

FCC-ee: R&D on Calorimetry for the IDEA Detector

Roberto Ferrari * INFN Pavia

First FCC Italy Workshop March 22nd, 2022

* on behalf of the IDEA Dual-Readout Group

"Probe Higgs and EWK physics with unparelleled precision"

- $\rightarrow\,$ high energy resolution: mainly driven by Higgs physics
- $\rightarrow\,$ high spatial resolution: mainly driven by τ and HF physics

Two approaches:

CLD: Particle Flow \rightarrow optimise granularity

IDEA: Dual Readout \rightarrow optimise hadronic resolution

dual readout in a nutshell

 \rightarrow large non-Gaussian fluctuations among em and non-em shower components

Dual readout:

compensate event-by-event fluctuations through two independent shower-detection processes (e.g. Cherenkov and scintillation light production)

fibre-sampling prototypes (PMT readout)

INFN RD52 particle ID (electron/hadron separation)

Combination of cuts: >99% *electron efficiency*, <0.2% *pion mis-ID*

Brass module, dimensions: ~ 112 cm long, 12 x 12 mm²

NIM A 899 (2018) 52

lateral shower profile w/ SiPM

em shower are very narrow:

- ~10% (~50%) within ~1 (~10) mm from shower axis
- \rightarrow fibre readout can easily provide (powerful) input to PFA

IDEA (full simulations)

shower 2D-imaging

Geant4 single-particle simulations

events @ full granularity

3-leg international proto-collaboration

INFN 2021 (highly granular) modular prototype

 9 modules (M0-M8) each one made of 16×20 (2-mm Ø) brass capillary tubes (bucatini prototype) M0 with "high-granularity" readout (SiPMs) M1-M8 with "low-granularity" readout (PMTs)

- alternate rows of scintillating and Čerenkov fibres
- total dimensions of ~ 10×10×100 cm3 ("electromagnetic containment")
- tested with DESY and SPS beams

PMTs read out with QDC (V792AC) and TDC (V775N) CAEN modules

Highly granular module read out with FERS-5200 CAEN system using five A5202 readout boards \rightarrow *in perspective, should we look for custom solution?*

SiPM readout w/ Citiroc 1A

high-gain channel sensitive to single photoelectrons (measure pedestal and ΔPP) \rightarrow use high-gain channel to cross-calibrate low-gain channel in photoelectrons

All SiPM signals converted to ph-e and separately summed up for Čerenkov and scintillation light

Light yield (ph-e / GeV)

shower profile

Data - Geant4 comparison at 20 GeV

- Non negligible dependence of shower shape on impinging angle
- Good agreement when including a $\pm 0.2^{\circ}$ systematics on impinging angle
 - · Both shower "core" and "tails" properly reconstructed
- Sensible differences between scintillation and Čerenkov signals at any energy scale

Do you really want to be analogue?

https://indico.gsi.de/event/2099/contributions/6718/ attachments/5430/6692/DIRC2013_Philips_Haemisch.pdf

L. Ratti et al, Front. Phys., 14 January 2021 https://doi.org/10.3389/fphy.2020.607319

digital SiPM (dSiPM): CMOS monolithic sensor and digitiser

 \rightarrow no need for analogue signal post-processing

directly provide # of fired pixels, ToA, possibly ToT

Do you really want to be analogue?

HiDRa

High-resolution highly granular Dual-Readout demonstrator INFN – CSN V call with a 3-year (2022-2024) program

Goals: build a highly granular "hadronic containment" prototype in order to:

- 1) design and validate a scalable construction technique
- 2) design and validate a scalable readout architecture based on SiPMs
- 3) assess hadronic performance
- 4) validate Geant4 hadronic shower simulation models
- 5) assess longitudinal shower position measurements through timing
- 6) exploit DNN algorithms in final-state identification and reconstruction

[INFN divisions of Bologna, Catania, Milano, Pavia, Pisa, Roma, TiFPA, with the collaboration of the University of Sussex and UTFSM of Valparaiso]

the project

- 1) size: ~ 65×65×250 cm³
- 2) # of channels: ~80k tubes & fibres
- 3) highly granular core (~10k fibres to be read out with SiPMs)
- 4) scalable design

- a) 1 × 20-cm-long minimodule \rightarrow study assembly technique and tools
- b) 1 x 250-cm-long minimodule \rightarrow scale up technique and tools
- c) 2^{nd} 250-cm-long minimodule \rightarrow verify mechanical coupling, study fibre grouping for PMT readout

