

IHEP-INFN Collaboration on Medical Physics

Xiaohui Li on behalf of DNTA

Institute of High Energy Physics, CAS

2021-7-8

Outline

- On-going Work in IHEP for Medical Physics
- Current Collaboration between IHEP and INFN
- Future Perspectives

Overviews of DNTA

Animal PET/CT

γ-ray detection

90kV Micro-CT

- Division of nuclear technology and application is the technological transfer unit of IHEP.
- Non-profit department, which is application-oriented and focused on instrument and equipment industrialization.
- Different research areas
 - Nuclear medical imaging technology
 - Nuclear radiation detecting technology
 - X-ray imaging technology

Nuclear medical imaging Equipment

Medical research equipment

animal PET(PET/CT) and rat imaging

Primate PET and rabbit imaging

Clinical diagnostic equipment

Nuclear medical imaging Equipment

- The breast PET(PEMi) used for breast cancer diagnosis.
- The whole body PET system with proprietary intellectual property rights.

Developing of Computed Tomography

CT has gone through the stages of non-spiral CT, spiral CT, multi-slice CT, and now it is progressing to multi-spectral 6

Next generation for Spectral CT

<<<

System Characteristics:

- Photon counting detector with multienergy thresholds
- 3D energy spectrum imaging with high SNR, which is realized for the whole body structure of small living animals
- Advanced reconstruction algorithm
- Meets the application needs of biomedical research in bone research, tumor research, etc.

Specifications:

X-Ray Source: 90kV

Detector: Photon Counting

Spatial Resolution: ≤ 20um

Energy Threshold: 2-8

■ Image Array: 512×512/2048×2048

Fields of View: φ 65mm × L 200mm

Small animal Spectral CT

high resolution image(11um)

Enhanced color imaging of mice

3D image of a shrimp

3D image of a crab

accurate positioning for microcalcification and small tumors at lower dose, to improve the detection rate of breast cancer census.

indicators	Mammography	breast CT	Our target
Imaging type	2D-DR	3D-CT	3D-CT
Radiation dose	6mGy	6mGy	3mGy
Details of the resolution	200μm	200μm	100μm
Contrast resolution	_	10‰	5‰
Whether need to compressed the breast	yes	no	no
Whether can multi-energy imaging	no	no	yes (≥4)

Prototype of Breast CT

Inside view of the device

- Multi-energy imaging technology, high contrast, low dose (3mGy lowest)
- ✓ 3D imaging, isotropic high resolution(100um)
- ✓ K-edge enhanced imaging

Breast Spectral CT

Research Area and Direction

Core technology research

Radiation detecting and imaging technology

Key component developing

Industrial promotion

System Integration

Application Research

Talent Cultivation

The Detector System

SiPM detector system

Breast PET detector system

Whole-body PET detector system

Self-designed series of detectors

Key technology

- Develop the data acquisition technology based on multi-channel and highspeed ADCs.
- Finish different channels and different sampling rates DAQ boards.

4 channels & 500MSPS DAQ

16 channels DAQ

32 channels DAQ

256 channels DAQ

Key technology

 Develop the data acquisition technology based on commercial ASICs and implement high integrated DAQ boards.

32 channels & 5.69GSPS DAQ

32 channels & SiPM dedicated DAQ

64 channels & PMT/SiPM dedicated DAQ

Fiber transmission

USB3.0

CameraLink

Design different data transmission technologies, such as

Key technology

- Develop the data pre-processing technology based on FPGA, and implement hardware acceleration for imaging processing.
- Develop image processing algorithm and graphics display based on ARM.
- Implement migration of Android system and develop different APPs.

Trends for detector

Gas Detector:

- √ High resolution
- × Low detection efficiency
- × low energy resolution

Scintillation Detector:

- ✓ High detection efficiency
- **×** Low resolution
- × Low energy resolution

Image degradation

Semiconductor Detector:

- ✓ Energy resolution : ~1%@662KeV
- ✓ Spatial resolution: ~50um
- ✓ Low noise, high dynamic range

Low resolution

Semiconductor detector is the future of medical imaging equipment.

- Detector design for X-ray imaging equipment
- Hybrid pixel structure: Sensor + Flip-chip bonding + FEE
 - Sensor: CZT/CdTe Array
 - Flip-chip bonding: Indium ball
 - FEE: multi-channel and high integrated, ASIC is necessary

CdTe Sensor Array

FEE board

Implement the 'zero noise' detection

12 wafers

Testing board

Die testing, Yield: 80%~90%

4 thresholds S-Curve

Flip-chip bonding

Using Indium bump for the bonding

Bad pixel: 20

Pixel Array: 72×104

Reject ratio: 0.27%

Array: 144×208

Pixel size: 150µm

Area: 21.6 mm×31.2mm

Energy bins: 4

Readout clock: 40MHz

channel: 9

Frame: 1.2KHz

Bonding with 1mil gold wire leads

Test Condition

- ✓ The X-Ray tube is Hamamatsu L10321;
- ✓ The distance between detector and tube: ~28cm;
- ✓ The readout clock is 12.5MHz;
- ✓ The thickness of CdTe is 1mm, High Voltage is -300V;

Tube Voltage100kV, Current 200uA

- Detector Module testing has been finished on May, and now it is in the calibration process.
- The full-scale detector will be assembled in 3~4 months, and be 8 modules together.
- The module size is 2×2 chips, and will be enlarged to 2×4 chips.

