

ITALIAN ACTIVITY IN THE HIGH FIELD MAGNET PROGRAM FOR FCC-hh

STEFANIA FARINON

THE MILANO-GENOVA INFN TEAM

- The Milan and Genoa sections of INFN have been close collaborators since the project for the design, construction and testing of a pulsed curved dipole for the SIS300 at GSI (started in 2005), especially thanks to the friendship between Giovanni Volpini and Pasquale Fabbricatore.
- The collaboration continued with the European project EuroCircol, intended as the first step towards the development of the 16 T Nb₃Sn dipoles for the FCC.
- • We are presently collaborating on several projects:
- • FalconD (part of the High Field Magnet Program)
- SIG Superconducting Ion Gantry
- HITRIPLUS Heavy Ion Therapy Research Integration
- • I.FAST Innovation Fostering in Accelerator Science and Technology

Milano LASA

- Lucio Rossi
- Massimo Sorbi
- Marco Statera
- Marco Prioli
- Ernesto De Matteis
- Samuele Mariotto
- Riccardo Valente
- Stefano Sorti (AdR)

Sezione di Genova

- Stefania Farinon
- Riccardo Musenich
- Andrea Bersani
- Barbara Caiffi
- Alessandra Pampaloni
- Filippo Levi (PhD)
- Sergio Burioli (PhD)
- Andrea Gagno (PhD)
- Michela Bracco (AdR)

Collaboration with CERN

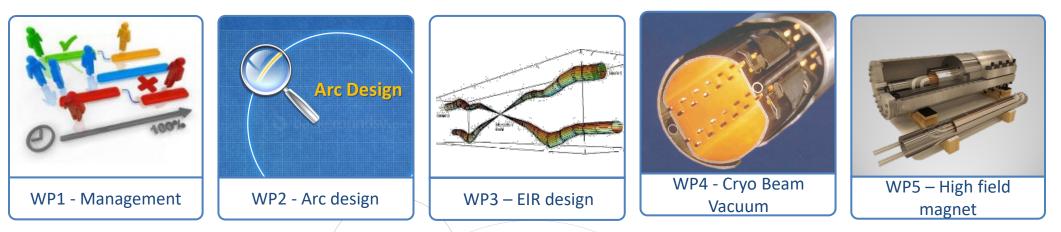
- Amalia Ballarino
- Friedrich Lackner
- Diego Perini
- Davide Tommasini

EUROCIRCOL

Started in June 2015 Ended in December 2019

INFŃ

Istituto Nazionale di Fisica Nucleare



EuroCirCol project

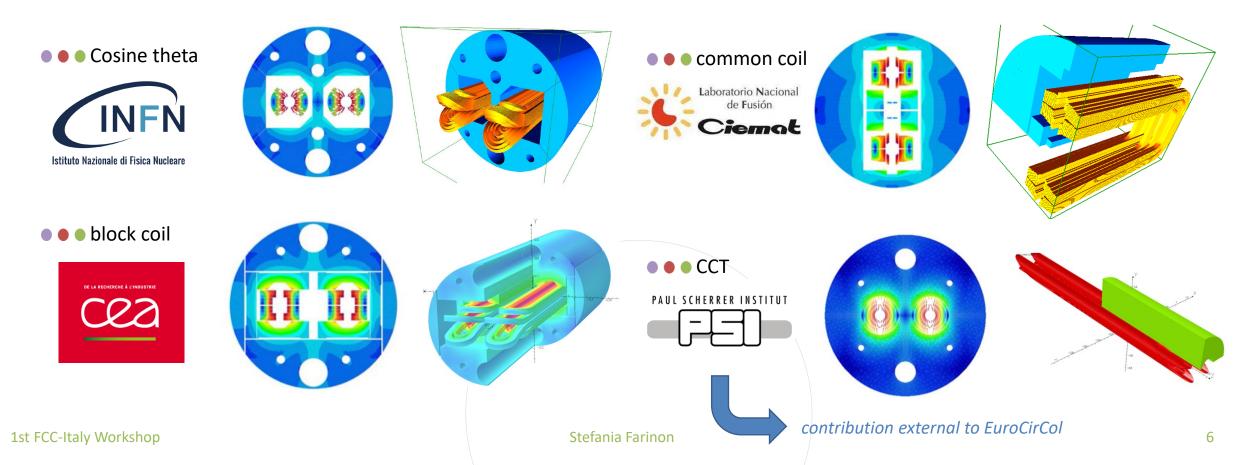
- • The EuroCirCol project focused on the key design questions which determine the feasibility of a 100 TeV hadron collider in a 100 km long tunnel
- It consisted of 5 WPs:

- • Our group was involved in WP5, led by *D.Tommasini*, for the development of the 16 T dipole magnet design:
 - Study and assess different dipole design options
 - • Develop a cost model for the dipole
 - • Develop EM and mechanical design
 - • Devise a quench protection concept

From M.Benedikt presentation at EuroCirCol kick-off meeting https://indico.cern.ch/event/389991/contributions/931909/

Participants person months

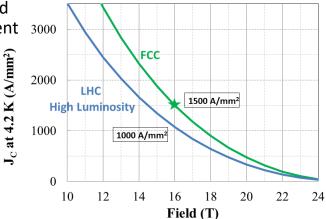
Partner	WP1	WP2	WP3	WP4	WP5	Total PM	Total Cost	EU Funding	
CERN	128	90	42	84	80	424	€ 3,587,500	€ 138,000	
TUT					40	40	€ 325,188	€ 166,000	
CEA		108			36	144	€ 1,018,770	€ 514,000	
CNRS		64				64	€ 508,667	€ 213,000	
КІТ				15		15	€ 124,500	€ 63,000	
TUD		84				84	€ 553,905	€ 278,000	
INFN			30	94	36	160	€ 836,938	€ 422,000	EU funding to INFN for WP5:
UT					38	38	€ 219,185	€ 110,000	' 137 k€
ALBA				100		100	€ 332,858	€ 169,000	
CIEMAT				54	48	102	€ 383,250	€ 193,000	
STFC			48	96		144	€ 595,665	€ 299,000	
UNILIV	22					22	€ 256,844	€ 192,000	
UOXF			88			88	€ 760,691	€ 242,000	
КЕК		12			12	24	€ 158,445	€0	
EPFL			36			36	€ 360,000	€0	
UNIGE					24	24	€ 176,730	€0	
SUM	150	358	244	443	314	1509	€ 10,199,135	€ 2,999,000	


From M.Benedikt presentation at EuroCirCol kick-off meeting https://indico.cern.ch/event/389991/contributions/931909/

Stefania Farinon

EuroCirCol WP5 strategy

The EuroCirCol WP5 strategy was grounded on the exploration of *different design options* for the 16 T Nb₃Sn dipoles *based on the same parameter space*:

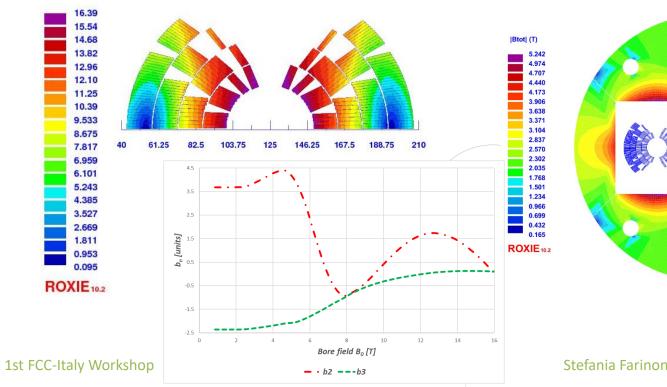

Common assumptions for the WP5 designs

• • • To have a fair comparison of the 4 options, a common set of parameters was set:

Parameter	Value	
bore inner diameter	50 mm	
beam distance	250 mm	
bore nominal field	16 T	
operating temperature	1.9 K	
field harmonics geo/sat	≤ 3/10 units	
J _c @ 4.2 K, 16 T	1500 A/mm ²	
Operation on the loadline	86%	
outer yoke diameter	660 mm	/
min/max strand diameter	0.7/1.1 mm	
max. Number of strand in cable	40	
insulation thickness	0.15 mm	
Min. Cu/nonCu ratio	0.8	
stress limit on coil ambient/cold	150/200 MPa	/
Max hot spot temperature	350 K	

- We initially tried to fit the FCC-hh dipoles in the same tunnel as the LHC (beam distance 194 mm), but because of the huge cross-talk, it was not possible to correct b2 better than 40 units
- In 2015, J_C(4.2K,16T)=1500 A/mm² was the target current density for the FCC dipole, which is still

far enough away to be achieved in actual conductor development 3000

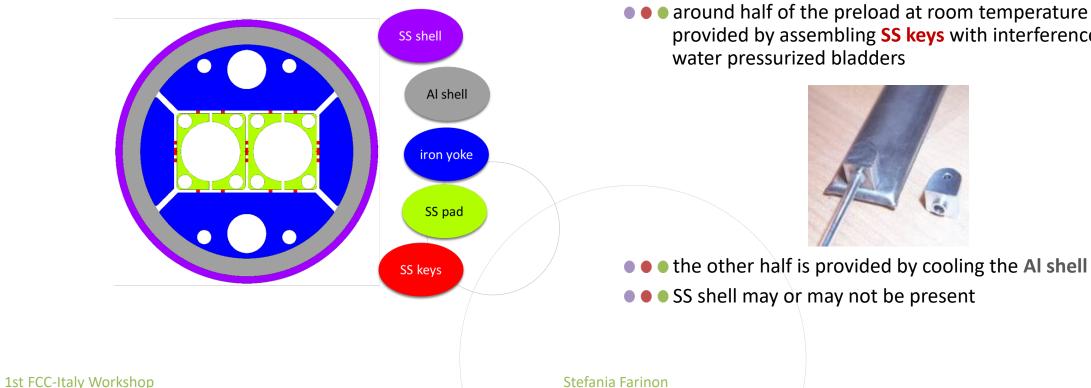


Preliminary studies on Nb₃Sn cables seemed to indicate that 200 MPa could be withstood at cold without major degradation. More recently, it has been assessed that 150 MPa regardless of temperature is a safer upper limit (this raises doubts about the absolute technical feasibility Stefania Farin of reaching 16 T with this type of magnets)

The INFN cost option – electromagnetic design

- • the magnet is in 4 layers, 2 double pancakes, with 2 different kinds of cables:
- • to satisfy the field quality requirements, the cross-talk has been corrected shaping the iron yoke and designing a-symmetric coils
- • The margin on the load line is 14% for both high and low field region