20-cm-long minimodule: pretty good quality of capillary tubes \rightarrow simplify tooling

tooling designed and built
six layers glued and measured

20-cm-long minimodule

measured overall dimensions and geometry (thickness, width on both sides)

> bending = $12 \mu m$ torsion = $10 \mu m$

> > module width

module thickness

front-end elx (grouping)

Requirements:

- individually qualify each SiPM
- reduce number of readout channels
 - \rightarrow 8-SiPM signal grouping for readout
 - \rightarrow linearity needs to be guaranteed

a) Commissioning: 1 front-end board \rightarrow 8 readout channels

b) Operation: 1 front-end board \rightarrow 1 readout channel

Two possible ways:

charge integration (baseline) waveform sampling (alternative to be studied)

both presently targeting commercial implementations (by CAEN) of "SiPMcustomised" chips (produced by Weeroc and by Nalu Scientific)

Q: would be worthwhile to invest on R&D in this context?

dual-readout crystal option

Segmentations optimised for particle ID and PFA

SiPM readout for contained cost and power budget

T1&T2 timing layers

LYSO:Ce crystals (~1 X₀) σ_t ~ 20 ps

More details in: 2020 JINST 15 P11005

- Barrel crystal section inside solenoid volume
- Granularity: 1x1 cm² PWO segmented crystals
- Radial envelope: ~1.8-2.0 m
- ECAL readout channels: ~1.8 M (including DR)

• Barrel crystal section inside solenoid volume

NFN

• Barrel crystal section inside solenoid volume

NFN

Jet resolution: with and without DR / pPFA

sensible improvement using DR information combined with a PFA approach

 \rightarrow 3-4% for jet energies above 50 GeV

More details in: <u>arXiV 2202.0.1474</u> (Feb 2022)

dual-readout particle flow algorithm

More details in: <u>arXiV 2202.0.1474</u> (Feb 2022)

Funding request presented by a bunch of U.S. universities (P.I. prof. Sarah Eno) Maryland, Princeton, Texas Tech, Virginia, Michigan, Purdue

and labs

MIT, Fermilab, Caltech

for building a dual-readout crystal prototype detector over next few years

- \rightarrow quite large R&D program covering all aspects
- \rightarrow got initial seed, more funding request submitted
- \rightarrow Snowmass white paper submitted

PRIN "young" funding proposal under preparation (P.I. dr. Marco Lucchini, Milano Bicocca)

Simulation efforts ongoing to:

optimise ECAL+HCAL detector concept and integration $\rightarrow\,$ study impact of granularity and of timing information

optimise DR-PFA algorithm

Significant funding obtained by a bunch of Korean universities (P.I. prof. Hwidong Yoo)

R&D presently focused on:

- copper/brass forming (all available options being considered, included 3D printing)
- readout system with waveform sampling (CAEN V1742 digitiser) \rightarrow testbeam with refurbished RD52 modules under preparation
- simulation and deep-learning algorithms

quite impressive but at present by far too costly

plate-based (+ possibly 3D-printed) prototype

short-term plan

mid-term plan

Tower#1	Tower#2
Tower#3	Tower#4

Module #2 (3x3)

-					
Tower 1	Tower 2	Tower 3			
Tower 4	Tower 5	Tower 6			
Tower 7	Tower 8	Tower 9			

Tower#1	Tower#2	Tower#3
Tower#4	Tower#5	Tower#6
Tower#7	Tower#8	Tower#9

building more and more modules (2022-25)

τ-decay case study

Dynamic Graph CNN (DGCNN) architecture with realistic SiPM input - calorimeter signals only -

quark/gluon jet identification:

(highly granular fibre-sampling) dual-readout calorimetry solid candidate for future Higgs/EWK factories

"top-of-the-art" performance in most – or likely all – physics channels predicted when crystal EM section included

many technical "stand-alone" questions (on mechanics, sensors, elx) still open

detector integration (still missing engineered design) open issue as well

 \rightarrow works ongoing (or planned to go) in many places

 \rightarrow many of them hopefully cleared during next 3-4 years

Many interesting activities lacking manpower!

If you are interested, please join group:

idea-dualreadout@cern.ch

and (by-weekly) meetings which schedule is at:

https://indico.cern.ch/category/10684/

Backup

$$S = E \times [f_{em} + (h/e)_{S} \times (1 - f_{em})]$$
$$C = E \times [f_{em} + (h/e)_{C} \times (1 - f_{em})]$$

 f_{em} = electromagnetic shower fraction (h/e)_S , (h/e)_C : detector-specific constants

By solving the system, both E and $f_{\mbox{\scriptsize em}}$ can be reconstructed

dual-readout formulae

