

UNIVERSITY OF LIVERPOOL

First FCC-Italy Workshop

FCC-hh: Detector challenges

Monica D'Onofrio University of Liverpool

FCC-Italy Workshop, Rome 22/3/2022

The FCC-hh machine

FCC-hh is currently the stage 2 of the FCC integrated programme (now 2065+)

- It can be operated also in Ion-mode
- Operations can happen concurrently with eh an ERL that provides an e

FCC Workshop @ Rome

111

LHC

Se

Outline

8

- The FCC-hh clearly has an enormous potential 100 TeV c.o.m. energy, huge (+30/ab) datasets
- A detector at the FCC will have to operate in challenging conditions, i.e. high (~1K) pile-up
- Extreme granularity, excellent energy-momentum resolution beyond the LHC detectors, together with novel algorithms will be needed to achieve optimal object reconstruction and identification

The physics programme depends substantially on experimental conditions and crucially on detector developments \rightarrow I will use a few highlights of the physics goals to illustrate this

Lot of material available and used for this talk <u>FCC Volume 1</u>, FCC-hh, published in EPJ ST 228, 4 (2019) 755-1107

Physics studies from older or newer documents e.g.: <u>https://arxiv.org/pdf/1606.00947.pdf</u>, <u>CERN-ACC-2018 -0056.pdf</u>, <u>Eur. Phys. J. C</u> (2019) 79:569 from M.Mangano et al. for benchmark comparisons, <u>CERN-FCC-PHYS-2020-0004</u>, <u>Eur. Phys. J. C 80</u>, 1030 (2020) European Strategy Briefing book: <u>https://arxiv.org/abs/1910.11775</u>

Detector studies from ECFA Roadmap <u>https://indico.cern.ch/e/ECFADetectorRDRoadmap</u> Presentations from <u>Phil Allport</u>, <u>Martin Aleksa</u> and other published documents in <u>http://cds.cern.ch/record/2784893/files/</u>

Disclaimer: selected topics + not yet considering in full recent results from Snowmass

FCC-hh: Detector Challenges.

FCC Workshop @ Rome

Physics potential of FCC-hh: Higgs physics

Higgs self-coupling and nature of EWSB will remain unknown even after HL-LHC (which will get to a O(50%) precision) and FCC-ee (indirect only).

Di-Higgs: feasibility studies employed several final states

Updates after ESPPU20 indicates an expected precision on the self-coupling depending on systematics assumptions:

But also: differential σ_{Higgs} measurements up to high p_T^{Higgs} can probe new physics affecting Higgs dynamics up to scales of several TeV.

HL-LHC

HE-LHC

FCC-ee

ILC

CEPC

CLIC

FCC-ee/eh/hh

FCC Workshop @ Rome

Di-higgs

4412/27

FCC-hh: Detector Challenges.

Physics potential of FCC-hh: high mass new particles

FCC simulation

 $\sqrt{s} = 100 TeV$

Z'SSM

Evidence for the existence of heavier particles from flavour observables or precision EW/Higgs measurements will require direct probes \rightarrow FCC-hh is the only machine that can achieve that within the current technological landscape

liscovery reach @ high mass \sim 7 times larger than

Physics potential of FCC-hh: dark matter

Snin_1

- FCC-hh will be the first collider capable of producing weakly-interacting particles with masses up to a few TeV, hence complementary to direct DM experiments
- DM models foresee a DM candidate with thermal relic mass in the 2-3 TeV inder SU(2)) or in the 1-1.2 TeV region (*Higgsino*, doublets under SU(2)) ploiting disappearing track analyses

Spin 1/2

dark matter wino/higgsino models

Also relevant: monojet, mono-X and soft lepton searches (e.g. for higgsino-like semi-compressed scenarios)

FCC Workshop @ Rome

Production rates and conditions

tions for interesting processes increase substantially, but it comes at a price!

