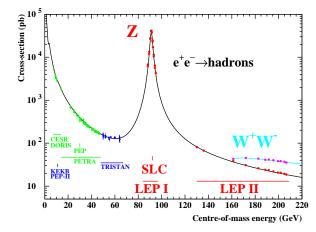
FCC physics: importance for HEP and challenges in theory and phenomenology

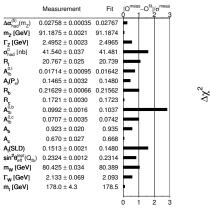
Fulvio Piccinini

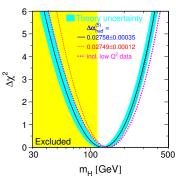

INFN, Sezione di Pavia

March 22, 2022

First FCC-Italy Workshop 2022, Roma, 21 - 22 March 2022

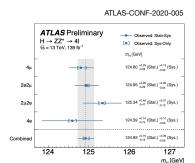
SM tested up to ~ 200 GeV with e^+e^- colliders

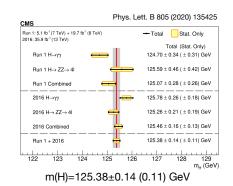



LEP EWWG, SLD WG, ALEPH, DELPHI, L3, OPAL, Phys. Rept. 427 (2006) 257

- precision $\mathcal{O}(0.1\%)$ measurements of the processes $e^+e^-\to f\bar{f}$
- $\mathcal{O}(1\%)$ for the processes $e^+e^- \to WW/ZZ \to 4$ fermions

F. Piccinini (INFN) First FCC-Italy 2022 March 22, 2022 2/27

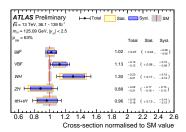

LEP/SLC legacy at the Z pole



LEP EWWG, SLD WG, ALEPH, DELPHI, L3, OPAL, Phys. Rept. 427 (2006) 257

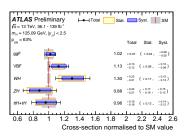
2012 → Higgs boson @LHC: mass and width

T.B. Ta, La Thuile 2022

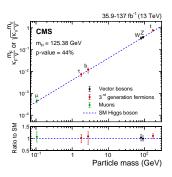

• $\sim 0.1\%$ precision on Higgs mass

m(H)=124.92±0.19+0.09-0.06 GeV

- Width (SM ~ 4 MeV)
 - $\Gamma < 14.4 \text{ MeV (ATLAS 36 fb}^{-1})$
 - $\Gamma < 3.2^{+2.4}_{-1.7}$ MeV (CMS)


2012 → Higgs boson @LHC

- production (and decay) measured in several channels
- agreement with th. predictions
- for some channel th. uncertainties main systematics


2012 → Higgs boson @LHC

- production (and decay) measured in several channels
- agreement with th. predictions
- for some channel th. uncertainties main systematics

 coupling strengths in the "k" framework

$$k_i = \frac{g_{Hi}}{g_{Hi}^{SM}}$$

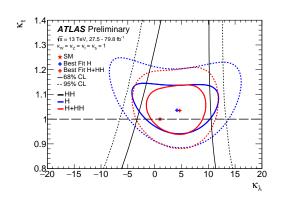
CMS, JHEP 01 (2021) 148

Higgs self-coupling: sensitivity through

double Higgs production (at NLO or LO in associated production)

Borowka et al., arXiv:1604.06447; Grazzini et al., arXiv:1803.02463

• single Higgs production (at NNLO or NLO in associated production) and decay (at NLO or NNLO for $H \to \gamma \gamma$)