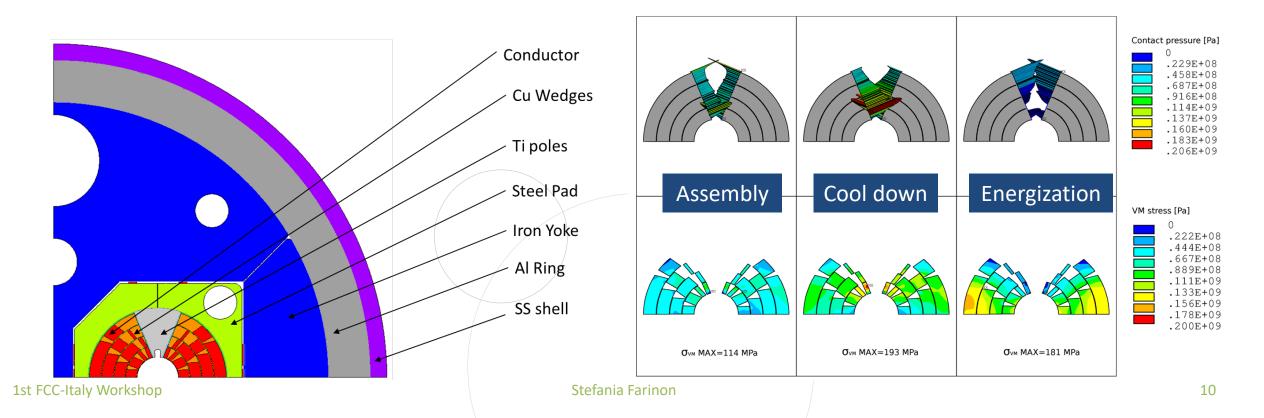
	HF conductor	LF conductor
Strand diameter (mm)	1.1	0.7
Number of strands	22	38
Material	Nb ₃ Sn	Nb ₃ Sn
Bare width (mm)	13.2	14
Bare inner thickness (mm)	1.892	1.204
Bare outer thickness (mm)	2.0072	1.3261
Insulation thickness (mm)	0.15	0.15
Keystone angle	0.5°	0.5°
Cu/Non-Cu	0.82	2.08
Operating current (A)	11441	11441
Operating point on Load Line (1.9 K)	86.0%	85.8%
Peak field (T)	16.4	12.71



The INFN cost option – mechanical design

the design of the mechanical structure is *highly critical*; roughly: $<\sigma_{\vartheta}>\sim \frac{F_{L\vartheta}}{w}=2\frac{r_m}{w}\frac{B_0^2}{2\mu_0}=2\frac{53}{56}\frac{16^2}{2\mu_0}=193 MPa$

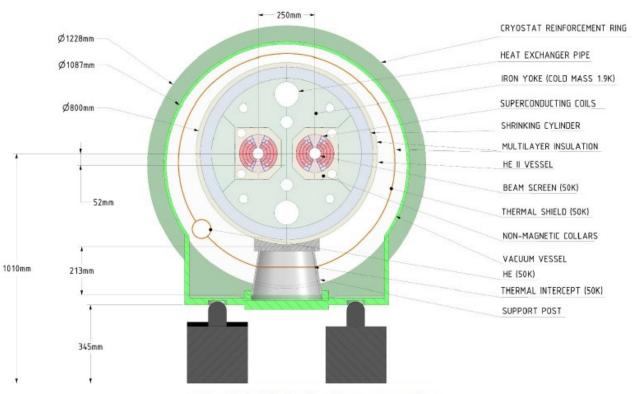
It is based on the bladder&key concept:


• • • around half of the preload at room temperature is provided by assembling SS keys with interference using

The INFN cost option – mechanical design

- • peak stresses in the winding are lower but very close to 200 MPa
- • the EuroCirCol design requirements (set in 2015) are met, but today's knowledge suggests that the reasonable limit for conductors developed so far should be set at 150 MPa

Conceptual Design Report


- The INFN cos option has been chosen as baseline design for the Conceptual Design Report published in 2019
- the other configurations could not be definitively discarded on a design basis alone


Eur. Phys. J. Special Topics **228**, 755–1107 (2019) © The Author(s) 2019 https://doi.org/10.1140/epjst/e2019-900087-0 THE EUROPEAN PHYSICAL JOURN SPECIAL TOPICS