------ for triggering and reconstruction

	almost 1000 pile-up				unprecedented		
	Total ionising dose at 2.5 cm, est. (FLUKA) $dE/d\eta _{\eta=5}$ [340] $dP/d\eta _{\eta=5}$	MGy GeV kW	1.3 316 0.04	13 316 0.2	54 427 1.0	270 (300) 765 4.0	
	1 MeV-neq fluence at 2.5 cm, est. (FLUKA)	$10^{16}{ m cm^{-2}}$	0.4	3.9	16.8	84.3 (60)	
[Total number of pp collisions Charged part. flux at 2.5 cm, est. (FLUKA)	10^{16} GHz cm ⁻²	$\frac{2.6}{0.1}$	26 0.7	91 2.7	324 8.4 (10)	
	Peak av. PU events/BC, nom- inal (ultimate)		25 (50)	130 (200)	435	950	
	$\sigma_{tot}[340]$ BC rate Peak pp collision rate	mb MHz GHz	$108 \\ 31.6 \\ 0.8$	108 31.0 4	120 31.6 14	150 32.5 31	
	Goal $\int \mathcal{L}$ $\sigma_{\text{inel}}[340]$	ab^{-1} mb	0.3 80	3	10 86	30 103	
	$E_{\rm cm}$ Circumference Peak \mathcal{L} , nominal (ultimate) Bunch spacing Number of bunches	${ m TeV} { m km} { m 10^{34}cm^{-2}s^{-1}} { m ns}$	$ \begin{array}{c} 14\\ 26.7\\ 1(2)\\ 25\\ 2808 \end{array} $	$ \begin{array}{c} 14\\ 26.7\\ 5\ (7.5)\\ 25\\ 2760\\ \end{array} $	27 26.7 16 25 2808	100 97.8 30 25 10 600	
	Parameter	Unit	LHC	HL-LHC	HE-LHC	FCC-hh	

10 GHz/cm² charged particles Up to 10¹⁸ cm⁻² 1 MeV-n.eq. fluence for 30 ab⁻¹

unprecedented particle flux and radiation levels

22/3/22

Kinematic coverage and geometrical acceptance

Parameter	Unit	LHC	HL-LHC	HE-LHC	FCC-hh
$90\% \text{ bb} p_T^{\text{b}} > 30 \text{ GeV/c} [341]$	$ \eta <$	3	3	3.3	4.5
VBF jet peak [341]	$ \eta $	3.4	3.4	3.7	4.4
90% VBF jets [341]	$ \eta <$	4.5	4.5	5.0	6.0
$90\% \text{ H} \rightarrow 4l \text{ [341]}$	$ \eta <$	3.8	3.8	4.1	4.8

Processes occurring at a given $Q^2 = M_X$ will be produced on average from collisions that are more asymmetric at 100 TeV compared to 14 TeV \rightarrow particles will be produced **more forward**

Example for ggF and VBF Higgs production

→ Set stringent requirements on detector acceptance

Kinematic coverage and geometrical acceptance

Parameter	Unit	LHC	HL-LHC	HE-LHC	FCC-hh
$90\% \text{ bb} p_T^{\text{b}} > 30 \text{ GeV/c} [341]$	$ \eta <$	3	3	3.3	4.5
VBF jet peak [341]	$ \eta $	3.4	3.4	3.7	4.4
90% VBF jets [341]	$ \eta <$	4.5	4.5	5.0	6.0
$90\% \text{ H} \rightarrow 4l \text{ [341]}$	$ \eta <$	3.8	3.8	4.1	4.8

Processes occurring at a given $Q^2 = M_X$ will be produced on average from collisions that are more asymmetric at 100 TeV compared to 14 TeV \rightarrow particles will be produced **more forward**

Assuming that forward detectors <u>can</u> operate in extreme environment, this could be an advantage for Missing E_T resolution (better coverage in eta)

Probability of reconstructing E_T^{miss} greater than E_T^{miss} (min) in di-jet QCD events

FCC-hh: Detector Challenges.

A possible layout of a detector for the FCC-hh

- Conceptual designs so far based on current detectors. In this case, 4-T main solenoid and forward solenoids
 - As for CMS, central tracker and calorimeters placed in the bore of the main solenoid.
- Assume cavern length of 66 m

10

Used in default DELPHES simulations

• More on feasibility studies planned for 2025 (as highlighted in Michael talk yesterday)

1 MeV Neutron Equivalent Fluence for 30ab⁻¹

OVERALL: Radiation levels beyond current capabilities for detector technologies Generally ~10-30 times worse than HL-LHC BUT much bigger for fwd calo and innermost tracking layers

12

FCC Workshop @ Rome

| Ionizing Dose for 30ab⁻¹

Dose of 300 MGy (30 Grad) in the first tracker layers. < 10 kGy in HCAL barrel and extended barrel.