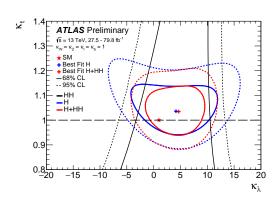

• EW precision observables at two loops

Degrassi et al., arXiv:1702.01737; Kribs et al., arXiv:1702.07678

6/27

Present sensitivity to \mathbf{k}_{λ}

• $k_{\lambda} = \lambda_{HHH} / \lambda_{HHH}^{SM}$



ATLAS-CONF-2019-049

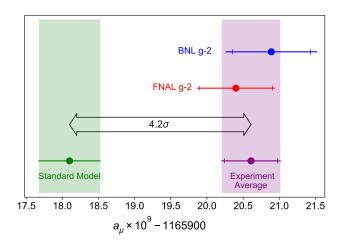
March 22, 2022

Present sensitivity to \mathbf{k}_{λ}

• $k_{\lambda} = \lambda_{HHH} / \lambda_{HHH}^{SM}$

ATLAS-CONF-2019-049

• relevant constraining power also from EWPO M_W and $\sin^2 \vartheta_{eff}^\ell$


• SM gauge sector tested with $\mathcal{O}(0.1\%)$ precision

- SM gauge sector tested with $\mathcal{O}(0.1\%)$ precision
- SM Higgs interaction with 3 rd -generation fermions tested with $\mathcal{O}(10\%)$ level
- SM Higgs interaction with W-Z gauge boson tested at the 10-20% level

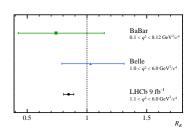
- SM gauge sector tested with $\mathcal{O}(0.1\%)$ precision
- SM Higgs interaction with 3 rd -generation fermions tested with $\mathcal{O}(10\%)$ level
- SM Higgs interaction with W-Z gauge boson tested at the 10-20% level
- hardly constrained SM Higgs self-coupling

- SM gauge sector tested with $\mathcal{O}(0.1\%)$ precision
- SM Higgs interaction with 3 rd -generation fermions tested with $\mathcal{O}(10\%)$ level
- SM Higgs interaction with W-Z gauge boson tested at the 10-20% level
- hardly constrained SM Higgs self-coupling
- negative searches of New Physics at high energy

From low energy...: Muon g - 2 recent result

B. Abi et al., Phys. Rev. Lett. 126 (2021) 14, 141801 [arXiv:2104.03281[hep-ex]]

Increased experimental precision expected soon


Tensions in measurements involving the transitions

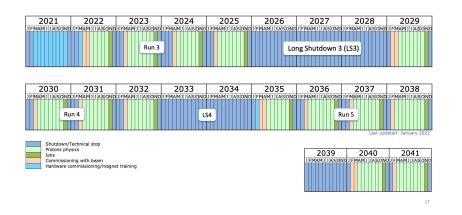
- $\bar{\mathbf{b}} \to \bar{\mathbf{s}}\ell^+\ell^- \ (\ell = \mu, e)$
- $\bar{\mathbf{b}} \to \bar{\mathbf{c}} \ell^+ \nu_{\ell}$

e.g.
$$R_{K} = \frac{\frac{\mathcal{B}(B^{+} \to K^{+}\mu^{+}\mu^{-})}{\mathcal{B}(B^{+} \to J/\psi(\to \mu^{+}\mu^{-})K^{+}\mu^{+}\mu^{-})}}{\frac{\mathcal{B}(B^{+} \to K^{+}e^{+}e^{-})}{\mathcal{B}(B^{+} \to J/\psi(\to e^{+}e^{-})K^{+}e^{+}e^{-})}}}$$

$$R_{K^{*}} = \dots$$

$$R_{K^{0}_{S}} = \dots$$

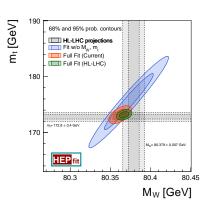
R. Aaij et al. (LHCb Coll.), arXiv:2103.11769

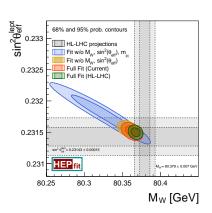

10/27

 $> 3 \sigma$

In addition to unanswered questions, e.g.

- Nature of EWSB
- Neutrino masses
- Connection of the Higgs with Flavour
- Dark Matter
- Baryon asymmetry in the Universe
- Gravity
- ...