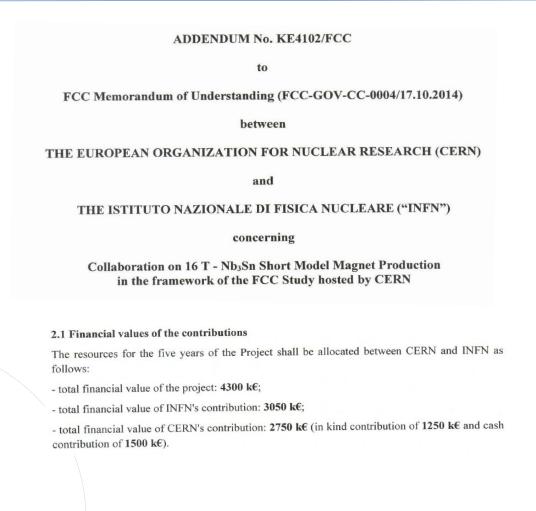
Regular Article

FCC-hh: The Hadron Collider

Future Circular Collider Conceptual Design Report Volume 3

FALCOND

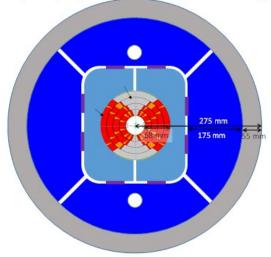
Started in June 2018 Currently to be completed by June 2023

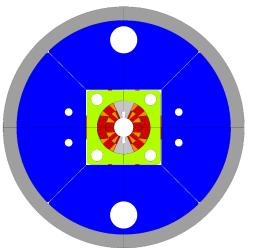


The birth of FalconD project

Future Accelerator post-LHC Cos-theta Optimised Nb₃Sn Dipole

- The natural continuation of the EuroCirCol experience, was the fabrication of a demonstrator
- An agreement CERN-INFN was signed on Sept. 20th 2018
 - • Addendum No. KE4102/FCC to FCC Memorandum of Understanding FCC-GOV-0004/17.10.2014
 - Collaboration on 16 T Nb₃Sn Short Model Magnet Production in the framework of the FCC Study hosted by CERN
 - Develop a single aperture 16 T 4-layer cost demonstrator
 - • 2 practice and 2 + 1 spare Nb₃Sn coils
- In 2019 an international tender was launched, and the corresponding industrial contract was awarded to ASG Superconductors in June 2020 (1.5 M€)
 - • ASG is responsible for the construction of the coils
 - • The mechanical assembly is planned to be performed by INFN at the LASA Laboratory




Kick-off meeting at ASG – July 2020

- • Compared to the original Technical Specification (2018), several changes had already been agreed with CERN at the time of the kick-off meeting (July 2020), because
- • a 4 layer 16 T dipole is an extremely challenging magnet, a step too far beyond the state of the art
- • current conductors do not have the performance required to reach 16 T J_C(4.2K,16T)=1500 A/mm²
- a 2 layer dipole in the range 12–14 T would already be a significant advancement with respect to the state of the art
- • FalconD characteristics (Addendum to be updated):
- • 2 layers
- • design magnetic field: 12 T (ultimate field of mech. structure/prot. system: 14 T)
- • 40 strand Rutherford cable Φ =1 mm
- Image: Second S Second Seco
- • stress in conductors < 150 MPa in any conditions</p>
- • max outer dimension 650 mm (to make cold test at LASA feasible)
- • • due to several reasons (overbooking of the engineering department at ASG, Covid19 pandemic limitations, unavailability of the conductor from CERN) the project did not progress until the end of 2021

Kick-off meeting design:

1st FCC-Italy Workshop

Stefania Farinon

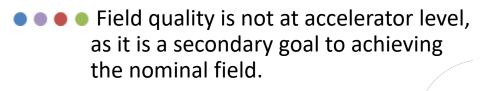
the Technical Design Report

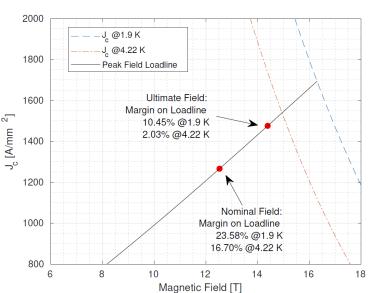
- only design activities were able to progress, and on October 15th 2021 the *FalconD Technical Design Report* was submitted to the CERN Collaboration
- • the TDR was the 1st Deliverable of the CERN/INFN agreement
- In January this year, the TDR was approved by the HFM CERN/INFN Steering Committee
- after approval, the TDR was published as INFN Technical Note and can be downloaded from <u>http://www.lnf.infn.it/sis/preprint/getfilepdf.php?filename</u> <u>=INFN-22-01-GE.pdf</u>