FCC-hh: Detector Challenges.

FCC Workshop @ Rome

cold mass + cryostat around 2000 tons.

Magnetic fieldmap for a central solenoid of 4T

Stored magnetic energy FCC-hh: ~13 GJ, ATLAS Magnet System 2.7 GJ CMS Magnet System 1.6 GJ

- Proposed conductors for the solenoids are Al stabilised Nb-Ti/Cu Rutherford cables following the experience with ATLAS and CMS
- **Cryogenic plant:** 20 K helium gas at 20 bar pressure to the cavern; magnets cooling based on a thermosiphon that circulates helium through the cold masses.

22/3/22

3

2

1

A global challenge: the tracking detector

- Forward coverage and pile-up have huge impact on the tracking system
- Two proposed layouts, central ($|\eta| < 2.5$) + forward ($|\eta|$ up to 6)

Flat geometry

geometry - 50% less material budget compromised with high rad deposits

Detector options considered so far:

- hybrid (either macro-pixel + strip) solutions;
- CMOS monolithic active pixel sensor (MAPS) options (also to achieve low material).

A global challenge: the tracking detector

- Forward coverage and pile-up have huge impact on the tracking system
 - Two proposed layouts, $|\eta| < 2.5$) + forward ($|\eta|$ up to 6)
 - Flat geometry
 - geometry 50% less material budget compromised with high rad deposits

pile-up

 10^{3}

A global challenge: the tracking detector

- Forward coverage and pile-up have huge impact on the tracking system
- Two proposed layouts, central ($|\eta| < 2.5$) + forward ($|\eta|$ up to 6)
 - Flat geometry
 - Tilted geometry 50% less material budget to be compromised with high rad deposits

Momentum resolution dominated by **multiple scattering** up to 250 GeV → `need **low material tracker** (e.g. MAPS)!

Tracking resolution

 $δp_T/p_T ≤ 10\%$ for ≤ 10 GeV/c and η ≤ 5.8 ≤ 1 TeV/c and η ≤ 4.0 $δp_T/p_T = 20\%$ for 10 TeV/c up to η ~ 2

17

An example: Relevance of tracking for DM searches

- Disappearing track analyses relies on the reconstruction of short tracks from charged NP (in SUSY, chargino)
- The FCC-hh could provide the ultimate reach for an entire class of DM candidates
- Results at HL-LHC based on strong reduction of fakes background
 - Assumptions on tracking capability and background are crucial
- Transverse charged track length must be in specific ranges to retain sensitivity 12 < d < 30 cm @FCC: p_T track in 1-1.4 TeV range

Choice of layout in terms of N pixel layers has crucial **implication** for discovery reach

b)

FCC-hh: Detector Challenges. FCC Workshop @ Rome

significance

Discovery

a)

of arxiv:1812.07831

22/3/22

4

b-tagging requirements: resonances

- Capability of efficiently identify b-jets is fundamental, and closely depending on tracking
- Various scenarios compared in the context of a search for Z' into a top pair:
 - 1,2 and 3 corresponding to reduction in efficiency respectively by a factor 25%, 33% and 50% of the nominal efficiency
- Nominal assumptions: B-tag Efficiency $(1 p_T [\text{TeV}]/15) \cdot 85\%$

Calorimetry: ECAL and HCAL

de unprecedented doses, massive size and huge

Optimized for particle flow: high longitudinal and transversal granularity crucial

	transverse granularity $(\boldsymbol{\eta} \times \boldsymbol{\phi})$	# layers	resolution
tracker	0.001	12	$0.5\% \oplus (rac{p_T}{[ext{TeV}]}) st 1\%$
ECAL	0.01	8	$rac{10\%}{\sqrt{E}}\oplus 0.3\%$
HCAL	0.025	10	$rac{50\%}{\sqrt{E}}\oplus 3\%$
Table 1: Requir	rements for tracking and calorime	try for the	FCC-hh detector at $ \eta \approx$

LAr EC 'bers (but several options considered)

FCC-hh: Detector Challenges.