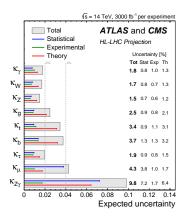

Where are we going: LHC schedule



LHC Performance Workshop, Chamonix 2022

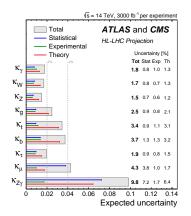
12/27

Prospects for HL-LHC: SM EW fit



J. de Blas et al., (Azzi, Farry, Nason, Tricoli, Zeppenfeld Eds.)

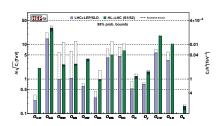
CERN-LPCC-2018-03, arXiv:1902.04070


13/27

Prospects for HL-LHC: Higgs and global analysis

- few % uncertainty for signal strengths
- foreseen th. uncertainty dominant

Prospects for HL-LHC: Higgs and global analysis



- few % uncertainty for signal strengths
- foreseen th. uncertainty dominant

in the SMEFT approach

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{d>4} \frac{1}{\Lambda^{d-4}} \mathcal{L}_d$$

$$\mathcal{L}_d = \sum_i C_i \mathcal{O}_i^{(d)}$$

J. de Blas et al., (Azzi, Farry, Nason, Tricoli, Zeppenfeld Eds.) arXiv:1902.04070

With no clearcut compelling direction for an extension of the SM, a future machine with very broad physics potential is necessary to advance our knowledge

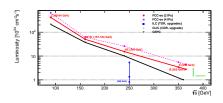
With no clearcut compelling direction for an extension of the SM, a future machine with very broad physics potential is necessary to advance our knowledge

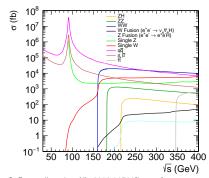
FCC is an ideal machine allowing to investigate at a never explored level both the intensity and the energy frontier

With no clearcut compelling direction for an extension of the SM, a future machine with very broad physics potential is necessary to advance our knowledge

FCC is an ideal machine allowing to investigate at a never explored level both the intensity and the energy frontier

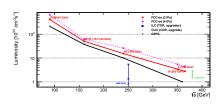
in the following some considerations on the first stage, FCC-ee

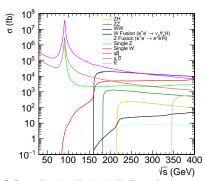

15/27


FCC-ee will

- revisit LEP physics with much larger statistics
 - at Z pole ($\sim 0.1\%$ at LEP1)
 - at WW threshold ($\sim 1\%$ at LEP2)

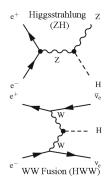
- explore for the first time at a leptonic collider
 - ZH threshold
 - $t\bar{t}$ threshold

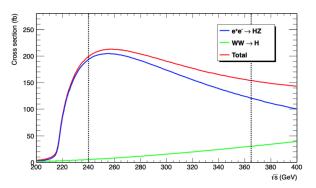

Cross sections and event numbers



G. Bernardi et al., arXiv:2203.06520[hep-ex]

Cross sections and event numbers

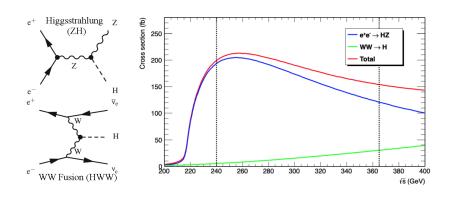




- *Z*-pole, 3 points: $5 \times 10^{12} Z$
- WW threshold, 2 points:
 10⁸ W pairs
- HZ threshold: $10^6 \ HZ$ + $2.5 \times 10^4 \ WW \rightarrow H$
- $t\bar{t}$ threshold, 3 points: $10^{6} t\bar{t} + 2 \times 10^{5} HZ$ $+5 \times 10^{4} WW \rightarrow H$

