared with the present measurements...

FCC-ee at the intensity frontier

TeraZ offers four additional pillars to the FCC-ee physics programme

Flavour physics programme

- Enormous statistics 10¹² bb, cc
- Clean environment, favourable kinematics (boost)
- Small beam pipe radius (vertexing)
- Flavour EWPOs (R_b , $A_{FB}^{b,c}$) : large improvements wrt LEP
- CKM matrix, CP violation in neutral B mesons 2.
- Flavour anomalies in, e.g., $b \rightarrow s\tau\tau$ 3.

Tau physics programme

- Enormous statistics: 1.7 $10^{11} \tau \tau$ events
- Clean environment, boost, vertexing
- Much improved measurement of mass, lifetime, BR's
- τ -based EWPOs (R_{τ} , A_{FB}^{POI} , P_{τ}) 1.
- 2. Lepton universality violation tests
- PMNS matrix unitarity 3.
- Light-heavy neutrino mixing 4.

ECFA Plenary Meeting 19 Nov 2021

31

FCC-ee at the intensity frontier

... which in turn provide specific detector requirements

Flavour physics programme

- Formidable vertexing ability; b, c, s tagging
- Superb electromagnetic energy resolution
- Hadron identification covering the momentum range expected at the Z resonance

Tau physics programme

- Momentum resolution Mass measurement, LFV search
- Precise knowledge of vertex detector dimensions Lifetime measurement
- Tracker and ECAL granularity and $e/\mu/\pi$ separation BR measurements, EWPOs, spectral functions

If all these constraints are met, Higgs and top programme probably OK (tbc)

19 Nov 2021

32

Case Studies

- aspects.
- extract detector requirements to achieve desired performance
- develop a detector simulation that allows this performance to be merged in the full analysis
- develop reconstruction algorithms that fully exploit the detector information
- develop calibration strategies and analysis techniques to shrink the uncertainties as needed
- Extract requirements on event generation and simulation of machine effects to ensure realistic predictions

• >>>"Case Studies": reverse engineering of a chosen benchmark process. The elements contributing to the final results are "unpacked" to allow maximal optimisation on all

Status of analysis efforts that were reported to PP meetings

Summarized in the next slides, color-coding :

Work on-going with	Work on-going	Recent pheno	Not started, but	
the common tools	with private	work	people	
	tools or stand-		expressed	
	alone Delphes		interest	

with some "shading" too

"Common tools" means :

- Delphes simulation samples within EDM4HEP,
- FCCAnalysis framework
 - the latter benefits from stand-alone developments or devels within \bullet Delphes (e.g. vertex fitter, soon PID modules)

In most cases, 1 group = 1-2 people, part-time.

Higgs measurements

Measurement	Constraining	Person-power
Higgs boson coupling to c quark	Flavour tagging, vertexing	CERN Also interest from APC
σ(ZH) and mH, Z →leptons (Mrecoil); New scalars in Z + S	Lepton momentum & energy resolution	APC / Bologna / MIT (CERN) Good candidate to move to FullSim "soon".
σ(ZH) and mH, Z → hadrons ; BR(Higgs invisible)	hadronic mass and hadronic recoil-mass resolution ; Maybe b-tagging	MPI Munich
Γ(H) in ZH, H → ZZ*	Lepton ID efficiencies; jet clustering algorithms, jet directions, kinematic fits	CERN fellow expressed interest
Higgs boson mass in hadronic final states	b-tagging eff and purity, jet angular resolution, jet reco, kin fits	

Higgs measurements (2)

Measurement	Constraining	Person-power
Г(H) with bbnunu events	Visible and missing mass resolutions	
HZγ coupling	photon identification, energy and angular scale	
ee->H production in s-channel at Higgs pole	- q / g tagging	CERN (former analysis exists)

EW measurements at the Z peak

Measurement	Constraining	Person-power
Total width of the Z	Track momentum (and angular) resolution, scale (magnetic field) stability	CERN [but fellow left] Good candidate to move to FullSim "soon".
Rb, Rc, AFB of heavy quarks	Flavour tagging, acceptance, QCD corrections	QCD corr. studied at CIEMAT ; Udine
alphaS measurement	Z -> jets	LPNHE [report soon]
Ratio RI	Geometrical acceptance for lepton pairs	
AFB (muons)	QED corrections	
Luminosity from diphoton events ; NP in diphotons	e/gamma separation, gamma acceptance	CIEMAT (NP, pheno)

EW measurements at WW

Measurement	Constraining	Person-power
Coupling of Z to nu_e (also, at the Z peak: invisible ALP, dark γ)	Photon energy resolution, acceptance, track efficiency	Saclay Udine
MW from WW -> had, semi-lep	Lepton and jet angles, Kinem fits	Saclay [2019]
(d)σ(WW) for MW, TGCs	Lepton ID, angular resolutions	LAPP
Vcb via W -> cb	Flavour tagging	Pisa + interest from postdoc?
W leptonic BRs	Lepton ID, acceptance	
Meas of √s via radiative return	lepton and jet angular resolutions, acceptance	

Tau physics

Case studies

- The measurement of the tau lifetime: accuracy of the construction and the alignment of the vertex detector
- The measurement of the tau mass: track momentum scale (in a multi-track collimated environment)
- The measurement of the tau leptonic branching fractions: electron and muon identification
- Tau polarisation and exclusive branching fractions: reconstruction of photons, π 0s and other neutral particles, K/ π separation • Lepton Flavor violation in Z and tau decays: lepton momentum scale
- Delphes samples of limited use for (several of) these studies
- Goal of separation of tau decay modes has triggered FullSim studies: ullet
 - Clustering devels in FCCSW with the LAr [NBI]
 - NN-based tauID in the IDEA calo [Roma]

Flavour physics

Measurement	Constraining	Person-power
Bs to Ds K	Many things Vertexing, PID, EM resolution	Saclay / Ferrara (CERN)
Bc -> tau nu	Flight distance resolution (vertexing)	EPFL / CERN / Orsay
B -> K* tau tau	Flight distance resolution (vertexing)	Former work at Clermont
Modes with pi0's	EM resolution	

Top physics

Measurement	Needs good:	Person-power
EW couplings of the top	Jet reco, b-tagging, kine fits	NBI
Top properties from threshold scan	Jet reco, b-tagging, kine fits	Strasbourg/Padova
FCNC couplings	Idem + photon reco	Tehran/Behshahr

ALPs / LLPs / Heavy Neutrinos

- - defining model benchmarks
 - Ο and detector requirements
 - Ο
 - Ο FullSim tracking in EDM4Hep
- \bullet CERN...)

Area with documentation in the Physics Performance Github collecting documentation and other info https://hep-fcc.github.io/FCCeePhysicsPerformance/case-studies/BSM/LLP/

HNLs	 displaced vertices specific tracking 	Uppsala/Graz/Geneva
$ee \rightarrow a\gamma \rightarrow 3\gamma$	 Photon resolution separation of close-by photons displaced γ vertices 	Pavia FullSim needed
$\gamma\gamma \rightarrow a \rightarrow \gamma\gamma$ 6/23/21	Photon resolution 42	CERN / Rio P. Azzi, E.Pere

• "Informal group" regular meetings involving both theorists and experimentalists. Focus:

better defining case studies to perform: they include both characterization of signals

first pass at having analysis code in place for validation of MC signals in Delphes need to develop specific tools to use Delphes in this context. Will profit largely of

Informal group mailing list ~50 names (including Uppsala, Graz, Geneva, Bologna, PD,