Calorimetry: ECAL and HCAL

- Issues include unprecedented doses, massive size and huge particle flux
- Optimized for particle flow: high longitudinal and transversal granularity crucial

ATLAS type TileCal optimized for particle flow with higher granularity
combined pion resolution can be improved with NN calibration
Endcap and Forward HCAL:

• Radiation hardness major challenge

25cm

Di-higgs: impact of e/y resolutions

- For di-higgs studies but also rare decay processes (e.g. Zγ), maximizing the performance requires minimizing the impact of multiple-scattering i.e. minimizing material budget
 - For the HH \rightarrow bb $\gamma\gamma$ decay mode, excellent energy photon resolution is needed in the E = 50 100 GeV energy range \rightarrow stringent requirements for ECAL (stochastic ~ 10%, and noise term < 1.5 GeV with pile-up)

FCC-hh muon system

Trigger and DAQ for a FCC-hh detector

- Calorimetry and muon system at 40 MHz will result in 200-300 TByte/s
 - For ATLAS Phase II, digitized at 40 MHz and sent outside the cavern at 25 Tbyte/s for L1 Trigger
 - \rightarrow 10 times size foreseen at HL-LHC: Seems feasible but more studies required
- Tracker would produce 1-2 PB/s, using zero-suppression would produce about 800TByte/s.
 - Not clear if this will be possible, otherwise needs reduction
- Can the L1 Calo+Muon Trigger have enough selectivity to allow readout of the tracker at a reasonable rate of e.g. 1MHz?
 - Difficult: 400kHz of W's and 100MHz of jets (pT > 50GeV)
 - un-triggered readout of the detector at 40MHz would result in 1000-1500TByte/s over optical links to the underground service cavern and/or a HLT computing farm on the surface.
 - Ideally one would need offline performance of today transferred online (e.g. j/γ discrimination)
- Difficulties:

26

- Huge amounts of data produced (relevant for streaming and triggering itself)
- Need high-bandwidth, low power, radiation hard data links
 - New technologies are needed: i.e. CMOS with integrated photonics (Silicon Photonics)

Summary of the Challenges and R&D needed (in 1 slide)

- Magnet system:
 - C: Stored energy orders of magnitude larger than ATLAS/CMS
 - C: Low material cryostats
 - R&D needed: conductor, powering, protection, ultra-thin and radiation transparent solenoids
- Pile-up and vertexing:
 - **C:** $<\mu>$ = 1000, challenging for reconstruction and triggering
 - R&D needed: trackers will need to use position resolution and timing information (e.g. ultra-thin LGAD)
 - R&D needed: low material detectors (e.g. monolithic designs with integrated sensors and readouts)
- Forward coverage and radiation hardness:
 - C: forward coverage requires fwd tracking and calorimeters, huge doses for all (c+f) regions within r > 30-40 cm
 - R&D needed (tracking): Ultra-radiation hard sensors and read-out chip
 - R&D needed (calo): Noble liquid calorimetry, Scintillator based calorimetry or Si-based calorimetry
- Granularity:
 - C: super busy environment challenging for b-tagging, tau-tagging, boosted jets etc
 - R&D needed (e.g. calo): achieve lateral cell sizes of ≤2cm, use imaging calorimetry (e.g. NN)
- Stability, Data rates, Triggering etc.. \rightarrow all need dedicated R&D

FCC-hh: Detector Challenges.

Disclaimer: In no way exhaustive list of challenges

R&D activities covered within **Detector R&D ECFA**

Summary

29

- The potential of the FCC-hh is enormous:
 - New possible heavy particles could be directly discovered if they have masses up to 20-40 TeV
 - Huge potential also from indirect searches
 - Highest reach in sensitivity also for di-higgs studies, dark matter searches and more
 - E.g. can conclusively test the hypothesis of thermal DM

- Extreme granularity, excellent energy-momentum resolution beyond the LHC detectors, together with novel algorithms will be needed to achieve optimal object reconstruction and identification
- Comparative studies considering different hypotheses for detector performance have been made using some searches as benchmarks → more should/could be done for interesting and challenging scenarios
 - Developments on theoretical calculations, modeling of backgrounds, PDFs, studies of synergies of the ee/eh/hh programmes and continuous collaborations between theorists and experimentalists are fundamental and should be pushed further
- Finding technologies that function adequately given the extreme conditions and requirements is a <u>challenge</u> \rightarrow at least 20 years should be anticipated for most demanding technology aspects, also profiting from R&D for HL-LHC

Back up

30

FCC-hh: Detector Challenges.