G. Bernardi et al., arXiv:2203.06520[hep-ex]

Higgs@FCCee



P. Azzurri et al., arXiv:2106.15438

18/27

Higgs@FCCee

P. Azzurri et al., arXiv:2106.15438

ullet key feature: model-independent measurement of g_{HZZ}

F. Piccinini (INFN) First FCC-Italy 2022 March 22, 2022 18/27

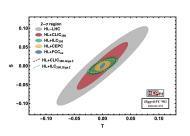
Higgs@FCCee

Collider	HL-LHC	$FCC\text{-}ee_{240\rightarrow365}$	FCC-ee	FCC-INT	FCC-INT
			+ HL-LHC		+ HL-LHC
Int. Lumi (ab^{-1})	3	5 + 0.2 + 1.5	-	30	_
Years	10	3 + 1 + 4	_	25	_
g _{HZZ} (%)	1.5	0.18	0.17	0.17	0.16
g_{HWW} (%)	1.7	0.44	0.41	0.20	0.19
g_{Hbb} (%)	5.1	0.69	0.64	0.48	0.48
g_{Hcc} (%)	SM	1.3	1.3	0.96	0.96
$g_{\mathrm{Hgg}}~(\%)$	2.5	1.0	0.89	0.52	0.5
$g_{\mathrm{H}\tau\tau}$ (%)	1.9	0.74	0.66	0.49	0.46
$g_{\mathrm{H}\mu\mu}$ (%)	4.4	8.9	3.9	0.43	0.43
$g_{\mathrm{H}\gamma\gamma}$ (%)	1.8	3.9	1.3	0.32	0.32
$g_{\mathrm{HZ}\gamma}$ (%)	11.	_	10.	0.71	0.7
$g_{ m Htt}$ (%)	3.4	_	3.1	1.0	0.95
g _{HHH} (%)	50.	44.	33.	3–4	3–4
Γ _H (%)	SM	1.1	1.1	0.91	0.91

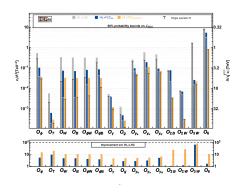
G. Bernardi et al., arXiv:2203.06520[hep-ex]

March 22, 2022

19/27

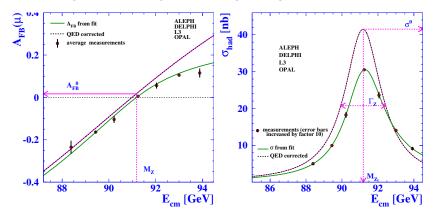

EWPO@FCCee

Observable	Present	FCC-ee	FCC-ee	Comment and dominant exp. error
	value \pm error	Stat.	Syst.	
$m_{\rm Z}~({\rm keV})$	$91,186,700 \pm 2200$	4	100	From Z lineshape scan; beam energy calibration
$\Gamma_{\rm Z}~({\rm keV})$	$2,495,200 \pm 2300$	4	25	From Z lineshape scan; beam energy calibration
$R_{\ell}^{\rm Z}~(\times 10^3)$	$20,767 \pm 25$	0.06	0.2 - 1.0	Ratio of hadrons to leptons; acceptance for letpons
$\alpha_S(m_Z^2) \ (\times 10^4)$	$1,196 \pm 30$	0.1	0.4 - 1.6	From $R_{\ell}^{\mathbb{Z}}$ above
$R_b \ (\times 10^6)$	$216,290 \pm 660$	0.3	< 60	Ratio of $b\bar{b}$ to hadrons; stat. extrapol. from SLD
$\sigma_{\rm had}^{0} \ (\times 10^{3}) \ ({\rm nb})$	$41,541 \pm 37$	0.1	4	Peak hadronic cross section; luminosity measurement
$N_{\nu} \ (\times 10^{3})$	$2,996 \pm 7$	0.005	1	Z peak cross sections; luminosity measurement
$\sin^2 \theta_W^{eff} (\times 10^6)$	$231,480 \pm 160$	1.4	1.4	From $A_{FB}^{\mu\mu}$ at Z peak; beam energy calibration
$1/\alpha_{\rm QED}(m_{\rm Z}^2) \ (\times 10^3)$	$128,952 \pm 14$	3.8	1.2	From $A_{FB}^{\mu\mu}$ off peak
$A_{FB}^{b,0}$ (×10 ⁴)	992 ± 16	0.02	1.3	b-quark asymmetry at Z pole; from jet charge
$A_e \ (\times 10^4)$	$1,498 \pm 49$	0.07	0.2	from $A_{\rm FB}^{{\rm pol},\tau}$; systematics from non- τ backgrounds
$m_W \text{ (MeV)}$	$80,350 \pm 15$	0.25	0.3	From WW threshold scan; beam energy calibration
$\Gamma_W \text{ (MeV)}$	$2,085 \pm 42$	1.2	0.3	From WW threshold scan; beam energy calibration
$N_{\nu} \ (\times 10^3)$	$2,920 \pm 50$	0.8	Small	Ratio of invis. to leptonic in radiative Z returns
$\alpha_S(m_W^2) \ (\times 10^4)$	$1,170 \pm 420$	3	Small	From R_{ℓ}^{W}