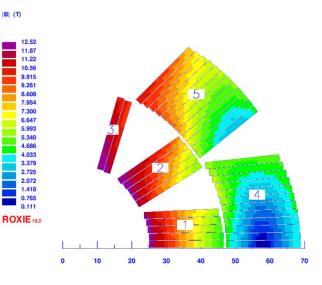
INFN-22-01/GE 31 Gennaio 2022

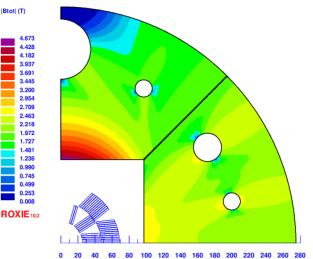
TECHNICAL DESIGN REPORT OF THE FalconD Nb_3Sn COS-THETA DIPOLE MODEL FOR THE FCC-hh AT CERN

 Sergio Burioli¹, Barbara Caiffi¹, Ernesto De Matteis², Pasquale Fabbricatore¹, Stefania Farinon¹, Friedrich Lackner³, Filippo Levi², Samuele Mariotto², Riccardo Musenich¹, Alessandra Pampaloni¹, Marco Prioli², Massimo Sorbi², Marco Statera², Davide Tommasini³, Riccardo Umberto Valente²
 ¹) INFN, Sezione di Genova, Via Dodecaneso 33, I-16146 Genova, Italy
 ²) INFN LASA, Viale F.lli Cervi 201, I-20054 Segrate (MI), Italy
 ³) CERN, CH-1211 Geneva 23, Switzerland

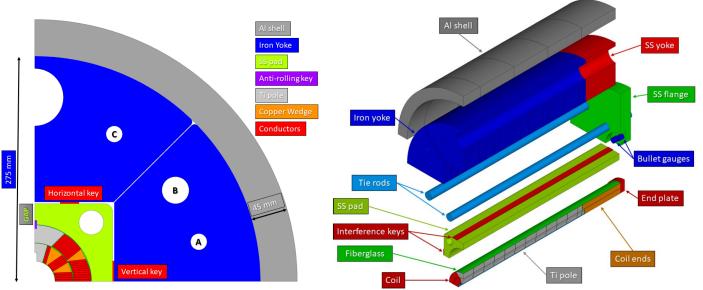


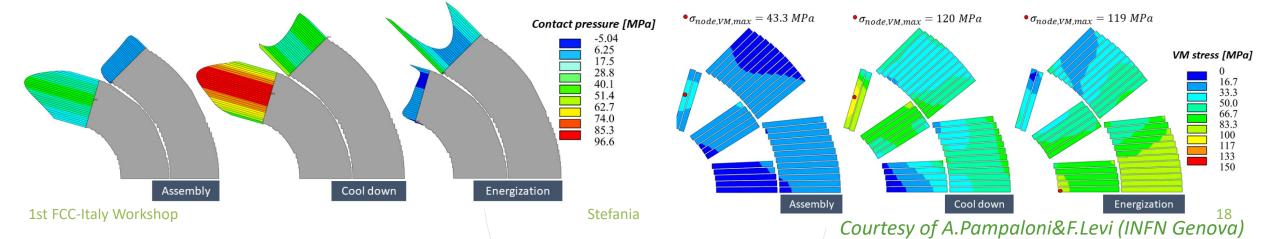



Electromagnetic design


- The magnet is designed to reach a bore field of 12 T with two layers of keystoned Rutherford cable wound using the double pancake technique.
- In each quadrant there are 3 blocks in the first layer and 2 blocks in the second one, for a total of 36 turns.
- The main goal of the project is to achieve the target field by prioritizing technical feasibility rather than absolute field quality (minimum bending radius around 10 mm and minimum copper wedge size around 1 mm).