Outline

- On-going Work in IHEP for Medical Physics
- Current Collaboration between IHEP and INFN
- Future Perspectives

The Readout Electronic Technique

Collaboration with INFN: Pixel Readout ASIC

- Design framework for a system-grade pixel ASIC has been started at INFN (ARCADIA Collab.)
- Jiale Cai (IHEP-INFN PhD Program 2019)
- For this ASIC: Smaller pixel size (100µm) and on-chip charge sharing algorithm(Manuel will give more details)

Collaboration with INFN: Pixel Readout ASIC

- Road map for the ASIC
 - Phase 1: First demonstrator of X-ray detector built on the CMOS MAPS developed in framework of ARCADIA.
 - Phase 2:Start from the 2x4 pixel organization of the ARCADIA main demonstrator chip and implement a 100x100um pixel for photon counting.
 - Tape-out by mid-2022, DNTA builds DAQ in Q4 2022
 - Phase 3:Test on a medical instrument at IHEP in 2023.

γ-ray detection readout system

Readout electronics for CZT

- CZT + VATA450 + Xilinx FPGA
- VATA450: CSA + Shaper + ADC

CZT+ASIC

FPGA Controller

Figure 1: ASIC functional overview, Source: [RD02]

γ-ray detection readout system

Expected ASIC Specifications

entry	specifications			
Channels	121 (for anode) + 2 (for cathode)			
Input range	>100fc			
Count rate	>10k per-channel			
ENC	< 65e/pf			
Adjustable shaping time				
Adjustable gain				
Adjustable threshold per-channel				
TAC				

The goal is to get the 3D information from detector

Collaboration with INFN: TIGER-CZT ASIC

CZT Readout at IHEP with TIGER ASIC

TIGER ASIC

BESIII e-Kits

	E fine channel 47	hEfineC1_47		CHI	P 1 E fine chann	hEfineC1 47
		Entries 2: Mean RMS Underflow Overflow x2 / nd1 425 Prot Constant 1223: Mean 414.4	46255 Z 519.7 1400 76.26 0 0 1200 9 / 46			Enfrice 2465 Mean 2465 Mean 11 Under flow Overflow 37 / nct 376.5 / Proco Constant 1300.21 Mean 412.27 Signia 5.705.1.0.4
	V	البحجيب	٥٤.	400 410		30 440
200 400	signal	800 1000 Etine (digits)	ENC-total	energy resolution		Lorenza In va v
		Efine (digits)		energy	420 43	30 440 Efine [digits]
	signal pulse	channel	ENC-total	energy resolution	420 4: Qin[fC]	30 440 Eline [digite]
condition	signal pulse generator	channel	ENC-total	energy resolution 2.67%	420 4: Qin[fC]	other on sensor no sensor sensor connect- off
condition 1 2	signal pulse generator Test pulse	channel 63 62	ENC-total 1600 2900	energy resolution 2.67% 4.69%	420 4: Qin[fC] 23 23.6	other on sensor

Energy Resolution - 2019 IHEP-INFN Bilateral Meeting

- Test campaigns at IHEP using BESIII e-Kits with TIGERv1 and TIGERv2
- Readout of cathode and multi-anode array for 3D radiation detection
- TIGERv1 can get a resolution better than 5%
- New TIGER-CZT prototype will be ready in 6~9 months

Collaboration with INFN: CZT Readout ASIC

- Road map for the ASIC
 - Phase 1: Send an TIGERv1 e-kit to IHEP, and do the characterization with DNTA staff and remote support in April 2021. Still on-going.....
 - Phase 2:Detailed study of the signal characteristics of the CZT anode/cathode, towards the optimization of the very front-end.
 - Phase 3:Start a new design or a design revision of the TIGER ASIC at the beginning of 2022.

Outline

- On-going Work in IHEP for Medical Physics
- Current Collaboration between IHEP and INFN
- Future Perspectives

Outlook

- Finish new Pixel ASIC for photon counting CT in the field of medical physics
- New requirements for ASIC development in the field of X-Ray Diffraction and PET system
- Further collaborative IHEP-INFN effort on ASIC design, fostered by a Joint PhD Program in Microelectronics

Collaboration with INFN: Si-strip Readout ASIC

Detector Specifications

Specifications		
X-ray diffraction		
128 strips, 50µm pitch		
8mm		
≥1×10 ⁸ cps		
< 380ev @ 8Kev		
500μm		
4.2KHz		

Used for X-ray diffractometer

Collaboration with INFN: ASIC for PET Detector

Detector requirement especially for specific system

- High position resolution: ≤1mm
- High time resolution: ≤300ps
- High energy resolution: ~10%@511keV
- Currently used Detector solutions
- SiPM array such as 8×8......
- Combining readout channels by resistance network

- AISC requirements
- Number of channels: 64
- Signal Polarity: positive or negative
- Dynamic range: 0~1500pC
- Independent measurement of charge and time
- TDC bin: ≤30ps
- event rate: ~500kcps

Thank you!

Comparison of different sensors

Sensor materials

- Si
- GaAs
- CdTe
- CZT

X-ray imaging: 20-160keV y-ray imaging: 20-662keV

Energy	Si 500um	Si 1000um	GaAs 500um	GaAs 1000um	CdTe 500um	CdTe 1000um
20keV	40%	65%	99%	99%	99%	99%
60keV	5%	7%	38%	62%	85%	95%
100keV	2%	2%	12%	22%	35%	60%
160keV	1%	1%	4%	10%	18%	30%

CdTe/CZT match the our requirements better.