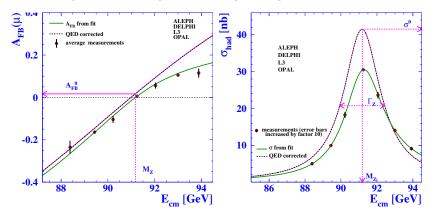

G. Bernardi et al., arXiv:2203.06520[hep-ex]

Global EW fit@FCC-ee

through oblique S, T, U parameters

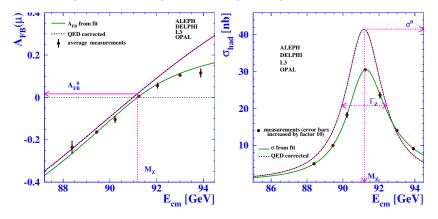

• in the SMEFT approach

G. Bernardi et al., arXiv:2203.06520[hep-ex]


Challenges for theory: an example, ${\bf Z}$ pole

Challenges for theory: an example, Z pole

LEP EWWG, SLD WG, ALEPH, DELPHI, L3, OPAL, Phys. Rept. 427 (2006) 257


Challenges for theory: an example, Z pole

LEP EWWG, SLD WG, ALEPH, DELPHI, L3, OPAL, Phys. Rept. 427 (2006) 257

FCC-ee will require pushing th. uncertainty down by at least a factor of 10 on cross sections and even more on A_{FB} w.r.t LEP

Challenges for theory: an example, Z pole

LEP EWWG, SLD WG, ALEPH, DELPHI, L3, OPAL, Phys. Rept. 427 (2006) 257

FCC-ee will require pushing th. uncertainty down by at least a factor of 10 on cross sections and even more on A_{FB} w.r.t LEP What changed from LEP era in the field of theory predictions?

Impressive development during LHC era

Impressive development during LHC era

reality: automatic codes for event generation at NLO (QCD and EW) precision matched to all order resummation of logarithmic enhanced corrections

- $2 \rightarrow 2$ @NNLO QCD perturbative accuracy for all processes
- $2 \to 3 @ \text{NNLO}$ QCD accuracy becoming available for selected processes

N3LO QCD calculations for Higgs and DY production

different approaches for matching NNLO calculation and resummation of logs

Impressive development during LHC era

reality: automatic codes for event generation at NLO (QCD and EW) precision matched to all order resummation of logarithmic enhanced corrections

- $2 \rightarrow 2$ @NNLO QCD perturbative accuracy for all processes
- $2 \to 3 @ \text{NNLO}$ QCD accuracy becoming available for selected processes

N3LO QCD calculations for Higgs and DY production

different approaches for matching NNLO calculation and resummation of logs

not enough for FCC-ee

Need at FCC-ee around Z pole

improved description of ISR QED radiation and IF interference (factorizable effects larger than the required precision, contrary to LEP precision)

complete NNLO accuracy in $e^+e^-\to f\bar f$

EWPO extraction: o Zfar f vertex at N3LO and leading N4LO

Need at FCC-ee around Z pole

improved description of ISR QED radiation and IF interference (factorizable effects larger than the required precision, contrary to LEP precision)