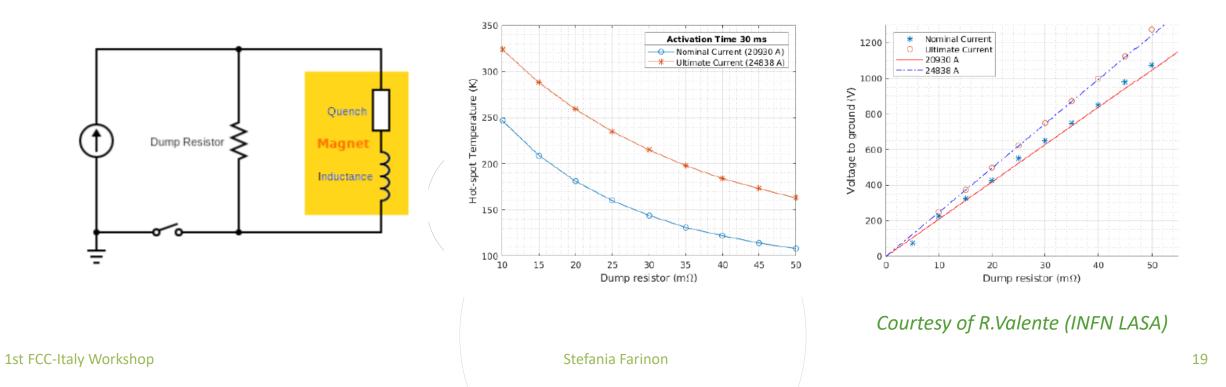
The margin on the loadline @ 12 T, 1.9 K is 23.6%, which is consistent with other magnets of the same type (MQXF).




1st FCC-Italy Workshop Courtesy of R.Valente (INFN LASA)

Mechanical design

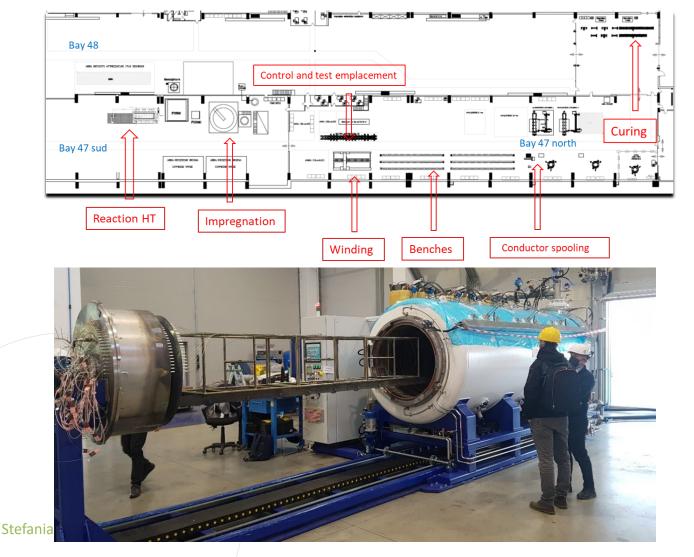
- as already mentioned, the mechanical structure adopts the bladder&key concept
- • the vertical keys preload the coil by imposing a mild ovalization that counterbalance the effect of the Lorentz forces
- the goal is to ensure contact pressure between coil and collar pole in any conditions while keeping the stress in the conductors below 150 MPa



Quench protection

- The magnet can be protected by energy extraction only, without using quench heaters (with considerable construction simplification).
- • At 12 T the optimized dump resistor of 25 mΩ gives hot spot temperature of 160 K and max. voltage to ground 525 V