Parameters and cross-sections

Parameters

Parameter	Unit	LHC	HL-LHC	HE-LHC	FCC-hh
$E_{\rm cm}$	TeV	14	14	27	100
Circumference	km	26.7	26.7	26.7	97.8
Peak \mathcal{L} , nominal (ultimate)	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1(2)	5(7.5)	16	30
Bunch spacing	ns	25	25	25	25
Number of bunches		2808	2760	2808	10600
Goal $\int \mathcal{L}$	ab^{-1}	0.3	3	10	30
$\sigma_{\rm inel}[340]$	mb	80	80	86	103
$\sigma_{ m tot}[340]$	mb	108	108	120	150
BC rate	MHz	31.6	31.0	31.6	32.5
Peak pp collision rate	GHz	0.8	4	14	31
Peak av. PU events/BC, nom-		25	130(200)	435	950
inal (ultimate)		(50)			

Parameter	Unit	LHC	HL-LHC	HE-LHC	FCC-hh
bb cross-section	mb	0.5	0.5	1	2.5
$b\overline{b}$ rate	MHz	5	25	250	750
$b\overline{b} p_T^b > 30 \mathrm{GeV/c}$ cross-	$\mu \mathrm{b}$	1.6	1.6	4.3	28
section					
$b\overline{b} p_T^b > 30 \mathrm{GeV/c}$ rate	MHz	0.02	0.08	1	8
Jets $p_T^{\text{jet}} > 50 \text{GeV/c}$ cross-	$\mu \mathrm{b}$	21	21	56	300
section [340]					
Jets $p_T^{\text{jet}} > 50 \text{GeV/c}$ rate	MHz	0.2	1.1	14	90
$W^+ + W^-$ cross-section [12]	$\mu \mathrm{b}$	0.2	0.2	0.4	1.3
$W^+ + W^-$ rate	kHz	2	10	100	390
$W^+ \rightarrow l + \nu$ cross-section [12]	nb	12	12	23	77
$W^+ \rightarrow l + \nu$ rate	kHz	0.12	0.6	5.8	23
$W^- \rightarrow l + \nu$ cross-section [12]	nb	9	9	18	63
$W^- \rightarrow l + \nu$ rate	kHz	0.1	0.5	4.5	19
Z cross-section [12]	nb	60	60	100	400
Z rate	kHz	0.6	3	25	120
$Z \rightarrow ll \text{ cross-section } [12]$	nb	2	2	4	14
$Z \rightarrow ll$ rate	kHz	0.02	0.1	1	4.2
t-t cross-section [12]	nb	1	1	4	35
t-t rate	kHz	0.01	0.05	1	11

ECFA Roadmap Organisation

FCC Workshop @ Rome

Examples of prospects relying on MET: top squarks

• Analyses for large and medium ΔM (stop, N1): ETMiss could be as high as 5-10 TeV

- Monojet analyses (jet+MET) sensitive to compressed scenarios, small $\Delta M = m_{stop} - m_{LSP}$:

SUSY searches: lepton pT resolution

- Low momentum objects are fundamental for several SM and BSM processes
 - Precision measurements: e.g. Higgs in 4 leptons (one of them very soft, pT ~ 5 GeV)
 - Searches: electro-weakly produced SUSY particles: $\chi^{\pm}_{1}\chi^{0}_{2} = \text{NSLP}_{,}m(\chi^{\pm}_{1}) = m(\chi^{0}_{2})$
 - in compressed models, W and Z might be off-shell
 - Estimate probability of having pT(l) above a threshold

34

FCC Workshop @ Rome

X1⁰ h

X10

Long lived particles: a challenge

- Several new physics models predict existence of long-lived particles:
 - Small couplings
 - Small mass-splittings
- Phenomenology depends on lifetime and decays (hadrons, charged leptons, neutrals)

Detailed studies are very difficult without a proper detector layout - even HL-LHC projections need 'assumptions' e.g. on the capability of reducing the background to zero.

FCC-hh: Detector Challenges.

FCC Workshop @ Rome

35