complete NNLO accuracy in $e^+e^-\to f\bar f$

EWPO extraction: o Zfar f vertex at N3LO and leading N4LO

The above two items are beyond present knowledge

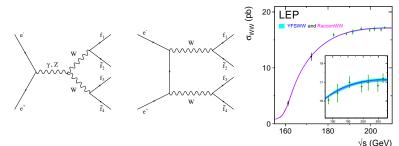
Need at FCC-ee around Z pole

improved description of ISR QED radiation and IF interference (factorizable effects larger than the required precision, contrary to LEP precision)

complete NNLO accuracy in $e^+e^-\to f\bar f$

EWPO extraction: o Zfar f vertex at N3LO and leading N4LO

The above two items are beyond present knowledge


progress already achieved and future paths identified

Blondel, Gluza, Jadach, Janot, Riemann (Eds), CERN-2019-003

progress needed on the study of the mathematical structure of scattering amplitudes

a seminumerical approach to Feynman diagram calculation could be the right way to progress with theory predictions

Another example, WW threshold: $\mathrm{e^+e^-} ightarrow 4$ fermions

- first NLO exact calculation completed in 2005 for $WW \rightarrow 4f$
 - th. accuracy $\lesssim 1\%$

A. Denner et al., PLB612 (2005) 223; NPB 724 (2005) 247

- at present $e^+e^- \to 4f$ cross sections @NLO accuracy can be calculated with automated tools
- NNLO enhanced contributions because of Coulomb photon effects calculated by means of EFT methods

M. Beneke et al., NPB 792 (2008) 89; S. Actis et al., NPB807 (2009) 1

25/27

• th. accuracy $\sim 0.5\%$

 $\Delta M_W \sim 3 \text{ MeV}$

WW threshold: future prospects

- Having in mind a target precision $\Delta M_W \sim 1$ MeV we would need
 - an improved treatment of EFT, which requires
 - NNLO corrections to $e^+e^- \to WW$ in NWA
 - NNLO accuracy in the W decay
 - improved treatment of subleading effects in ISR

26/27

FCC colliders necessary to improve our knowledge of Nature

- FCC colliders necessary to improve our knowledge of Nature
- exciting challenges for model building looking for the "right" extension of the SM using data from colliders, GW, cosmological surveys, expts from space, neutrino expts, DM passive searches

- FCC colliders necessary to improve our knowledge of Nature
- exciting challenges for model building looking for the "right" extension of the SM using data from colliders, GW, cosmological surveys, expts from space, neutrino expts, DM passive searches
- FCC-ee needs a very big jump in the accuracy of theoretical predictions

- FCC colliders necessary to improve our knowledge of Nature
- exciting challenges for model building looking for the "right" extension of the SM using data from colliders, GW, cosmological surveys, expts from space, neutrino expts, DM passive searches
- FCC-ee needs a very big jump in the accuracy of theoretical predictions
 - according to LEP and LHC experience, we had an enormous progress in the calculation techniques and development of new Monte Carlo generators, but progress requires coherent efforts in a long range in order to avoid as much as possible the systematics being dominated by theoretical uncertainty

- FCC colliders necessary to improve our knowledge of Nature
- exciting challenges for model building looking for the "right" extension of the SM using data from colliders, GW, cosmological surveys, expts from space, neutrino expts, DM passive searches
- FCC-ee needs a very big jump in the accuracy of theoretical predictions
 - according to LEP and LHC experience, we had an enormous progress in the calculation techniques and development of new Monte Carlo generators, but progress requires coherent efforts in a long range in order to avoid as much as possible the systematics being dominated by theoretical uncertainty
 - e.g. at LEP the theoretical uncertainty for Bhabha scattering has been of the same order than the experimental precision $(\sim 0.06\%)$
 - e.g. tiny effects as the beam-beam interactions give a shift which removes a tension in the number of light neutrinos

$$N_{\nu} = 2.9840 \pm 0.0082 \implies N_{\nu} = 2.9963 \pm 0.0074$$

P. Janot and S. Jadach, arXiv:1912.02067; Voutsinas, Perez, Dam, Janot, arXiv:1908.01704