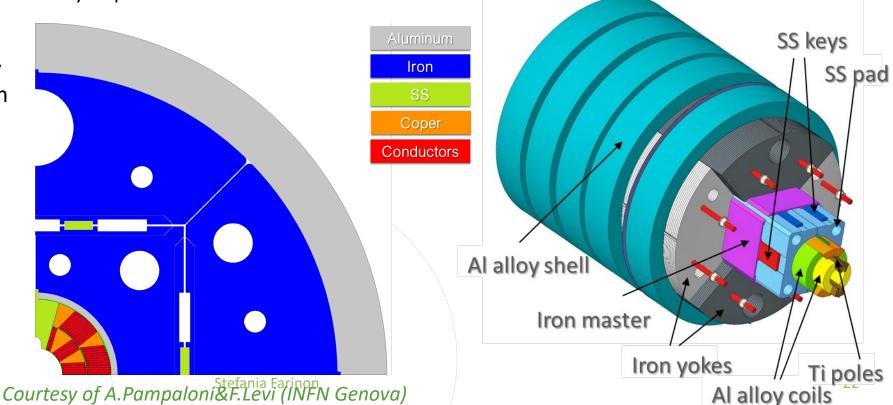
ADVANCEMENTS SINCE THE TDR DRAFTING



Advancements @ ASG Superconductors

 the manufacturing layout in the ASG premises has been set up

 the construction of the furnace for the thermal treatment of Nb3Sn was completed by HTS-Furnaces Mozzanica-BG and the furnace was installed at ASG in January this year



Courtesy of R.Cereseto (INFN Genova)

Advancements @ INFN

- • • We started an activity to assemble a mock-up of the FalconD magnet. The reasons are:
- Consolidate the mechanical FE analysis to predict magnet the stress/strain conditions (straight part only) during the B&K assembly and cooling (at 77 K)
- • Study the influence of mechanical tolerances on the mechanical system
- • Determine the most convenient assembly sequence
- we are working on a new design that brings the iron yoke closer to the coils, which helps to reduce current and increase the margin

1st FCC-Italy Workshop

23

Winding trials @ CERN

- In October 2021 a first run of winding trial was performed with machined Al mandrel and polymer wedges and spacers
- • the results were not entirely good but encouraging (non-insulated Cu cable, very low tension due to the soft material of the wedges and spacers)
- In spite the non-optimal test conditions, we understood in which direction to act to improve the windability of the ends of the coil. New end spacers have already been designed for next winding test (transition is smoother and longer)
- new winding trials are planned by the end of March using machined Al wedges and spacers
 Old version
 New version
 New version

1st

24

Preliminary schedule

• • • • a new program has been agreed upon between CERN and INFN that includes the construction and testing of the FalconD dipole by the end of 2024

• • • the Addendum will soon be modified accordingly

	(21 2022		Q	2022	(Q3 202	22	(Q4 20)22	(Q1 202	23	(22 202	23	(23 202	23	C	24 202	23	Q1 :	2024		Q2	2024		Q3 2	024	Q	4 2024
	Jan	Feb	Mar	Apr	Vay Ju	n Jul	Aug	Sep	Oct	Nov	v Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan F	eb N	1ar A	Apr M	ay Ju	n Ju	JI AI	Jg Sep	Oct	Nov Dec
Design, Engineering, tests																																	
CERN winding tests																																	
End spacers design																																	
Production of test coil components																																	
Manufacturing of practice and dummy coils																																	
PRR												Х																					
Coil winding tool																																	
Coil sint. & impregn. tool					ptimize	d tool																											
Structure design																																	
Design review				Х																													
Confirmation of the schedule				Х																													
Drawings of componets																																	
Approval of drawings								[X																						
Construction							X																										
Mdification of coil tools (if necessary)																																	
Conponenrs for coils											Iterat	tion e	nd sp.					\square															
Components for cold mass																																	
Manufacturing of coils																																	
Coil acceptance																		Х															
Tools for pole assemby											/																						
Pole assemby	_							1		\square																							
Tools for magnet assembly																																	
Magnet assembly	_																																
Electrical connections																																	
Acceptance tests																																	
Magnet acceptance																											3	X					
FCC the house Packing , transport												ctof	haia	Fari																			
16515												JUE	aiiid	rall																			
Final report																					/												Х

THANKS FOR YOUR ATTENTION

